Smartphone Addiction Prevalence and Its Association on Academic Performance, Physical Health, and Mental Well-Being among University Students in Umm Al-Qura University (UQU), Saudi Arabia
Abstract
:1. Introduction
2. Factors of Smartphone Addiction
3. Impacts of Smartphone Addiction
4. Aims
5. Methods
5.1. Study Design and Data Collection
5.2. Study Measures
5.2.1. Sociodemographic
5.2.2. Smartphones Use Data
5.2.3. Academic and Physical Health Information
5.2.4. Smartphone Addiction
5.2.5. Mental Well-Being
5.3. Data Analysis
6. Results
6.1. Demographic
6.2. Smartphone Ownership, Daily Use, and Purpose of Use
6.3. Smartphone Addiction Prevalence
6.4. Academic, Physical Health and Mental Well-Being
6.5. Associations of Sociodemographic with Smartphone Addiction
6.6. Associations of Smartphone Use Data with Smartphone Addiction
6.7. Comparison of Academic, Physical Health and Mental Well-Being between Smartphone-Addicted and Non-Addicted Groups
7. Discussion
7.1. Smartphone Addiction Prevalence
7.2. Sociodemographic and Smartphone Addiction
7.3. Smartphone Use Data and Smartphone Addiction
7.4. Academic Performance, Physical Health, Mental Well-Being and Smartphone Addiction
8. Implications
- Establish recreational services which encourage university students to engage in other leisure activities than their smartphone;
- Develop and implement various educational programs which raise awareness about smartphone addiction among university students;
- Develop policies and guidelines limiting the usage of smartphones during lectures;
- Establish free and accessible sports facilities in all universities.
9. Recommendations for Further Research
- Longitudinal studies to explain and confirm the causal relationship between the main factors predicted smartphone addiction in this study;
- Extending this undergraduate research to include postgraduates would advance an understanding of smartphone addiction across more comprehensive university settings in Saudi Arabia;
- Further studies are also required to interrogate why certain groups of university cohorts, for example female students, are more vulnerable to smartphone addiction.
10. Limitations
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, B.; Liu, F.; Ding, S.; Ying, X.; Wang, L.; Wen, Y. Gender differences in factors associated with smartphone addiction: A cross-sectional study among medical college students. BMC Psychiatry 2017, 17, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhai, J.D.; Dvorak, R.D.; Levine, J.C.; Hall, B.J. Problematic smartphone use: A conceptual overview and systematic review of relations with anxiety and depression psychopathology. J. Affect. Disord. 2017, 207, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.; Koh, E. Avoidant attachment and smartphone addiction in college students: The mediating effects of anxiety and self-esteem. Comput. Hum. Behav. 2018, 84, 264–271. [Google Scholar] [CrossRef]
- Croce, A.I.; Musolino, G.; Rindone, C.; Vitetta, A. Estimation of travel demand models with limited information: Floating car data for parameters’ calibration. Sustainability 2021, 13, 8838. [Google Scholar] [CrossRef]
- Lee, H.K.; Kim, J.H.; Fava, M.; Mischoulon, D.; Park, J.H.; Shim, E.J.; Lee, E.H.; Lee, J.H.; Jeon, H.J. Development and validation study of the Smartphone Overuse Screening Questionnaire. Psychiatry Res 2017, 257, 352–357. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Li, J. Smartphone Overuse—A Growing Public Health Issue. J. Psychol. Psychother. 2017, 7, 2–4. [Google Scholar] [CrossRef]
- Kim, D.; Lee, Y.; Lee, J.; Nam, J.K.; Chung, Y. Development of Korean Smartphone addiction proneness scale for youth. PLoS ONE 2014, 9, e97920. [Google Scholar] [CrossRef]
- Kahyaoglu, H.; Kurt, S.; Uzal, O.; Ozdilek, S. Effects Of Smartphone Addiction Level On Social And Educational Life In Health Sciences Students. Nurasian J. Fam. Med. 2016, 5, 13–19. [Google Scholar]
- De-Sola Gutierrez, J.; Rodriguez de Fonseca, F.; Rubio, G. Cell-Phone Addiction: A Review. Front. Psychiatry 2016, 7, 175. [Google Scholar] [CrossRef] [Green Version]
- Alavi, S.S.; Ferdosi, M.; Jannatifard, F.; Eslami, M.; Alaghemandan, H.; Setare, M. Behavioral addiction versus substance addiction: Correspondence of psychiatric and psychological views. Int. J. Prev. Med. 2012, 3, 290. [Google Scholar]
- Ching, S.M.; Yee, A.; Ramachandran, V.; Sazlly Lim, S.M.; Wan Sulaiman, W.A.; Foo, Y.L.; Hoo, F.K. Validation of a Malay Version of the Smartphone Addiction Scale among Medical Students in Malaysia. PLoS ONE 2015, 10, e0139337. [Google Scholar] [CrossRef] [PubMed]
- Boumosleh, J.; Jaalouk, D. Smartphone addiction among university students and its relationship with academic performance. Glob. J. Health Sci. 2018, 10, 48–59. [Google Scholar] [CrossRef] [Green Version]
- Poushter, J. Smartphone Ownership and Internet Usage Continues to Climb in Emerging Economies. Available online: https://pewrsr.ch/3wpOyEV (accessed on 19 January 2022).
- Deloitte. 2017 Global Mobile Consumer Survey: US Edition. Available online: https://bit.ly/36v2AKv (accessed on 20 January 2022).
- Chen, B.; Seilhamer, R.; Bennett, L.; Bauer, S. Students’ mobile learning practices in higher education: A multi-year study. Educ. Rev. 2015, 7, 225–235. [Google Scholar]
- Yang, Z.; Asbury, K.; Griffiths, M.D. An exploration of problematic smartphone use among Chinese university students: Associations with academic anxiety, academic procrastination, self-regulation and subjective wellbeing. Int. J. Ment. Health Addict. 2019, 17, 596–614. [Google Scholar] [CrossRef] [Green Version]
- Payne, K.F.B.; Wharrad, H.; Watts, K. Smartphone and medical related App use among medical students and junior doctors in the United Kingdom (UK): A regional survey. BMC Med. Inform. Decis. Mak. 2012, 12, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratama, A.R. Investigating Daily Mobile Device Use Among University Students in Indonesia. IOP Conf. Ser. Mater. Sci. Eng. 2018, 325, 012004. [Google Scholar] [CrossRef] [Green Version]
- Alfawareh, H.M.; Jusoh, S. Smartphones Usage Among University Students: Najran University Case. Int. J. Acad. Res. 2014, 6, 321–326. [Google Scholar] [CrossRef]
- Song, Y.S.; Lee, J.M. Mobile device ownership among international business students: A road to the ubiquitous library. Ref. Serv. Rev. 2012, 40, 574–588. [Google Scholar] [CrossRef]
- Sayedalamin, Z.; Alshuaibi, A.; Almutairi, O.; Baghaffar, M.; Jameel, T.; Baig, M. Utilization of smart phones related medical applications among medical students at King Abdulaziz University, Jeddah: A cross-sectional study. J. Infect. Public Health 2016, 9, 691–697. [Google Scholar] [CrossRef] [Green Version]
- Buctot, D.B.; Kim, N.; Kim, S.H. The role of nomophobia and smartphone addiction in the lifestyle profiles of junior and senior high school students in the Philippines. Soc. Sci. Humanit. Open 2020, 2, 100035. [Google Scholar] [CrossRef]
- Anshari, M.; Alas, Y.; Sulaiman, E. Smartphone addictions and nomophobia among youth. Vulnerable Child. Youth Stud. 2019, 14, 242–247. [Google Scholar] [CrossRef]
- Rahman, M.A.; Duradoni, M.; Guazzini, A. Identification and prediction of phubbing behavior: A data-driven approach. Neural Comput. Appl. 2022, 34, 3885–3894. [Google Scholar] [CrossRef]
- Guazzini, A.; Duradoni, M.; Capelli, A.; Meringolo, P. An Explorative Model to Assess Individuals’ Phubbing Risk. Future Internet 2019, 11, 21. [Google Scholar] [CrossRef] [Green Version]
- Kuss, D.J.; Griffiths, M.D. Social Networking Sites and Addiction: Ten Lessons Learned. Int. J. Environ. Res. Public Health 2017, 14, 311. [Google Scholar] [CrossRef] [Green Version]
- Ratan, Z.A.; Parrish, A.-M.; Zaman, S.B.; Alotaibi, M.S.; Hosseinzadeh, H. Smartphone Addiction and Associated Health Outcomes in Adult Populations: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 12257. [Google Scholar] [CrossRef]
- Duradoni, M.; Innocenti, F.; Guazzini, A. Well-Being and Social Media: A Systematic Review of Bergen Addiction Scales. Future Internet 2020, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Cochrane, T.D. Beyond the Yellow Brick Road: Mobile Web 2.0 Informing a New Institutional E-Learning Strategy. J. Asynchronous Learn. Netw. 2011, 15, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Elder, A. College students’ cell phone use, beliefs, and effects on their learning. Coll. Stud. J. 2013, 47, 585–592. [Google Scholar]
- Pierce, T. Social anxiety and technology: Face-to-face communication versus technological communication among teens. Comput. Hum. Behav. 2009, 25, 1367–1372. [Google Scholar] [CrossRef]
- Chen, L.; Yan, Z.; Tang, W.J.; Yang, F.Y.; Xie, X.D.; He, J.C. Mobile phone addiction levels and negative emotions among Chinese young adults: The mediating role of interpersonal problems. Comput. Hum. Behav. 2016, 55, 856–866. [Google Scholar] [CrossRef]
- Aljomaa, S.S.; Al Qudah, M.F.; Albursan, I.S.; Bakhiet, S.F.; Abduljabbar, A.S. Smartphone addiction among university students in the light of some variables. Comput. Hum. Behav. 2016, 61, 155–164. [Google Scholar] [CrossRef]
- Augner, C.; Hacker, G.W. Associations between problematic mobile phone use and psychological parameters in young adults. Int. J. Public Health 2012, 57, 437–441. [Google Scholar] [CrossRef] [PubMed]
- Rozgonjuk, D.; Kattago, M.; Täht, K. Social media use in lectures mediates the relationship between procrastination and problematic smartphone use. Comput. Hum. Behav. 2018, 89, 191–198. [Google Scholar] [CrossRef]
- Alhassan, A.A.; Alqadhib, E.M.; Taha, N.W.; Alahmari, R.A.; Salam, M.; Almutairi, A.F. The relationship between addiction to smartphone usage and depression among adults: A cross sectional study. BMC Psychiatry 2018, 18, 148. [Google Scholar] [CrossRef]
- Olson, K.E.; O’Brien, M.A.; Rogers, W.A.; Charness, N. Diffusion of technology: Frequency of use for younger and older adults. Ageing Int. 2011, 36, 123–145. [Google Scholar] [CrossRef] [Green Version]
- Zulkefly, S.N.; Baharudin, R. Mobile phone use amongst students in a university in Malaysia: Its correlates and relationship to psychological health. Eur. J. Sci. Res. 2009, 37, 206–218. [Google Scholar]
- Mazaheri, M.A.; Najarkolaei, F.R. Cell phone and internet addiction among students in Isfahan university of medical sciences-Iran. J. Health Policy Sustain. Health 2014, 1, 101–105. [Google Scholar]
- Long, J.; Liu, T.Q.; Liao, Y.H.; Qi, C.; He, H.Y.; Chen, S.B.; Billieux, J. Prevalence and correlates of problematic smartphone use in a large random sample of Chinese undergraduates. BMC Psychiatry 2016, 16, 408. [Google Scholar] [CrossRef] [Green Version]
- Akturk, U.; Budak, F. The Correlation Between the Perceived Social Support of Nursing Students and Smartphone Addiction. Int. J. Caring Sci. 2019, 12, 1825–1836. [Google Scholar]
- Lopez-Fernandez, O. Short version of the Smartphone Addiction Scale adapted to Spanish and French: Towards a cross-cultural research in problematic mobile phone use. Addict. Behav. 2017, 64, 275–280. [Google Scholar] [CrossRef]
- Alosaimi, F.D.; Alyahya, H.; Alshahwan, H.; Al Mahyijari, N.; Shaik, S.A. Smartphone addiction among university students in Riyadh, Saudi Arabia. Saudi Med. J. 2016, 37, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Salehan, M.; Negahban, A. Social networking on smartphones: When mobile phones become addictive. Comput. Hum. Behav. 2013, 29, 2632–2639. [Google Scholar] [CrossRef]
- Yu, S.; Sussman, S. Does smartphone addiction fall on a continuum of addictive behaviors? Int. J. Environ. Res. Public Health 2020, 17, 422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muhammad, N.M.; Schneider, M.; Hill, A.; Yau, D.M. How the Use of iPad and Smartphones Creates Social Isolation. In Proceedings of the Society for Information Technology & Teacher Education International Conference, Las Vegas, NV, USA, 18 March 2019; Association for the Advancement of Computing in Education (AACE): Waynesville, NC USA, 2019; pp. 1060–1065. [Google Scholar]
- Lepp, A.; Barkley, J.E.; Karpinski, A.C. The relationship between cell phone use, academic performance, anxiety, and Satisfaction with Life in college students. Comput. Hum. Behav. 2014, 31, 343–350. [Google Scholar] [CrossRef]
- Giunchiglia, F.; Zeni, M.; Gobbi, E.; Bignotti, E.; Bison, I. Mobile social media usage and academic performance. Comput. Hum. Behav. 2018, 82, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Alkhateeb, A.; Alboali, R.; Alharbi, W.; Saleh, O. Smartphone addiction and its complications related to health and daily activities among university students in Saudi Arabia: A multicenter study. J. Fam. Med. Prim. Care 2020, 9, 3220. [Google Scholar] [CrossRef]
- Duke, É.; Montag, C. Smartphone addiction, daily interruptions and self-reported productivity. Addict. Behav. Rep. 2017, 6, 90–95. [Google Scholar] [CrossRef]
- Lepp, A.; Barkley, J.E.; Sanders, G.J.; Rebold, M.; Gates, P. The relationship between cell phone use, physical and sedentary activity, and cardiorespiratory fitness in a sample of US college students. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 79. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.E.; Kim, J.W.; Jee, Y.S. Relationship between smartphone addiction and physical activity in Chinese international students in Korea. J. Behav. Addict. 2015, 4, 200–205. [Google Scholar] [CrossRef]
- Shah, P.P.; Sheth, M.S. Correlation of smartphone use addiction with text neck syndrome and SMS thumb in physiotherapy students. Int. J. Community Med. Public Health 2018, 5, 2512–2516. [Google Scholar] [CrossRef] [Green Version]
- Matar Boumosleh, J.; Jaalouk, D. Depression, anxiety, and smartphone addiction in university students- A cross sectional study. PLoS ONE 2017, 12, e0182239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demirci, K.; Akgonul, M.; Akpinar, A. Relationship of smartphone use severity with sleep quality, depression, and anxiety in university students. J. Behav. Addict. 2015, 4, 85–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samaha, M.; Hawi, N.S. Relationships among smartphone addiction, stress, academic performance, and satisfaction with life. Comput. Hum. Behav. 2016, 57, 321–325. [Google Scholar] [CrossRef]
- Wan Ismail, W.S.; Sim, S.T.; Tan, K.-A.; Bahar, N.; Ibrahim, N.; Mahadevan, R.; Nik Jaafar, N.R.; Baharudin, A.; Abdul Aziz, M. The relations of internet and smartphone addictions to depression, anxiety, stress, and suicidality among public university students in Klang Valley, Malaysia. Perspect. Psychiatr. Care 2020, 56, 949–955. [Google Scholar] [CrossRef]
- Statista. Smartphone Penetration Rate as Share of the Population in Saudi Arabia from 2015 to 2022. Available online: https://www.statista.com/statistics/625436/smartphone-user-penetration-in-saudi-arabia/ (accessed on 16 November 2018).
- Mahdi, M. Undergraduate Students’ Perceptions toward Social Media Usage and Academic Performance: A Study from Saudi Arabia. Int. J. Emerg. Technol. Learn. 2019, 14, 61–79. [Google Scholar]
- Xanthidis, D.; Nikolaidis, P.; Xanthidou, O. Profiling the average saudi’s trust towards the social media. J. Theor. Appl. Inf. Technol. 2019, 97, 3782–3794. [Google Scholar]
- YouGov. Residents in Saudi Arabia Spend Almost a Quarter of Their Day on Social Media. Available online: https://mena.yougov.com/en/news/2016/07/04/saudi-residents-spend-quarter-day-social-media/ (accessed on 16 November 2018).
- Hakami, T.; Mahfouz, M.; Najmi, H.; Adawi, A.; Hakami, R.; Areeshi, N.; Mahha, A.J.; Makeen, A.; Hakami, M. Knowledge of and attitude towards epilepsy among university students in Saudi Arabia: Misconceptions of the next generation. Epilepsy Behav. Rep. 2021, 16, 100450. [Google Scholar] [CrossRef]
- Cohen, J.; Cohen, P.; West, S.G.; Aiken, L.S. Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences, 3rd ed; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 2003; p. xxviii-703. [Google Scholar]
- Umm Al-Qura University. GPA and Grades Table. Available online: https://uqu.edu.sa/en/dadregis/176 (accessed on 19 January 2022).
- National Sleep Foundation. How Much Sleep Do We Really Need? Available online: https://bit.ly/3wl4V5A (accessed on 19 January 2022).
- Kwon, M.; Kim, D.J.; Cho, H.; Yang, S. The smartphone addiction scale: Development and validation of a short version for adolescents. PLoS ONE 2013, 8, e0083558. [Google Scholar] [CrossRef] [Green Version]
- Sfendla, A.; Laita, M.; Nejjar, B.; Souirti, Z.; Touhami, A.A.O.; Senhaji, M. Reliability of the Arabic Smartphone Addiction Scale and Smartphone Addiction Scale-Short Version in Two Different Moroccan Samples. Cyberpsychol. Behav. Soc. Netw. 2018, 21, 325–332. [Google Scholar] [CrossRef]
- Kessler, R.C.; Andrews, G.; Colpe, L.J.; Hiripi, E.; Mroczek, D.K.; Normand, S.-L.; Walters, E.E.; Zaslavsky, A.M.J. Short screening scales to monitor population prevalences and trends in non-specific psychological distress. Psychol. Med. 2002, 32, 959–976. [Google Scholar] [CrossRef]
- Kessler, R.C.; Green, J.G.; Gruber, M.J.; Sampson, N.A.; Bromet, E.; Cuitan, M.; Furukawa, T.A.; Gureje, O.; Hinkov, H.; Hu, C.Y.; et al. Screening for serious mental illness in the general population with the K6 screening scale: Results from the WHO World Mental Health (WMH) survey initiative. Int. J. Methods Psychiatr. Res. 2010, 19, 4–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harvey, S.B.; Deady, M.; Wang, M.J.; Mykletun, A.; Butterworth, P.; Christensen, H.; Mitchell, P.B. Is the prevalence of mental illness increasing in Australia? Evidence from national health surveys and administrative data, 2001–2014. Med. J. Aust. 2017, 206, 490–493. [Google Scholar] [CrossRef] [PubMed]
- Easton, S.D.; Safadi, N.S.; Wang, Y.; Hasson, R.G. The Kessler psychological distress scale: Translation and validation of an Arabic version. Health Qual. Life Outcomes 2017, 15, 215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranganathan, P.; Pramesh, C.; Aggarwal, R. Common pitfalls in statistical analysis: Logistic regression. Perspect. Clin. Res. 2017, 8, 148. [Google Scholar]
- Venkatesh, E.; Jemal, M.Y.; Samani, A.S. Smart phone usage and addiction among dental students in Saudi Arabia: A cross sectional study. Int. J. Adolesc. Med. Health 2017. [Google Scholar] [CrossRef]
- Mescollotto, F.F.; de Castro, E.M.; Pelai, E.B.; Pertille, A.; Bigaton, D.R. Translation of the short version of the smartphone addiction scale into Brazilian Portuguese: Cross-cultural adaptation and testing of measurement properties. Braz. J. Phys. Ther. 2019, 23, 250–256. [Google Scholar] [CrossRef]
- Hawi, N.S.; Samaha, M. To excel or not to excel: Strong evidence on the adverse effect of smartphone addiction on academic performance. Comput. Educ. 2016, 98, 81–89. [Google Scholar] [CrossRef]
- Kil, N.; Kim, J.; Park, J.; Lee, C. Leisure boredom, leisure challenge, smartphone use, and emotional distress among US college students: Are they interrelated? Leis. Stud. 2021, 40, 779–792. [Google Scholar] [CrossRef]
- Karuppasamy, G.; Anwar, A.; Bhartiya, A.; Sajjad, S.; Rashid, M.; Mathew, E.; Saikh, R.; Al Sharbatti, S.; Sreedharan, J. Use of Social Networking Sites among University Students in Ajman, United Arab Emirates. Nepal J. Epidemiol. 2013, 3, 245–250. [Google Scholar] [CrossRef]
- Bagci, H.; Peksen, M.F. Investigating the Smart Phone Addictions of Vocational School Students from Different Variables. Malays. Online J. Educ. Technol. 2018, 6, 40–52. [Google Scholar] [CrossRef]
- Sul, S. Determinants of internet game addiction and therapeutic role of family leisure participation. J. Incl. Phenom. Macrocycl. Chem. 2015, 82, 271–278. [Google Scholar] [CrossRef]
- Hassan, T.; Alam, M.M.; Wahab, A.; Hawlader, M.D. Prevalence and associated factors of internet addiction among young adults in Bangladesh. J. Egypt. Public Health Assoc. 2020, 95, 3. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Min, J.-Y.; Kim, H.-J.; Min, K.-B. Association between psychological and self-assessed health status and smartphone overuse among Korean college students. J. Ment. Health 2019, 28, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Demirci, K.; Orhan, H.; Demirdas, A.; Akpinar, A.; Sert, H. Validity and reliability of the Turkish Version of the Smartphone Addiction Scale in a younger population. Klin. Psikofarmakol. Bülteni-Bull. Clin. Psychopharmacol. 2014, 24, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Öztunç, M. Analysis of Problematic Mobile Phone Use, Feelings of Shyness and Loneliness in Accordance with Several Variables. Procedia-Soc. Behav. Sci. 2013, 106, 456–466. [Google Scholar] [CrossRef] [Green Version]
- Çağan, Ö.; Ünsal, A.; Çelik, N. Evaluation of college students’ the level of addiction to cellular phone and investigation on the relationsship between the addiction and the level of depression. Procedia-Soc. Behav. Sci. 2014, 114, 831–839. [Google Scholar] [CrossRef] [Green Version]
- Okasha, T.; Saad, A.; Ibrahim, I.; Elhabiby, M.; Khalil, S.; Morsy, M. Prevalence of smartphone addiction and its correlates in a sample of Egyptian university students. Int. J. Soc. Psychiatry 2021, 1–9. [Google Scholar] [CrossRef]
- Cha, S.S.; Seo, B.K. Smartphone use and smartphone addiction in middle school students in Korea: Prevalence, social networking service, and game use. Health Psychol. Open 2018, 5, 1–15. [Google Scholar] [CrossRef]
- Sahin, S.; Ozdemir, K.; Unsal, A.; Temiz, N. Evaluation of mobile phone addiction level and sleep quality in university students. Pak. J. Med. Sci. 2013, 29, 913. [Google Scholar] [CrossRef]
- Roberts, J.; Yaya, L.; Manolis, C. The invisible addiction: Cell-phone activities and addiction among male and female college students. J. Behav. Addict. 2014, 3, 254–265. [Google Scholar] [CrossRef] [Green Version]
- Jeong, S.-H.; Kim, H.; Yum, J.-Y.; Hwang, Y. What type of content are smartphone users addicted to?: SNS vs. games. Comput. Hum. Behav. 2016, 54, 10–17. [Google Scholar] [CrossRef]
- Swar, B.; Hameed, T. Fear of missing out, social media engagement, smartphone addiction and distraction: Moderating role of self-help mobile apps-based interventions in the youth. In Proceedings of the International Conference on Health Informatics, Porto, Portugal, 21–23 February 2017; pp. 139–146. [Google Scholar]
- Alhazmi, A.A.; Alzahrani, S.H.; Baig, M.; Salawati, E.M. Prevalence and factors associated with smartphone addiction among medical students at King Abdulaziz University, Jeddah. Pak. J. Med. Sci. 2018, 34, 984. [Google Scholar] [CrossRef] [PubMed]
- AlSayyari, A.; AlBuhairan, F. Relationship of media exposure to substance use among adolescents in Saudi Arabia: Results from a national study. Drug Alcohol Depend. 2018, 191, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Dikeç, G.; Kebapçı, A. Smartphone addiction level among a group of university students. Bağımlılık Derg. 2018, 19, 1–9. [Google Scholar]
- Levine, L.E.; Waite, B.M.; Bowman, L.L. Mobile media use, multitasking and distractibility. Int. J. Cyber Behav. Psychol. Learn. 2012, 2, 15–29. [Google Scholar] [CrossRef] [Green Version]
- Tayhan Kartal, F.; Yabancı Ayhan, N. Relationship between eating disorders and internet and smartphone addiction in college students. Eat. Weight Disord.-Stud. Anorex. Bulim. Obes. 2021, 26, 1853–1862. [Google Scholar] [CrossRef]
- Gezgin, D.M. Understanding patterns for smartphone addiction: Age, sleep duration, social network use and fear of missing out. Cypriot J. Educ. Sci. 2018, 13, 166–177. [Google Scholar] [CrossRef]
- Nunes, P.P.B.; Abdon, A.P.V.; Brito, C.B.; Silva, F.V.M.; Santos, I.C.A.; Martins, D.Q.; Meira, P.M.F.; Frota, M.A. Factors related to smartphone addiction in adolescents from a region in Northeastern Brazil. Cien. Saude Colet. 2021, 26, 2749–2758. [Google Scholar] [CrossRef]
- Zhang, M.X.; Wu, A.M.S. Effects of smartphone addiction on sleep quality among Chinese university students: The mediating role of self-regulation and bedtime procrastination. Addict. Behav. 2020, 111, 106552. [Google Scholar] [CrossRef]
- Höhn, C.; Schmid, S.R.; Plamberger, C.P.; Bothe, K.; Angerer, M.; Gruber, G.; Pletzer, B.; Hoedlmoser, K. Preliminary Results: The Impact of Smartphone Use and Short-Wavelength Light during the Evening on Circadian Rhythm, Sleep and Alertness. Clocks Sleep 2021, 3, 66–86. [Google Scholar] [CrossRef]
- İnal, Ö.; Serel Arslan, S. Investigating the effect of smartphone addiction on musculoskeletal system problems and cognitive flexibility in university students. Work 2021, 68, 107–113. [Google Scholar] [CrossRef]
- Park, Y.-H.; An, C.-M.; Moon, S.-J. Effects of visual fatigue caused by smartphones on balance function in healthy adults. J. Phys. Ther. Sci. 2017, 29, 221–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akodu, A.K.; Akinbo, S.R.; Young, Q.O. Correlation among smartphone addiction, craniovertebral angle, scapular dyskinesis, and selected anthropometric variables in physiotherapy undergraduates. J. Taibah Univ. Med. Sci. 2018, 13, 528–534. [Google Scholar] [CrossRef] [PubMed]
- Elserty, N.; Helmy, N.; Mounir, K.M. Smartphone addiction and its relation to musculoskeletal pain in Egyptian physical therapy students. Eur. J. Physiother. 2020, 22, 70–78. [Google Scholar] [CrossRef]
- Baabdullah, A.; Bokhary, D.; Kabli, Y.; Saggaf, O.; Daiwali, M.; Hamdi, A. The association between smartphone addiction and thumb/wrist pain: A cross-sectional study. Medicine 2020, 99, e19124. [Google Scholar] [CrossRef]
- Bahathiq, M.; Almadaabgy, A.; Marzogi, K.A.; Alnahdi, A.; Mufti, H.; Alsharif, K. The association between smartphones and thumb/wrist pain among students at Umm Al-Qura University, Makkah, Saudi Arabia. Int. J. Med. Dev. Countrie 2020, 4, 1924–1937. [Google Scholar] [CrossRef]
- Sepúlveda-Loyola, W.; Rodríguez-Sánchez, I.; Pérez-Rodríguez, P.; Ganz, F.; Torralba, R.; Oliveira, D.V.; Rodríguez-Mañas, L. Impact of Social Isolation Due to COVID-19 on Health in Older People: Mental and Physical Effects and Recommendations. J Nutr Health Aging 2020, 24, 938–947. [Google Scholar] [CrossRef]
- George, M.J.; Odgers, C.L. Seven fears and the science of how mobile technologies may be influencing adolescents in the digital age. Perspect. Psychol. Sci. 2015, 10, 832–851. [Google Scholar] [CrossRef] [Green Version]
- Pantic, I.; Damjanovic, A.; Todorovic, J.; Topalovic, D.; Bojovic-Jovic, D.; Ristic, S.; Pantic, S. Association between online social networking and depression in high school students: Behavioral physiology viewpoint. Psychiatr. Danub. 2012, 24, 90–93. [Google Scholar]
- Wolniewicz, C.A.; Rozgonjuk, D.; Elhai, J.D. Boredom proneness and fear of missing out mediate relations between depression and anxiety with problematic smartphone use. Hum. Behav. Emerg. Technol. 2020, 2, 61–70. [Google Scholar] [CrossRef]
- Ratan, Z.A.; Zaman, S.B.; Islam, S.M.S.; Hosseinzadeh, H. Smartphone overuse: A hidden crisis in COVID-19. Health Policy Technol. 2021, 10, 21–22. [Google Scholar] [CrossRef] [PubMed]
- Billieux, J.; Maurage, P.; Lopez-Fernandez, O.; Kuss, D.J.; Griffiths, M.D. Can Disordered Mobile Phone Use Be Considered a Behavioral Addiction? An Update on Current Evidence and a Comprehensive Model for Future Research. Curr. Addict. Rep. 2015, 2, 156–162. [Google Scholar] [CrossRef] [Green Version]
n | (%) | |
---|---|---|
Gender | ||
Male | 248 | (45.5) |
Female | 297 | (54.5) |
Age a | ||
≤21 | 217 | (39.8) |
22–23 | 198 | (36.3) |
≥24 | 130 | (23.9) |
Gainfully Employment Status b | ||
Full/Part-time employed | 80 | (14.7) |
Unemployed | 465 | (85.3) |
Family Monthly Income c | ||
Low income (<10,000 SAR) | 320 | (58.7) |
Average income (10,000–15,000 SAR) | 118 | (21.7) |
High income (>15,000 SAR) | 107 | (19.6) |
Marital Status b | ||
Single | 470 | (86.2) |
Married | 64 | (11.7) |
Others including divorced and widowed | 11 | (2.0) |
Family Size a | ||
Small (≤4) | 122 | (22.2) |
Average (5–7) | 198 | (36.5) |
Large (≥8) | 225 | (41.3) |
Semesters of Study a | ||
≤4 | 142 | (26.1) |
5–8 | 307 | (56.3) |
≥9 | 96 | (17.6) |
n | (%) | |
---|---|---|
Years of Smartphone Ownership a | ||
≤4 | 73 | (13.4) |
5–8 | 277 | (50.8) |
≥9 | 195 | (35.8) |
Average of Hours Using Smartphone Daily a | ||
Average use (≤5) | 192 | (35.2) |
More than average (6–10) | 234 | (42.9) |
Higher than average (≥11) | 119 | (21.8) |
Never and Rarely | Occasionally | Frequently and Always | ||||
---|---|---|---|---|---|---|
n | (%) | n | (%) | n | (%) | |
Social networking | 29 | (5.3) | 66 | (12.1) | 450 | (82.6) |
Entertainment | 50 | (9.2) | 134 | (24.6) | 361 | (66.2) |
Web surfing | 81 | (14.9) | 139 | (25.5) | 325 | (59.6) |
Eduction | 122 | (22.4) | 182 | (33.4) | 241 | (44.2) |
Games | 193 | (35.4) | 129 | (23.7) | 223 | (40.9) |
Shopping | 177 | (32.5) | 150 | (27.5) | 218 | (40.0) |
Map, navigation | 169 | (31.0) | 180 | (33.0) | 196 | (36.0) |
Phone calls/text messages | 161 | (29.5) | 202 | (37.1) | 182 | (33.4) |
Health | 173 | (31.7) | 198 | (36.3) | 174 | (31.9) |
Religion | 164 | (30.1) | 240 | (44.0) | 141 | (25.9) |
n | (%) | |
---|---|---|
Overall Grade Point Average | ||
Excellent (3.50–4.00) | 132 | (24.2) |
Very Good (2.75–3.49) | 194 | (35.6) |
Good (1.75–2.74) | 162 | (29.7) |
Pass (≤1.74) | 57 | (10.5) |
Physical Activity | ||
I do not currently exercise | 159 | (29.2) |
I exercise sometimes | 329 | (60.4) |
I exercise regularly | 57 | (10.5) |
Average of Sleep Hours | ||
≤6 h (Not Recommended) | 178 | (32.7) |
7–9 h (Recommended) | 288 | (52.8) |
≥10 (Not Recommended) | 79 | (14.5) |
Body Mass Index (BMI) | ||
Underweight (≤18.4) | 80 | (14.7) |
Healthy weight (18.5–24.9) | 260 | (47.7) |
Overweight (25.0–29.9) | 129 | (23.7) |
Obese (≥30.0) | 76 | (13.9) |
Experienced Pain | ||
Shoulder | ||
Yes | 197 | (36.1) |
No | 348 | (63.9) |
Eyes | ||
Yes | 315 | (57.8) |
No | 230 | (42.2) |
Neck | ||
Yes | 334 | (61.3) |
No | 211 | (38.7) |
Hands | ||
Yes | 270 | (49.5) |
No | 275 | (50.5) |
Mental Well-Being (Kessler-6) | ||
Probable serious mental illness | 142 | (26.1) |
No Probable serious mental illness | 403 | (74.9) |
OR | 95% CI | p | ||
---|---|---|---|---|
Lower | Upper | |||
Age | ||||
<21 vs. ≥24 | 2.64 | 1.75 | 4.00 | 0.001 |
Gainfully Employment Status | ||||
Unemployed vs. full time/part time employed | 2.22 | 1.35 | 3.66 | 0.002 |
Family Monthly Income | ||||
High income (SAR 15,000) vs. low income < (SAR 10,000) | 1.74 | 1.03 | 2.92 | 0.037 |
Family Size | ||||
Small ≤ 4 vs. large ≥ 8 | 1.76 | 1.08 | 2.87 | 0.022 |
OR | 95% CI | p | ||
---|---|---|---|---|
Lower | Upper | |||
Average of Hours Using Smartphone Daily | ||||
More than avarage (6–10) vs. average use ≤ 5 h | 2.26 | 1.47 | 3.47 | 0.001 |
More higher than average ≥ 11 vs. average use ≤ 5 h | 6.98 | 3.62 | 13.48 | 0.001 |
Purpose of Use | ||||
Entertainment | 1.43 | 1.16 | 1.76 | 0.001 |
Social networking | 1.71 | 1.37 | 2.13 | 0.001 |
Non-Smartphone-Addicted | Smartphone-Addicted | df | X2(545) | p | Effect Size | |||
---|---|---|---|---|---|---|---|---|
n | (%) | n | (%) | |||||
Overall Grade Point Average | 3 | 14.97 | 0.002 | 0.166 | ||||
Excellent (3.50–4.00) | 47 | (26.1) | 85 | (23.3) | ||||
Very Good (2.75–3.49) | 72 | (40.0) | 122 | (33.4) | ||||
Good (1.75–2.74) | 55 | (30.6) | 107 | (29.3) | ||||
Pass (≤1.74) | 6 | (3.3) | 51 | (14.0) | ||||
Exercise Activity | 2 | 12.93 | 0.002 | 0.154 | ||||
I do not currently exercise | 35 | (19.4) | 124 | (34.0) | ||||
I exercise sometimes | 121 | (67.2) | 208 | (57.0) | ||||
I exercise regularly | 24 | (13.3) | 33 | (9.0) | ||||
Average of Sleep Hours | 2 | 7.17 | 0.028 | 0.115 | ||||
≤6 | 45 | (25.0) | 133 | (36.4) | ||||
7–9 | 106 | (58.9) | 182 | (49.9) | ||||
≥10 | 29 | (16.1) | 50 | (13.7) | ||||
BMI | 2 | 6.13 | 0.046 | 0.106 | ||||
Underweight (≤18.4) | 27 | (15.0) | 53 | (14.5) | ||||
Healthy weight (18.5–24.9) | 98 | (54.4) | 162 | (44.4) | ||||
Overweight/Obese (≥25.0) | 55 | (30.6) | 150 | (41.1) | ||||
Experienced Pain | ||||||||
Shoulder | 1 | 4.00 | 0.036 | 0.090 | ||||
Yes | 54 | (30.0) | 143 | (39.2) | ||||
No | 126 | (70.0) | 222 | (60.8) | ||||
Eyes | 1 | 8.74 | 0.003 | 0.127 | ||||
Yes | 88 | (48.9) | 227 | (62.2) | ||||
No | 92 | (51.1) | 138 | (37.8) | ||||
Neck | 1 | 19.00 | 0.001 | 0.187 | ||||
Yes | 87 | (48.3) | 247 | (67.7) | ||||
No | 93 | (51.7) | 228 | (32.3) | ||||
Hands | 1 | 1.26 | 0.261 | -- | ||||
Yes | 83 | (46.1) | 187 | (51.2) | ||||
No | 97 | (53.9) | 178 | (48.8) | ||||
Mental Illness (Kessler-6) | 1 | 12.29 | 0.001 | 0.150 | ||||
Probable serious mental illness | 30 | (16.7) | 112 | (30.7) | ||||
No Probable serious mental illness | 150 | (83.3) | 253 | (69.3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alotaibi, M.S.; Fox, M.; Coman, R.; Ratan, Z.A.; Hosseinzadeh, H. Smartphone Addiction Prevalence and Its Association on Academic Performance, Physical Health, and Mental Well-Being among University Students in Umm Al-Qura University (UQU), Saudi Arabia. Int. J. Environ. Res. Public Health 2022, 19, 3710. https://doi.org/10.3390/ijerph19063710
Alotaibi MS, Fox M, Coman R, Ratan ZA, Hosseinzadeh H. Smartphone Addiction Prevalence and Its Association on Academic Performance, Physical Health, and Mental Well-Being among University Students in Umm Al-Qura University (UQU), Saudi Arabia. International Journal of Environmental Research and Public Health. 2022; 19(6):3710. https://doi.org/10.3390/ijerph19063710
Chicago/Turabian StyleAlotaibi, Mohammad Saud, Mim Fox, Robyn Coman, Zubair Ahmed Ratan, and Hassan Hosseinzadeh. 2022. "Smartphone Addiction Prevalence and Its Association on Academic Performance, Physical Health, and Mental Well-Being among University Students in Umm Al-Qura University (UQU), Saudi Arabia" International Journal of Environmental Research and Public Health 19, no. 6: 3710. https://doi.org/10.3390/ijerph19063710
APA StyleAlotaibi, M. S., Fox, M., Coman, R., Ratan, Z. A., & Hosseinzadeh, H. (2022). Smartphone Addiction Prevalence and Its Association on Academic Performance, Physical Health, and Mental Well-Being among University Students in Umm Al-Qura University (UQU), Saudi Arabia. International Journal of Environmental Research and Public Health, 19(6), 3710. https://doi.org/10.3390/ijerph19063710