Whether Green Finance Can Effectively Moderate the Green Technology Innovation Effect of Heterogeneous Environmental Regulation
Abstract
:1. Introduction
2. Theoretical Basis and Research Hypothesis
2.1. Environmental Regulation and Green Technology Innovation
2.2. Green Finance and Green Technology Innovation
2.3. Green Finance, Environmental Regulation, and Green Technology Innovation
2.4. The Spatial Effects of Green Finance and Environmental Regulations
3. Data and Methodology
3.1. Econometric Model
3.2. Direct, Indirect, and Total Effects
3.3. Spatial Weight Matrix
3.4. The Test of Spatial Autocorrelation
3.5. Variable Description and Data Source
3.5.1. Explained Variable
3.5.2. Core Explanatory Variables
3.5.3. Control Variables
4. Empirical Results and Analysis
4.1. Results of Spatial Autocorrelation Test
4.2. Model Selection
4.3. Results of Spatial Models
4.4. Spillover Effect of Green Technology Innovation
5. Conclusions and Policy Recommendations
5.1. Conclusions
5.2. Policy Recommendations
5.3. Research Deficiencies and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xi, J.P. Secure a Decisive Victory in Building a Moderately Prosperous Society in All Respects and Strive for the Great Success of Socialism with Chinese Characteristics for a New Era. In Proceedings of the Xi Jinping’s Report to the 19th National Congress of the Communist Party of China; 2017. Available online: http://subsites.chinadaily.com.cn/npc/2021-12/24/c_693899_3.htm (accessed on 5 March 2022).
- Wu, H.; Li, Y.; Hao, Y.; Ren, S.; Zhang, P. Environmental decentralization, local government competition, and regional green development: Evidence from China. Sci. Total Environ. 2020, 708, 135085. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Miao, C.; Sun, L.; Meng, X.; Duan, M. Efficiency evaluation of green technology innovation of China’s strategic emerging industries: An empirical analysis based on Malmquist-data envelopment analysis index. J. Clean. Prod. 2019, 238, 117782. [Google Scholar] [CrossRef]
- Cai, X.; Zhu, B.Z.; Zhang, H.J.; Li, L.; Xie, M.Y. Can direct environmental regulation promote green technology innovation in heavily polluting industries? Evidence from Chinese listed companies. Sci. Total Environ. 2020, 746, 140810. [Google Scholar] [CrossRef] [PubMed]
- Van, L.G.; Mohnen, P. Revisiting the Porter hypothesis: An empirical analysis of green innovation for the Netherlands. Econ. Innov. New Technol. 2017, 26, 63–77. [Google Scholar]
- Wagner, M. On the relationship between environmental management, environmental innovation and patenting: Evidence from German manufacturing firms. Res. Policy 2007, 36, 1587–1602. [Google Scholar] [CrossRef]
- Stokey, N.L. Are there limits to growth? Int. Econ. Rev. 1998, 39, 1–31. [Google Scholar] [CrossRef]
- Porter, M.E.; Linde, C.D. Toward a New Conception of the Environment-Competitiveness Relationship. J. Econ. Perspect. 1995, 9, 97–118. [Google Scholar] [CrossRef] [Green Version]
- Guo, J. The Effects of Environmental Regulation on Green Technology Innovation—Evidence of the Porter Effect in China. Financ. Trade Econ. 2019, 40, 147–160. [Google Scholar]
- Copeland, B.; Taylor, M. Trade, Growth and the Environment. J. Econ. Lit. 2004, 42, 7–71. [Google Scholar] [CrossRef]
- Chan, H.K.; Yee, R.W.; Dai, J.; Lim, M.K. The moderating effect of environmental dynamism on green product innovation and performance. Int. J. Prod. Econ. 2016, 181, 384–391. [Google Scholar] [CrossRef]
- Marit, E.K.; Brita, B.; Arvid, R. Can direct regulations spur innovations in environmental technologies? A study on firm-level patenting. Scand. Econ. 2018, 120, 338–371. [Google Scholar]
- Chen, S.Y. Energy-Save and Emission-Abate Activity with its Impact on Industrial Win-Win Development in China: 2009–2049. Econ. Res. J. 2010, 3, 129–143. [Google Scholar]
- Lanoie, P.; Patry, M.; Lajeunesse, R. Environmental regulation and productivity: Testing the porter hypothesis. J. Product. Anal. 2008, 30, 121–128. [Google Scholar] [CrossRef]
- Yin, X.L.; Xu, Z.R. An empirical analysis of the coupling and coordinative development of China’s green finance and economic growth. Resour. Policy 2022, 75, 102476. [Google Scholar] [CrossRef]
- Yang, Y.X.; Su, X.; Yao, S.L. Nexus between green finance, fintech, and high-quality economic development: Empirical evidence from China. Resour. Policy 2021, 74, 102445. [Google Scholar] [CrossRef]
- Yang, Q.; Du, Q.; Razzaq, A.; Shang, Y. How volatility in green financing, clean energy, and green economic practices derive sustainable performance through ESG indicators? A sectoral study of G7 countries. Resour. Policy 2022, 75, 102526. [Google Scholar] [CrossRef]
- Zhou, H.J.; Xu, G.Y. Research on the impact of green finance on China’s regional ecological development based on system GMM model. Resour. Policy 2022, 75, 102454. [Google Scholar] [CrossRef]
- Wang, R.; Zhao, X.; Zhang, L. Research on the impact of green finance and abundance of natural resources on China’s regional eco-efficiency. Resour. Policy 2022, 76, 102579. [Google Scholar] [CrossRef]
- Muganyi, Y.; Yan, L.N.; Sun, H.P. Green finance, fintech and environmental protection: Evidence from China. Environ. Sci. Ecotechnol. 2021, 7, 100107. [Google Scholar] [CrossRef]
- Tietenberg, T.; Willman, E.; Tracey, P. Environmental Economics and Policy; Canadian Edition; Preliminary Version; Routledge: London, UK, 2019. [Google Scholar]
- Wang, J.R.; Zhang, Y. Environmental regulation, green technological innovative intention and green technological innovative behavior. Stud. Sci. Sci. 2018, 36, 352–360. [Google Scholar]
- Mickwitz, P.; Hyvattinen, H.L.; Kivimaa, P. The role of policy instruments in the innovation and diffusion of environmentally friendlier technologies: Popular claims versus case study experiences. J. Clean. Prod. 2008, 16, 162–170. [Google Scholar] [CrossRef]
- Popp, D.; Newell, R.G.; Jaffe, A.B. Energy, the environment, and technological change. Handb. Econ. Innov. 2010, 2, 873–937. [Google Scholar]
- Adam, B.J.; Richard, G.N.; Robert, N.S. A tale of two market failures: Technology and environmental policy. Ecol. Econ. 2005, 54, 164–174. [Google Scholar]
- Ren, S.; Li, X.; Yuan, B.; Li, D.; Chen, X. The effects of three types of environmental regulation on eco-efficiency: A cross-region analysis in China. J. Clean. Prod. 2018, 173, 245–255. [Google Scholar] [CrossRef]
- Liu, X.L.; Wen, S.Y. Should financial institutions be environmentally responsible in China? Facts, theory and evidence. Econ. Res. J. 2019, 54, 40–56. [Google Scholar]
- Liu, J.Y.; Xia, Y.; Fan, Y.; Lin, S.M.; Wu, J. Assessment of a green credit policy aimed at energy-intensive industries in China based on a financial CGE model. J. Clean. Prod. 2015, 163, 293–302. [Google Scholar] [CrossRef]
- Yan, C.L.; Li, T.; Lan, W. Financial development, innovation and carbon emission. J. Financ. Res. 2016, 427, 14–30. [Google Scholar]
- Xu, X.K.; Li, J.S. Asymmetric impacts of the policy and development of green credit on the debt financing cost and maturity of different types of enterprises in China. J. Clean. Prod. 2020, 264, 121574. [Google Scholar] [CrossRef]
- Xu, J.; Cui, J.B. Low-Carbon Cities and Firms’ Green Technological Innovation. China Ind. Econ. 2020, 12, 178–196. [Google Scholar]
- Yu, C.H.; Wu, X.; Zhang, D.; Chen, S.; Zhao, J. Demand for green finance: Resolving financing constraints on green innovation in China. Energy Policy 2021, 153, 112255. [Google Scholar] [CrossRef]
- Wang, Y.P.; Chen, Y.X. Environmental regulation, financial development and enterprise technology innovation. Sci. Decis. Mak. 2022, 1, 65–78. [Google Scholar]
- Cao, T.Q.; Zhang, C.Y.; Yang, X. Green Effect and Influence Mechanism of Green Credit Policy—Based on the Evidences of Green Patent Data of Chinese Listed Companies. Financ. Forum 2021, 26, 7–17. [Google Scholar]
- Konisky, D.M. Regulatory competition and environmental enforcement: Is there a race to the bottom? Am. J. Political Sci. USA 2007, 51, 853–872. [Google Scholar] [CrossRef]
- Bottazzi, L.; Peri, G. Innovation and spillovers in regions: Evidence from European patent data. Eur. Econ. Rev. 2003, 47, 687–710. [Google Scholar] [CrossRef]
- Balli, H.O.; Srensen, B. Interaction effects in econometrics. Empir. Econ. 2013, 45, 583–603. [Google Scholar] [CrossRef] [Green Version]
- LeSage, J.P.; Pace, R.K. Spatial Econometric Modeling of Origin-Destination Flows. J. Reg. Sci. 2008, 48, 941–967. [Google Scholar] [CrossRef]
- LeSage, J.P.; Pace, R.K. Spatial econometric models. In Handbook of Applied Spatial Analysis; Springer: Berlin/Heidelberg, Germany, 2010; pp. 355–376. [Google Scholar]
- Zhang, J.; Wu, G.Y.; Zhang, J.P. The Estimation of China’ s provincial capital stock: 1952–2000. Econ. Res. J. 2004, 10, 35–44. [Google Scholar]
- Dong, Z.; He, Y.; Wang, H.; Wang, L. Is there a ripple effect in environmental regulation in China?—Evidence from the local-neighborhood green technology innovation perspective. Ecol. Indic. 2020, 118, 106773. [Google Scholar] [CrossRef]
- Li, J.; Wei, P. Informal finance, urbanization and innovation capacity. China Popul. Resour. Environ. 2015, 25, 152–159. [Google Scholar]
- Yang, L.; Sun, Z.C. The Development of Western New type Urbanization Level Evaluation Based on Entropy Method. Econ. Probl. 2015, 3, 115–119. [Google Scholar]
- Ye, Q.; Dai, S.Q.; Zeng, G. Research on the Effects of Command-and-Control and Market-Oriented Policy Tools on China’s Energy Conservation and Emissions Reduction Innovation. Chin. J. Popul. Resour. Environ. 2018, 16, 1–11. [Google Scholar] [CrossRef]
- Zhu, X.H.; Zuo, X.G.; Li, H.L. The dual effects of heterogeneous environmental regulation on the technological innovation of Chinese steel enterprises-Based on a high-dimensional fixed effects model. Ecol. Econ. 2021, 188, 107113. [Google Scholar] [CrossRef]
- Canils, M.C.J.; Verspagen, B. Barriers to knowledge spillovers and regional convergence in an evolutionary model. J. Evol. Econ. 2001, 11, 307–329. [Google Scholar]
- Elhorst, J.P. Matlab software for spatial panels. Int. Reg. Sci. Rev. 2014, 37, 389–405. [Google Scholar] [CrossRef] [Green Version]
- You, D.M.; OuYang, L.Q. The impact of environmental regulation on the green innovation efficiency of industrial enterprises: An empirical analysis based on the spatial Durbin model. Reform 2020, 122–138. [Google Scholar]
- Shen, C.; Li, S.; Wang, X.; Liao, Z. The effect of environmental policy tools on regional green innovation: Evidence from China. J. Clean. Prod. 2020, 254, 120122. [Google Scholar] [CrossRef]
- Jaffe, A.B.; Feng, Y.C.; Wang, A.L. The Heterogeneous Effects of Different Types of Environmental Regulation on Technological Innovation of Industrial Enterprises. Manag. Rev. 2021, 33, 92–102. [Google Scholar]
- Zhang, A.B.; Newell, R.G.; Stavins, R.N. Environmental policy and technological change. Environ. Resour. Econ. 2002, 22, 41–70. [Google Scholar]
- Norberg-Bohm, V. Stimulating ‘green’ technological innovation: An analysis of alternative policy mechanisms. Policy Sci. 1999, 32, 13–38. [Google Scholar] [CrossRef]
- Zhang, Y.M.; Li, X.L.; Xing, C. How does China’s green credit policy affect the green innovation of high polluting enterprises? The perspective of radical and incremental innovations. J. Clean. Prod. 2022, 336, 130387. [Google Scholar] [CrossRef]
- Hu, G.Q.; Wang, X.Q.; Wang, Y. Can the green credit policy stimulate green innovation in heavily polluting enterprises? Evidence from a quasi-natural experiment in China. Energy Econ. 2021, 98, 105134. [Google Scholar] [CrossRef]
Variable | Observation | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|---|
gti | 240 | 7.7905 | 1.3811 | 3.6889 | 10.8129 |
gf | 240 | 0.1163 | 0.0683 | 0.0371 | 0.4171 |
er | 240 | 0.1313 | 0.1834 | 0.0000 | 1.1714 |
er | 240 | 8.6575 | 1.5700 | 4.6205 | 11.8889 |
240 | 0.0226 | 0.0181 | 0.0001 | 0.1138 | |
240 | 0.5599 | 0.1268 | 0.2575 | 0.8960 | |
240 | 0.2905 | 0.3291 | 0.0168 | 1.5482 | |
240 | 0.0002 | 0.0001 | 0.0001 | 0.0003 | |
240 | 0.0119 | 0.0255 | 0.0002 | 0.1602 |
Year | |||||||||
---|---|---|---|---|---|---|---|---|---|
Moran’s I | Z-Value | p-Value | Moran’s I | Z-Value | p-Value | Moran’s I | Z-Value | p-Value | |
2010 | 0.244 | 2.931 | 0.003 | 0.203 | 1.940 | 0.052 | 0.780 | 6.167 | 0.000 |
2011 | 0.265 | 3.154 | 0.002 | 0.249 | 2.320 | 0.020 | 0.763 | 6.056 | 0.000 |
2012 | 0.259 | 3.075 | 0.002 | 0.254 | 2.343 | 0.019 | 0.747 | 5.893 | 0.000 |
2013 | 0.251 | 2.984 | 0.003 | 0.236 | 2.198 | 0.028 | 0.738 | 5.823 | 0.000 |
2014 | 0.258 | 3.074 | 0.002 | 0.267 | 2.455 | 0.014 | 0.729 | 5.772 | 0.000 |
2015 | 0.281 | 3.295 | 0.001 | 0.291 | 2.638 | 0.008 | 0.710 | 5.598 | 0.000 |
2016 | 0.281 | 3.283 | 0.001 | 0.294 | 2.655 | 0.008 | 0.718 | 5.654 | 0.000 |
2017 | 0.271 | 3.185 | 0.001 | 0.275 | 2.508 | 0.012 | 0.720 | 5.668 | 0.000 |
Test | Statistic | df | p-Value |
---|---|---|---|
LM-error | 2.773 | 1 | 0.096 * |
Robust LM-error | 2.893 | 1 | 0.089 * |
LM-lag | 0.025 | 1 | 0.875 |
Robust LM-lag | 0.145 | 1 | 0.703 |
SAR | SEM | SDM |
---|---|---|
chi2(8) = (b−B)’ [(V_b−V_B)(− | chi2(7) = (b−B)’[(V_b−V_B)(− | chi2(8) = (b−B)’[(V_b−V_B)(− |
1)](b−B) = −326.26 | 1)](b−B) = −29.10 | 1)](b−B) = −112.41 |
chi2 < 0.0000 | chi2 < 0.0000 | chi2 < 0.0000 |
VARIABLES | SDM | SEM | ||||||
---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
1.045 *** (3.07) | 1.242 *** (3.52) | 0.687 * (1.88) | 0.868 ** (2.29) | 0.606 * (1.72) | 0.740 ** (2.09) | 0.561 (1.51) | 0.692 * (1.82) | |
3.814 *** (4.46) | 4.214 *** (3.91) | 2.581 *** (2.85) | 2.500 ** (2.24) | |||||
or | −0.930 *** (−7.60) | −0.688 *** (−4.01) | 0.066 *** (1.68) | 0.067 * (1.72) | −0.634 *** (−5.75) | −0.404 ** (−2.46) | 0.110 *** (2.86) | 0.109 *** (2.85) |
or | −1.347 *** (−3.51) | −1.304 *** (−2.97) | −0.094 ** (−2.30) | −0.096 ** (−2.39) | ||||
or | 4.682 ** (2.05) | −0.309 ** (−2.01) | 4.412 * (1.86) | −0.236 (−1.48) | ||||
or | 1.279 (0.20) | 0.274 (0.66) | ||||||
2.013 (1.32) | 2.051 (1.36) | 3.251 * (1.95) | 3.041 * (1.84) | 2.817 * (1.88) | 2.944 ** (1.99) | 4.103 *** (2.60) | 3.961 ** (2.52) | |
1.492 ** (2.38) | 1.573 ** (2.53) | 2.991 *** (4.52) | 2.966 *** (4.51) | 1.264 ** (2.15) | 1.280 ** (2.20) | 1.801 *** (2.82) | 1.779 *** (2.80) | |
0.576 *** (3.23) | 0.467 ** (2.37) | 0.477 ** (2.33) | 0.349 (1.63) | 0.684 *** (3.88) | 0.525 *** (2.70) | 0.592 *** (3.04) | 0.505 ** (2.50) | |
1106.390 (1.29) | 1199.955 (1.40) | 225.303 (0.24) | 535.900 (0.57) | 1157.821 (1.37) | 1300.240 (1.55) | 848.356 (0.95) | 1121.405 (1.24) | |
6.817 ** (2.25) | 6.444 ** (2.13) | 6.559 ** (1.99) | 6.862 ** (2.09) | 4.036 (1.39) | 3.189 (1.09) | 0.885 (0.29) | 0.896 (0.30) | |
_ | 3.110 *** (4.06) | 2.866 *** (3.70) | 0.328 (0.55) | 0.422 (0.72) | 6.593 *** (16.33) | 6.583 *** (16.19) | 5.349 *** (9.02) | 5.348 (9.04) |
or | 0.266 *** (3.11) | 0.273 *** (3.20) | 0.407 *** (5.05) | 0.402 *** (4.96) | 0.908 *** (43.97) | 0.992 *** (45.44) | 0.908 *** (41.98) | 0.909 *** (42.55) |
_e | 0.029 *** (10.10) | 0.028 *** (10.04) | 0.034 *** (10.07) | 0.033 *** (10.05) | 0.034 *** (9.94) | 0.033 *** (9.89) | 0.039 *** (9.89) | 0.038 *** (9.88) |
0.486 | 0.452 | 0.302 | 0.278 | 0.460 | 0.441 | 0.456 | 0.445 |
VARIABLES | Model | Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) | (11) | (12) | |
1.045 *** (3.07) | 1.242 *** (3.52) | 1.177 *** (3.31) | 1.363 *** (3.62) | 0.625 ** (2.04) | 0.784 ** (2.53) | 0.687 * (1.88) | 0.868 ** (2.29) | 0.901 ** (2.40) | 0.858 ** (2.20) | 0.875 ** (2.15) | 0.905 ** (2.17) | |
3.814 *** (4.46) | 4.214 *** (3.91) | 0.821 (1.62) | 1.017 (1.58) | −0.833 (−1.33) | −0.269 (−0.35) | 2.581 *** (2.85) | 2.500 ** (2.24) | −0.299 *** (−0.57) | −0.781 (−1.37) | −0.521 (−0.70) | −0.631 (−0.76) | |
or | −0.930 *** (−7.60) | −0.688 *** (−4.01) | −0.960 *** (−7.57) | −0.693 *** (−3.98) | −0.533 *** (−6.07) | −0.204 (−1.62) | 0.066 *** (1.68) | 0.067 * (1.72) | 0.111 *** (2.59) | 0.096 ** (2.28) | 0.105 *** (2.75) | 0.101 *** (2.63) |
or | −1.347 *** (−3.51) | −1.304 *** (−2.97) | −0.441 (−1.29) | −0.492 (−1.38) | 0.598 * (1.84) | 0.911 *** (2.67) | −0.094 ** (−2.30) | −0.096 ** (−2.39) | −0.125 *** (−2.83) | −0.111 ** (−2.55) | −0.143 *** (−3.67) | −0.139 *** (−3.50) |
or | 4.682 ** (2.05) | 5.362 ** (2.22) | 6.287 *** (3.54) | −0.309 ** (−2.01) | −0.237 (−1.51) | −0.064 (−0.43) | ||||||
or | 1.279 (0.20) | −0.695 (−0.13) | 8.654 (1.60) | 0.274 (0.66) | 0.712 ** (2.51) | 0.135 (0.39) | ||||||
2.013 (1.32) | 2.051 (1.36) | 2.466 (1.53) | 2.540 (1.59) | 1.592 (1.33) | 2.106 * (1.79) | 3.251 * (1.95) | 3.041 * (1.84) | 3.735 ** (2.10) | 3.576 ** (2.04) | 2.470 (1.53) | 2.380 (1.46) | |
1.492 ** (2.38) | 1.573 ** (2.53) | 2.466 *** (3.60) | 2.376 *** (3.73) | 0.994 * (1.88) | 1.002 ** (1.97) | 2.991 *** (4.52) | 2.966 *** (4.51) | 3.798 *** (5.60) | 3.721 *** (5.56) | 3.343 *** (5.48) | 3.365 *** (5.50) | |
0.576 *** (3.23) | 0.467 ** (2.37) | 0.559 *** (2.96) | 0.408 ** (2.01) | 0.746 *** (4.60) | 0.564 *** (3.46) | 0.477 ** (2.33) | 0.349 (1.63) | 0.454 ** (2.09) | 0.331 (1.49) | 0.498 ** (2.40) | 0.476 ** (2.23) | |
1106.390 (1.29) | 1199.955 (1.40) | 767.725 (0.94) | 939.662 (1.12) | −28.801 (−0.04) | 64.840 (0.10) | 225.303 (0.24) | 535.900 (0.57) | 591.282 (0.64) | 885.717 (0.95) | 456.128 (0.53) | 446.417 (0.54) | |
6.817 ** (2.25) | 6.444 ** (2.13) | 8.373 *** (2.92) | 7.984 *** (2.81) | 3.712 (1.37) | 2.400 *** (0.91) | 6.559 ** (1.99) | 6.862 ** (2.09) | 5.190 * (1.65) | 65.143 * (1.66) | 6.845 ** (2.24) | 7.023 ** (2.28) | |
_ | 3.110 *** (4.06) | 2.866 *** (3.70) | 1.528 * (1.91) | 1.309 (1.64) | 0.328 (0.55) | 0.422 (0.72) | −0.526 (−0.84) | −0.484 (−0.78) | −0.473 (−0.96) | −0.510 (−1.02) | ||
0.266 *** (3.11) | 0.273 *** (3.20) | 0.455 *** (6.80) | 0.458 *** (6.86) | −0.336 *** (−4.21) | −0.375 *** (−4.78) | 0.407 *** (5.05) | 0.402 *** (4.96) | 0.531 *** (8.41) | 0.521 *** (8.24) | 0.302 *** (4.48) | 0.298 *** (4.34) | |
_e | 0.029 *** (10.10) | 0.028 *** (10.04) | 0.032 *** (9.97) | 0.030 *** (9.92) | 0.017 *** (10.77) | 0.016 *** (10.74) | 0.034 *** (10.07) | 0.033 *** (10.05) | 0.038 *** (9.93) | 0.037 *** (9.92) | 0.032 *** (10.19) | 0.032 *** (10.19) |
0.486 | 0.452 | 0.386 | 0.346 | 0.312 | 0.234 | 0.302 | 0.279 | 0.318 | 0.307 | 0.416 | 0.415 |
VARIABLES | Model | Model | ||||
---|---|---|---|---|---|---|
Direct Effects | Indirect Effects | Total Effects | Direct Effects | Indirect Effects | Total Effects | |
1.478 *** (4.09) | 6.084 *** (4.64) | 7.562 *** (5.36) | 1.106 *** (2.82) | 4.542 *** (2.82) | 5.648 *** (3.27) | |
or | −0.768 *** (−5.99) | −1.996 *** (−3.67) | −2.763 *** (−4.49) | 0.060 * (1.68) | −0.109 *** (−2.67) | −0.050 ** (−2.27) |
or | 4.945 ** (2.23) | 3.939 (0.45) | 8.884 (0.94) | −0.283 * (−1.86) | 0.248 (0.38) | −0.035 (−0.05) |
1.714 (1.14) | −8.500 (−1.55) | −6.782 (−1.10) | 2.645 (1.52) | −7.924 *** (−1.09) | −5.279 (−0.64) | |
1.680 *** (2.73) | 3.153 ** (2.23) | 4.833 *** (2.86) | 3.333 *** (5.20) | 7.367 *** (4.32) | 10.700 *** (5.57) | |
0.456 ** (2.30) | −0.479 *** (−0.93) | −0.021 (−0.04) | 0.329 (1.46) | −0.841 (−1.28) | −0.512 (−0.68) | |
1280.223 (1.47) | 19999.480 (0.92) | 3279.704 (1.40) | 628.050 (0.64) | 2329.906 (0.72) | 2957.956 (0.84) | |
6.614 ** (2.13) | 6.606 (0.64) | 13.220 (1.15) | 8.400 ** (2.45) | 32.495 *** (2.61) | 40.894 *** (2.93) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Shao, Z. Whether Green Finance Can Effectively Moderate the Green Technology Innovation Effect of Heterogeneous Environmental Regulation. Int. J. Environ. Res. Public Health 2022, 19, 3646. https://doi.org/10.3390/ijerph19063646
Fang Y, Shao Z. Whether Green Finance Can Effectively Moderate the Green Technology Innovation Effect of Heterogeneous Environmental Regulation. International Journal of Environmental Research and Public Health. 2022; 19(6):3646. https://doi.org/10.3390/ijerph19063646
Chicago/Turabian StyleFang, Yong, and Zhenquan Shao. 2022. "Whether Green Finance Can Effectively Moderate the Green Technology Innovation Effect of Heterogeneous Environmental Regulation" International Journal of Environmental Research and Public Health 19, no. 6: 3646. https://doi.org/10.3390/ijerph19063646
APA StyleFang, Y., & Shao, Z. (2022). Whether Green Finance Can Effectively Moderate the Green Technology Innovation Effect of Heterogeneous Environmental Regulation. International Journal of Environmental Research and Public Health, 19(6), 3646. https://doi.org/10.3390/ijerph19063646