The Effect of a Masticatory Muscle Training Program on Chewing Efficiency and Bite Force in People with Dementia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Study Design
2.3. Data Collection
2.4. Intervention in the Experimental Group
2.5. Statistical Considerations
2.6. Ethical Consideration
3. Results
3.1. Study Population
3.2. Changes in Chewing Efficiency (VOH), Subjective Chewing Efficiency Assessment Scale (SAS), and Maximum Occlusal Force (MOF) over Time
3.3. Differences in Chewing Efficiency (VOH), and Maximum Occlusal Force (MOF) between the Evaluation Time Points
4. Discussion
4.1. Study Limitation
4.2. Comparison with Other Studies
4.3. Measurement Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lund, J.P. Mastication and its control by the brain stem. Crit. Rev. Oral Biol. Med. 1991, 2, 33–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karkazis, H.C.; Kossioni, A.E. Re-examination of the surface EMG activity of the masseter muscle in young adults during chewing of two test foods. J. Oral Rehabil. 1997, 24, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Peyron, M.A.; Maskawi, K.; Woda, A.; Tanguay, R.; Lund, J.P. Effects of food texture and sample thickness on mandibular movement and hardness assessment during biting in man. J. Dent. Res. 1997, 76, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Rilo, B.; da Silva, J.L.; Gude, F.; Santana, U. Myoelectric activity during unilateral chewing in healthy subjects: Cycle duration and order of muscle activation. J. Prosthet. Dent. 1998, 80, 462–466. [Google Scholar] [CrossRef]
- Peyron, A.; Lassauzay, C.; Woda, A. Effects of increased hardness on jaw movement and muscle activity during chewing of visco-elastic model foods. Exp. Brain Res. 2001, 142, 41–51. [Google Scholar]
- Okeson, J.P. Nonodontogenic toothache. Tex. Dent. J. 2000, 117, 64–74. [Google Scholar]
- Allison, P.J.; Hennequin, M. The oral assessment in Down syndrome questionnaire (OADS): Development of an instrument to evaluate oral health problems in individuals with Down syndrome. Community Dent. Health 2000, 17, 172–179. [Google Scholar]
- Fontijn-Tekamp, F.; Slagter, A.; Van Der Bilt, A.; Hof, M.V.T.; Witter, D.; Kalk, W.; Jansen, J. Biting and chewing in overdentures, full dentures, and natural dentitions. J. Dent. Res. 2000, 79, 1519–1524. [Google Scholar] [CrossRef]
- Miyawaki, S.; Ohkochi, N.; Kawakami, T.; Sugimura, M. Changes in masticatory muscle activity according to food size in experimental human mastication. J. Oral Rehabil. 2001, 28, 778–784. [Google Scholar] [CrossRef]
- Mowlana, F.; Heath, M.; Bilt, A.; Glas, H. Assessment of chewing efficiency: A comparison of particle size distribution determined using optical scanning and sieving of almonds. J. Oral Rehabil. 1994, 21, 545–551. [Google Scholar] [CrossRef]
- Wöstmann, B.; Wickop, H.; Kolb, G.; Ferger, P. Zahnärztlich geriatrisches Assessment zur objektiven Einschätzung der zahnärztlich prothetischen Versorgung und des Ernährungszustandes älterer Patienten. Geriat Forsch 1997, 7, 112–113. [Google Scholar]
- Van der Bilt, A. Assessment of mastication with implications for oral rehabilitation: A review. J. Oral Rehabil. 2011, 38, 754–780. [Google Scholar] [CrossRef]
- Prinz, J.F. Quantitative evaluation of the effect of bolus size and number of chewing strokes on the intra-oral mixing of a two-colour chewing gum. J. Oral Rehabil. 1999, 26, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Halazonetis, D.; Schimmel, M.; Antonarakis, G.; Christou, P. Novel software for quantitative evaluation and graphical representation of masticatory efficiency. J. Oral Rehabil. 2013, 40, 329–335. [Google Scholar] [CrossRef]
- Schimmel, M.; Christou, P.; Herrmann, F.; Müller, F. A two-colour chewing gum test for masticatory efficiency: Development of different assessment methods. J. Oral Rehabil. 2007, 34, 671–678. [Google Scholar] [CrossRef] [PubMed]
- Van der Bilt, A.; Speksnijder, C.M.; de Liz Pocztaruk, R.; Abbink, J.H. Digital image processing versus visual assessment of chewed two-colour wax in mixing ability tests. J. Oral Rehabil. 2012, 39, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Weijenberg, R.A.F.; Scherder, E.J.; Visscher, C.M.; Gorissen, T.; Yoshida, E.; Lobbezoo, F. Two-colour chewing gum mixing ability: Digitalization and spatial heterogeneity analysis. J. Oral Rehabil. 2013, 40, 737–743.e39. [Google Scholar] [CrossRef]
- Speksnijder, C.M.; Abbink, J.H.; Van Der Glas, H.W.; Janssen, N.G.; Van Der Bilt, A. Mixing ability test compared with a comminution test in persons with normal and compromised masticatory performance. Eur J. Oral Sci. 2009, 117, 580–586. [Google Scholar] [CrossRef]
- Carlsson, G.E. Bite force and chewing efficiency. In Physiology of Mastication, Frontiers of Oral Physiology; Kawamura, Y., Ed.; Karger: Basel, Switzerland, 1974; Volume 1, pp. 265–292. [Google Scholar]
- Carlsson, G.E. Masticatory efficiency: The effect of age, the loss of teeth and prosthetic rehabilitation. Int. Dent. J. 1984, 34, 93–97. [Google Scholar]
- Chauncey, H.; Muench, M.; Kapur, K.; Wayler, A. The effect of the loss of teeth on diet and nutrition. Int. Dent. J. 1984, 34, 98–104. [Google Scholar]
- Gunne, H.-S.J. The effect of removable partial dentures on mastication and dietary intake. Acta Odontol. Scand. 1985, 43, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Gunne, H.-S.J.; Wall, A.K. The effect of new complete dentures on mastication and dietary intake. Acta Odontol. Scand. 1985, 43, 257–268. [Google Scholar] [CrossRef] [PubMed]
- Akeel, R. Masticatory efficiency, a literature review. Saudi. Dent. J. 1992, 4, 63–69. [Google Scholar]
- Millwood, J.; Heath, M.R. Food choice by older people: The use of semi-structured interviews with open and closed questions. Gerodontology 2000, 17, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Bourdiol, P.; Mioche, L. Correlations between functional and occlusal tooth-surface areas and food texture during natural chewing sequences in humans. Arch. Oral Biol. 2000, 45, 691–699. [Google Scholar] [CrossRef]
- Müller, F.; Nitschke, I. Mundgesundheit, Zahnstatus und Ernährung im Alter. Z. Für Gerontol. Geriatr. 2005, 38, 334–341. [Google Scholar] [CrossRef] [Green Version]
- Neill, D.; Phillips, H. The masticatory performance, dental state, and dietary intake of a group of elderly army pensioners. Br. Dent. J. 1970, 128, 581–585. [Google Scholar] [CrossRef]
- Garrett, N.R.; Perez, P.; Elbert, C.; Kapur, K.K. Effects of improvements of poorly fitting dentures and new dentures on masseter activity during chewing. J. Prosthet. Dent. 1996, 76, 394–402. [Google Scholar] [CrossRef]
- Goiato, M.C.; Ribeiro, P.P.; Garcia, A.R.; Dos Santos, D. Complete denture masticatory efficiency: A literature review. J. Calif. Dent. Assoc. 2008, 36, 683–686. [Google Scholar]
- Van Der Bilt, A.; Burgers, M.; Van Kampen, F.; Cune, M. Mandibular implant-supported overdentures and oral function. Clin. Oral Implant. Res. 2010, 21, 1209–1213. [Google Scholar] [CrossRef]
- Müller, F. Interventions for edentate elders—What is the evidence? Gerodontology 2014, 31 (Suppl. S1), 44–51. [Google Scholar] [CrossRef] [PubMed]
- Boven, G.; Raghoebar, G.; Vissink, A.; Meijer, H. Improving masticatory performance, bite force, nutritional state and patient’s satisfaction with implant overdentures: A systematic review of the literature. J. Oral Rehabil. 2015, 42, 220–233. [Google Scholar] [CrossRef] [PubMed]
- Ikebe, K.; Matsuda, K.-I.; Morii, K.; Hazeyama, T.; Kagawa, R.; Ogawa, T.; Nokubi, T. Relationship between bite force and salivary flow in older adults. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2007, 104, 510–515. [Google Scholar] [CrossRef]
- Ikebe, K.; Matsuda, K.; Morii, K.; Furuya-Yoshinaka, M.; Nokubi, T.; Renner, R.P. Association of masticatory performance with age, posterior occlusal contacts, occlusal force, and salivary flow in older adults. Int. J. Prosthodont. 2006, 19, 475–481. [Google Scholar]
- Mazari, A.; Heath, M.R.; Prinz, J.F. Contribution of the cheeks to the intraoral manipulation of food. Dysphagia 2007, 22, 117–121. [Google Scholar] [CrossRef]
- Kiliaridis, S.; Tzakis, M.G.; Carlsson, G.E. Effects of fatigue and chewing training on maximal bite force and endurance. Am. J. Orthod. Dentofac. Orthop. 1995, 107, 372–378. [Google Scholar] [CrossRef]
- Thompson, D.J.; Throckmorton, G.S.; Buschang, P.H. The effects of isometric exercise on maximum voluntary bite forces and jaw muscle strength and endurance. J. Oral Rehabil. 2001, 28, 909–917. [Google Scholar] [CrossRef]
- Julien, K.C.; Buschang, P.H.; Throckmorton, G.S.; Dechow, P.C. Normal masticatory performance in young adults and children. Arch. Oral Biol. 1996, 41, 69–75. [Google Scholar] [CrossRef]
- Hatch, J.P.; Shinkai, R.S.; Sakai, S.; Rugh, J.D.; Paunovich, E.D. Determinants of masticatory performance in dentate adults. Arch. Oral Biol. 2001, 46, 641–648. [Google Scholar] [CrossRef]
- Lexomboon, D.; Trulsson, M.; Wårdh, I.; Parker, M.G. Chewing ability and tooth loss: Association with cognitive impairment in an elderly population study. J. Am. Geriatr. Soc. 2012, 60, 1951–1956. [Google Scholar] [CrossRef]
- Kimura, Y.; Ogawa, H.; Yoshihara, A.; Yamaga, T.; Takiguchi, T.; Wada, T.; Fujisawa, M. Evaluation of chewing ability and its relationship with activities of daily living, depression, cognitive status and food intake in the community-dwelling elderly. Geriatr. Gerontol. Int. 2013, 13, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Suk, S.H.; Cheong, J.S.; Lee, H.S.; Chang, H.; Do, S.Y.; Kang, J.S. Tooth loss may predict poor cognitive function in community-dwelling adults without dementia or stroke: The PRESENT project. J. Korean Med. Sci. 2013, 28, 1518–1521. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Sugawara, N.; Yasui-Furukori, N.; Takahashi, I.; Nakaji, S.; Kimura, H. Cognitive function and number of teeth in a community-dwelling population in Japan. Ann. Gen. Psychiatry 2013, 12, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nilsson, H.; Berglund, J.; Renvert, S. Tooth loss and cognitive functions among older adults. Acta Odontol. Scand. 2014, 72, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Peres, M.A.; Bastos, J.L.; Watt, R.G.; Xavier, A.J.; Barbato, P.R.; D’Orsi, E. Tooth loss is associated with severe cognitive impairment among older people: Findings from a population-based study in Brazil. Aging Ment. Health 2014, 19, 876–884. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Furuya, J.; Hidaka, R.; Miyajima, S.; Matsubara, C.; Ohwada, G.; Asada, T.; Akazawa, C.; Sato, Y.; Tohara, H.; et al. Patients with mild cognitive impairment diagnosed at dementia clinic display decreased maximum occlusal force: A cross-sectional study. BMC Oral Health 2021, 21, 665. [Google Scholar] [CrossRef]
- Kim, J.M.; Stewart, R.; Prince, M.; Kim, S.W.; Yang, S.J.; Shin, I.S.; Yoon, J.S. Dental health, nutritional status and recent-onset dementia in a Korean community population. Int. J. Geriatr. Psychiatry 2007, 22, 850–855. [Google Scholar] [CrossRef]
- Elsig, F.; Schimmel, M.; Duvernay, E.; Giannelli, S.; Graf, C.; Carlier, S.; Herrmann, F.; Michel, J.; Gold, G.; Zekry, D.; et al. Tooth Loss in Geriatric Patients: A Risk for Cognitive Impairment? J. Dent. Res. Spec. 2013, 92A, 705. [Google Scholar]
- Okamoto, N.; Morikawa, M.; Tomioka, K.; Yanagi, M.; Amano, N.; Kurumatani, N. Association between tooth loss and the development of mild memory impairment in the elderly: The Fujiwara-kyo Study. J. Alzheimer’s Dis. 2015, 44, 777–786. [Google Scholar] [CrossRef] [Green Version]
- Galo, R.; Vitti, M.; Mattos, M.D.G.C.; Regalo, S.C.H. Masticatory muscular activation in elderly individuals during chewing. Gerodontology 2007, 24, 244–248. [Google Scholar] [CrossRef]
- Newton, J.; Yemm, R.; Abel, R.; Menhinick, S. Changes in human jaw muscles with age and dental state. Gerodontology 1993, 10, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Bakke, M. Bite force and occlusion. Semin. Orthod. 2006, 12, 120–126. [Google Scholar] [CrossRef]
- Enkling, N.; Saftig, M.; Worni, A.; Mericske-Stern, R.; Schimmel, M. Chewing efficiency, bite force and oral health-related quality of life with narrow diameter implants-a prospective clinical study: Results after one year. Clin. Oral Implant. Res. 2017, 28, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Weijenberg, R.A.; Scherder, E.J.; Lobbezoo, F. Mastication for the mind—The relationship between mastication and cognition in ageing and dementia. Neurosci. Biobehav. Rev. 2011, 35, 483–497. [Google Scholar] [CrossRef]
- Ono, T.; Hori, K.; Ikebe, K.; Nokubi, T.; Nago, S.; Kumakura, I. Factors influencing eating ability of old inpatients in a rehabilitation hospital in Japan. Gerodontology 2003, 20, 24–31. [Google Scholar] [CrossRef]
- Vidoni, E.D.; Thomas, G.P.; Honea, R.A.; Loskutova, N.; Burns, J.M. Evidence of altered corticomotor system connectivity in early-stage Alzheimer’s disease. J. Neurol Phys. Ther. 2012, 36, 8–16. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, H.; Li, T.; Yu, X. Prevalence of neuropsychiatric symptoms across the declining memory continuum: An observational study in a memory clinic setting. Dement. Geriatr. Cogn. Dis. Extra 2012, 2, 200–208. [Google Scholar] [CrossRef]
- Farella, M.; Bakke, M.; Michelotti, A.; Marotta, G.; Martina, R. Cardiovascular responses in humans to experimental chewing of gums of different consistencies. Arch. Oral Biol. 1999, 44, 835–842. [Google Scholar] [CrossRef]
- Ono, T.; Hasegawa, Y.; Hori, K.; Nokubi, T.; Hamasaki, T. Taskinduced activation and hemispheric Dominance in cerebral circulation during gum chewing. J. Neurol. 2007, 254, 1427–1432. [Google Scholar] [CrossRef]
- Kaiser, M.J.; Bauer, J.M.; Uter, W.; Donini, L.M.; Stange, I.; Volkert, D.; Diekmann, R.; Drey, M.; Bollwein, J.; Tempera, S.; et al. Prospective validation of the modified mini nutritional assessment short-forms in the community, nursing home, and rehabilitation setting. J. Am. Geriatr. Soc. 2011, 59, 2124–2128. [Google Scholar] [CrossRef]
- Sullivan, J.D.; Olha, A.E.; Rohan, I.; Sehulz, J. The properties of skeletal muscle. Orthop. Rev. 1986, 15, 349–363. [Google Scholar] [PubMed]
- Kiliaridis, S.; Engström, C.; Thilander, B. Histochemical analysis of masticatory muscle in the growing rat after prolonged alteration in the consistency of the diet. Arch. Oral Biol. 1988, 33, 187–193. [Google Scholar] [CrossRef]
- Hainaut, K.; Duchateau, J. Muscle fatigue, effects of training and disuse. Muscle Nerve 1989, 12, 660–669. [Google Scholar] [CrossRef]
- Abernethy, P.J.; Thayer, R.; Taylor, A.W. Acute and chronic responses of skeletal muscle to endurance and sprint exercise. A review. Sports Med. 1990, 10, 365–389. [Google Scholar] [CrossRef]
- Brekhaus, P.J.; Armstrong, W.D.; Simon, W.J. Stimulation of the muscles of mastication. J. Dent. Res. 1941, 20, 87. [Google Scholar] [CrossRef]
- Plesh, O.; Bishop, B.; McCall, W. Effect of gum hardness on chewing pattern. Exp. Neurol. 1986, 92, 502–512. [Google Scholar] [CrossRef]
- Ingervall, B.; Bitsanis, E. A pilot study of the effect of masticatory muscle training on facial growth in long-face children. Eur. J. Orthod. 1987, 9, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Okada, K.; Enoki, H.; Izawa, S.; Iguchi, A.; Kuzuya, M. Association between masticatory performance and anthropometric measurements and nutritional status in the elderly. Geriatr. Gerontol. Int. 2010, 10, 56–63. [Google Scholar] [CrossRef]
- Van der Bilt, A.; Mojet, J.; Tekamp, F.; Abbink, J. Comparing masticatory performance and mixing ability. J. Oral Rehabil. 2010, 37, 79–84. [Google Scholar] [CrossRef]
- He, T.; Stavropoulos, D.; Hagberg, C.; Hakeberg, M.; Mohlin, B. Effects of masticatory muscle training on maximum bite force and muscular endurance. Acta Odontol. Scand. 2013, 71, 863–869. [Google Scholar] [CrossRef]
- Nakagawa, K.; Matsuo, K.; Takagi, D.; Morita, Y.; Ooka, T.; Hironaka, S.; Mukai, Y. Effects of gum chewing exercises on saliva secretion and occlusal force in community-dwelling elderly individuals: A pilot study. Geriatr. Gerontol. Int. 2017, 17, 48–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, C.; Puckett, A.D., Jr.; Dawes, C. The effects of chewing frequency and duration of gum chewing on salivary flow rate and sucrose concentration. Arch. Oral Biol. 1995, 40, 585–588. [Google Scholar] [CrossRef]
- Kim, Y.S.; Shin, K.H.; Park, J.R.; Chung, S.H.; Choi, H.S. The effect of oral function improvement with oral exercise program by elderly people. J. Korean Soc. Dent. Hyg. 2016, 16, 559–566. [Google Scholar] [CrossRef] [Green Version]
- Jockusch, J.; Hopfenmüller, W.; Nitschke, I. Influence of cognitive impairment and dementia on oral health and the utilization of dental services. BMC Oral Health 2021, 21, 399. [Google Scholar] [CrossRef] [PubMed]
- Jockusch, J.; Hopfenmüller, W.; Nitschke, I. Chewing function and related parameters as a function of the degree of dementia: Is there a link between the brain and the mouth? J. Oral Rehabil. 2021, 48, 1160–1172. [Google Scholar] [CrossRef]
- Jockusch, J.; Nitschke, S.; Hopfenmüller, W.; Schierz, O.; Hahnel, S.; Nitschke, I. Impact of an Oral Hygiene Intervention in People with and without Dementia on Oral Health Parameters—Results from the Oral Health, Bite Force, and Dementia (OrBiD) Pilot Study. J. Clin. Med. 2022, 11, 1356. [Google Scholar] [CrossRef]
- Jockusch, J.; Wiedemeier, D.; Nitschke, I. The OrBiD (Oral Health, Bite Force and Dementia) Pilot Study: A Study Protocol for New Approaches to Masticatory Muscle Training and Efficient Recruitment for Longitudinal Studies in People with Dementia. Int. J. Environ. Res. Public Health 2022, 19, 3700. [Google Scholar] [CrossRef]
- Folstein, M.F.; Folstein, S.E.; McHugh, P.R. Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res. 1975, 12, 189–198. [Google Scholar] [CrossRef]
- Mahoney, F.; Barthel, D. Functional evaluation: The Barthel Index. MD State Med. J. 1965, 14, 56–61. [Google Scholar]
- Rubenstein, L.Z.; Harker, J.O.; Salva, A.; Guigoz, Y.; Vellas, B. Screening for undernutrition in geriatric practice: Developing the short-form mini-nutritional assessment (MNASF). J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M366–M372. [Google Scholar] [CrossRef] [Green Version]
- Varga, S.; Spalj, S.; Lapter Varga, M.; Anic Milosevic, S.; Mestrovic, S.; Slaj, M. Maximum voluntary molar bite force in subjects with normal occlusion. Eur. J. Orthod. 2011, 33, 427–433. [Google Scholar] [CrossRef] [Green Version]
- Schimmel, M.; Christou, P.; Miyazaki, H.; Halazonetis, D.; Herrmann, F.R.; Müller, F. A novel colourimetric technique to assess chewing function using two-coloured specimens: Validation and application. J. Dent. 2015, 43, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Teare, M.D.; Dimairo, M.; Shephard, N.; Hayman, A.; Whitehead, A.; Walters, S.J. Sample size requirements to estimate key design parameters from external pilot randomised controlled trials: A simulation study. Trials 2014, 15, 264. [Google Scholar] [CrossRef] [PubMed]
- Malekmahmoodi, M.; Shamsi, M. Roozbahani, N.; Moradzadeh, R. A randomized controlled trial of an educational inter-vention to promote oral and dental health of patients with type 2 diabetes mellitus. BMC Public Health 2020, 20, 287. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Wickham, H. Tidyverse: Easily Install and Load the ‘Tidyverse’. R Package Version 1.2.1. 2017. Available online: https://CRAN.R-project.org/package=tidyverse (accessed on 30 January 2022).
- Van Buuren, S.; Groothuis-Oudshoorn, K. mice: Multivariate Imputation by Chained Equations in R. J. Stat. Softw. 2011, 45, 1–67. Available online: https://www.jstatsoft.org/article/view/v045i03 (accessed on 30 January 2022). [CrossRef] [Green Version]
- Stekhoven, D.J.; Buehlmann, P. MissForest—Non-parametric missing value imputation for mixed-type data. Bioinformatics 2012, 28, 112–118. [Google Scholar] [CrossRef] [Green Version]
- IBM. SPSS Statistics for Windows (Version 23); IBM Corp.: Armonk, NY, USA, 2014. [Google Scholar]
- Arbeitsgemeinschaft der Wissenschaftlichen Medizinischen Fachgesellschaften (AWMF): S3-Leitlinie Demenzen. 2016. Available online: https://www.awmf.org/leitlinien/detail/ll/038-013.html (accessed on 8 January 2022).
- Rasch, P.J.; Morehouse, L.E. Effect of static and dynamic exercises on muscular strength and hypertrophy. J. Appl. Physiol. 1957, 11, 29–34. [Google Scholar] [CrossRef]
- Morley, J.E. Decreased food intake with aging. J. Gerontol. A Biol. Sci. Med. Sci 2001, 56, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Locker, D. Changes in chewing ability with ageing: A 7-year study of older adults. J. Oral Rehabil. 2002, 29, 1021–1029. [Google Scholar] [CrossRef]
- Avlund, K.; Holm-Pedersen, P.; Schroll, M. Functional ability and oral health among older people: A longitudinal study from age 75 to 80. J. Am. Geriatr. Soc. 2001, 49, 954–962. [Google Scholar] [CrossRef]
- Holm-Pedersen, P.; Schultz-Larsen, K. Christiansen, N.; Avlund, K. Tooth loss and subsequent disability and mortality in old age. J. Am. Geriatr. Soc. 2008, 56, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Van Steenberghe, D.; De Vries, J.H. Psychophysical threshold level of periodontal mechanoreceptors in man. Arch. Oral Biol. 1978, 23, 1041–1049. [Google Scholar] [CrossRef]
- Hagberg, C. Assessments of bite force: A review. J. Craniomandib. Disord. 1987, 1, 162–169. [Google Scholar] [PubMed]
- Clark, G.T.; Beemsterboer, P.L.; Jacobson, R. The effect of sustained submaximal clenching on maximum bite force in myo-fascial pain dysfunction patients. J. Oral Rehabil. 1984, 11, 387–391. [Google Scholar] [CrossRef]
- Fields, H.W.; Proffit, W.R.; Case, J.C.; Vig, K.W.L. Variables affecting measurements of vertical occlusal force. J. Dent. Res. 1986, 65, 135–138. [Google Scholar] [CrossRef] [Green Version]
- Choy, E.; Kydd, L.W. Bite force duration: A diagnostic procedure for mandibular dysfunction. J. Prosthet. Dent. 1988, 60, 365–368. [Google Scholar] [CrossRef]
- Bakke, M.; Michler, L.; Han, K.E.; Möller, E. Clinical significance of isometric bite force versus electrical activity in temporal and masseter muscles. Eur. J. Oral Sci. 1989, 97, 539–551. [Google Scholar] [CrossRef]
- Rowlerson, A.; Raoul, G.; Daniel, Y.; Close, J.; Maurage, C.A.; Ferri, J.; Sciote, J.J. Fiber-type differences in masseter muscle associated with different facial morphologies. Am. J. Orthod. Dentofac. Orthop. 2005, 127, 37–46. [Google Scholar] [CrossRef] [Green Version]
- De Cicco, V.; Barresi, M.; Tramonti Fantozzi, M.P.; Cataldo, E.; Parisi, V.; Manzoni, D. Oral Implant-Prostheses: New Teeth for a Brighter Brain. PLoS ONE 2016, 11, e0148715. [Google Scholar] [CrossRef] [Green Version]
- Goldspink, G.; Howells, K.F. Work-induced hypertrophy in exercised normal muscles of different ages and the reversibil-ity of hypertrophy after cessation of exercise. J. Physiol. 1974, 239, 179. [Google Scholar] [CrossRef] [Green Version]
- Gonyea, W.; Bonde-Petersen, F. Alterations in muscle contractile properties and fiber composition ofter weight-lifting ex-ercise in cats. Exp. Neurol. 1978, 59, 75–84. [Google Scholar] [CrossRef]
- MacDougall, J.D.; Sale, D.G.; Moroz, J.R.; Elder, G.C.; Sutton, J.R.; Howald, H. Mitochondrial volume density in human skeletal muscle following heavy resistance training. Med. Sci. Sports 1979, 11, 164–166. [Google Scholar] [PubMed]
- MacDougall, J.D.; Elder, G.C.B.; Sale, D.G.; Moroz, J.R.; Sutton, J.R. Effects of strength training and immobilization on human muscle fibres. Eur. J. Appl. Physiol. Occup. Physiol. 1980, 43, 25–34. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, M.J.; Davies, C.T.M. Adaptive response of mammalian skeletal muscle to exercise with high loads. Eur. J. Appl. Physiol. Occup. Physiol. 1984, 52, 139–155. [Google Scholar] [CrossRef]
- McArdle, W.D.; Katch, F.I.; Katch, V.L. Essentials of Exercise Physiology; Lea &. Febiger Publishes: Philadelphia, PA, USA, 1994. [Google Scholar]
- Schlierf, G. Erfolgreiches, gesundes altern. In Geriatrie; Springer-Lehrbuch: Berlin/Heidelberg, Germany, 1992. [Google Scholar] [CrossRef]
- Hall, K.S.; Hyde, E.T.; Bassett, D.R.; Carlson, S.A.; Carnethon, M.R.; Ekelund, U.; Evenson, K.R.; Galuska, D.A.; Kraus, W.E.; Lee, I.M.; et al. Systematic review of the prospective association of daily step counts with risk of mortality, cardiovascular disease, and dysglycemia. Int. J. Behav. Nutr. Phys. Act. 2020, 17, 78. [Google Scholar] [CrossRef] [PubMed]
- Manns, A.; Miralles, R.; Palazzi, C. EMG, bite force, and elongation of the masseter muscle under isometric voluntary con-tractions and variations of vertical dimension. J. Prosthet. Dent. 1979, 42, 674–682. [Google Scholar] [CrossRef]
- Schimmel, M.; Katsoulis, J.; Genton, L.; Müller, F. Masticatory function and nutrition in old age. Swiss Dent. J. 2015, 125, 449–454. [Google Scholar]
- Fankhauser, N.; Kalberer, N.; Müller, F.; Leles, C.R.; Schimmel, M.; Srinivasan, M. Comparison of smartphone-camera and conventional flatbed scanner images for analytical evaluation of chewing function. J. Oral Rehabil. 2020, 47, 1496–1502. [Google Scholar] [CrossRef]
Maximum Occlusal Force [N] | Chewing Efficiency as Variance of Hue [VOH] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | T0 | T1 | T2 | T3 | |||
Group 1 noDem MMSE 30-28 | ConG [n = 12] | Mean/±SD | 175 ± 229 | 207 ± 265 | 0.225 ± 0.211 | 0.195 ± 0.120 | ||||
Median | 85 | 102 | 0.169 | 0.198 | ||||||
IQR | 139 | 161 | 0.204 | 0.140 | ||||||
ExpG [n = 12] | Mean/±SD | 105 ± 103 | 155 ± 125 | 173 ± 130 | 125 ± 59 | 0.273 ± 0.126 | 0.193 ± 0.104 | 0.192 ± 0.134 | 0.199 ± 0.148 | |
Median | 82 | 132 | 145 | 105 | 0.254 | 0.157 | 0.140 | 0.165 | ||
IQR | 78 | 150 | 140 | 98 | 0.150 | 0.109 | 0.141 | 0.134 | ||
Group 2 mCI MMSE 27-25 | ConG [n = 12] | Mean/±SD | 229 ± 189 | 177 ± 112 | 0.255 ± 0.216 | 0.182 ± 0.103 | ||||
Median | 164 | 141 | 0.161 | 0.167 | ||||||
IQR | 113 | 130 | 0.197 | 0.125 | ||||||
ExpG [n = 12] | Mean/±SD | 146 ± 186 | 239 ± 302 | 164 ± 213 | 141 ± 182 | 0.226 ± 0.170 | 0.153 ± 0.089 | 0.172 ± 0.089 | 0.228 ± 0.143 | |
Median | 82 | 96 | 85 | 87 | 0.194 | 0.135 | 0.194 | 0.192 | ||
IQR | 85 | 162 | 78 | 71 | 0.197 | 0.091 | 0.112 | 0.147 | ||
Group 3 mDem MMSE 24-18 | ConG [n = 12] | Mean/±SD | 118 ± 103 | 163 ± 84 | 0.289 ± 0.194 | 0.312 ± 0.212 | ||||
Median | 76 | 154 | 0.235 | 0.256 | ||||||
IQR | 134 | 57 | 0.079 | 0.149 | ||||||
ExpG [n = 11] | Mean/±SD | 163 ± 163 | 154 ± 90 | 156 ± 138 | 120 ± 102 | 0.264 ± 0.144 | 0.164 ± 0.091 | 0.156 ± 0.107 | 0.216 ± 0.114 | |
Median | 78 | 159 | 94 | 78 | 0.241 | 0.153 | 0.135 | 0.256 | ||
IQR | 159 | 152 | 178 | 140 | 0.174 | 0.104 | 0.175 | 0.196 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jockusch, J.; Hahnel, S.; Sobotta, B.B.A.J.; Nitschke, I. The Effect of a Masticatory Muscle Training Program on Chewing Efficiency and Bite Force in People with Dementia. Int. J. Environ. Res. Public Health 2022, 19, 3778. https://doi.org/10.3390/ijerph19073778
Jockusch J, Hahnel S, Sobotta BBAJ, Nitschke I. The Effect of a Masticatory Muscle Training Program on Chewing Efficiency and Bite Force in People with Dementia. International Journal of Environmental Research and Public Health. 2022; 19(7):3778. https://doi.org/10.3390/ijerph19073778
Chicago/Turabian StyleJockusch, Julia, Sebastian Hahnel, Bernhard B. A. J. Sobotta, and Ina Nitschke. 2022. "The Effect of a Masticatory Muscle Training Program on Chewing Efficiency and Bite Force in People with Dementia" International Journal of Environmental Research and Public Health 19, no. 7: 3778. https://doi.org/10.3390/ijerph19073778
APA StyleJockusch, J., Hahnel, S., Sobotta, B. B. A. J., & Nitschke, I. (2022). The Effect of a Masticatory Muscle Training Program on Chewing Efficiency and Bite Force in People with Dementia. International Journal of Environmental Research and Public Health, 19(7), 3778. https://doi.org/10.3390/ijerph19073778