Under Pressure: The Chronic Effects of Lower-Body Compression Garment Use during a 6-Week Military Training Course
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Design
2.3. Compression Garments
2.4. Compression Garment Pressure Monitoring
2.5. Subjective Monitoring
2.6. Physical Training Program
2.7. Fitness Testing
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Edgar, D.; Gill, N.; Driller, M. Physical characteristics of New Zealand Army, Navy and Airforce officer trainees’over a 6-week joint officer induction course. J. Sport Exerc. Sci. 2020, 4, 63–71. [Google Scholar]
- Knapik, J.; Redmond, J.; Grier, T.; Sharp, M. Secular trends in the Physical Fitness of United States Army Infantry Units and Infantry Soldiers, 1976–2015. Mil. Med. 2018, 183, e414–e426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orr, R.; Pope, R. Optimizing the physical training of military trainees. Strength Cond. J. 2015, 37, 53–59. [Google Scholar] [CrossRef]
- Harty, P.; Cottet, M.; Malloy, J.; Kerksick, C. Nutritional and supplementation strategies to prevent and attenuate exercise-induced muscle damage: A brief review. Sports Med.-Open 2019, 5, 1. [Google Scholar] [CrossRef]
- Howatson, G.; Van Someren, K.; Hortobagyi, T. Repeated bout effect after maximal eccentric exercise. Int. J. Sports Med. 2007, 28, 557–563. [Google Scholar] [CrossRef]
- Orr, R.; Pope, R.; Johnston, V.; Coyle, J. Soldier occupational load carriage: A narrative review of associated injuries. Int. J. Inj. Control. Saf. Promot. 2014, 21, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Vartanian, O.; Fraser, B.; Saunders, D.; Ralph, C.; Lieberman, H.; Morgan, C., III; Cheung, B. Changes in mood, fatigue, sleep, cognitive performance and stress hormones among instructors conducting stressful military captivity survival training. Physiol. Behav. 2018, 194, 137–143. [Google Scholar] [CrossRef]
- Argus, C.; Driller, M.; Ebert, T.; Martin, D.; Halson, S. The effects of 4 different recovery strategies on repeat sprint-cycling performance. Int. J. Sports Physiol. 2013, 8, 542–548. [Google Scholar] [CrossRef]
- Marqués-Jiménez, D.; Calleja-González, J.; Arratibel, I.; Delextrat, A.; Terrados, N. Are compression garments effective for the recovery of exercise-induced muscle damage? A systematic review with meta-analysis. Physiol. Behav. 2016, 153, 133–148. [Google Scholar] [CrossRef]
- Atkins, R.; Lam, W.; Scanlan, A.; Beaven, M.; Driller, M. Lower-body compression garments worn following exercise improves perceived recovery but not subsequent performance in basketball athletes. J. Sports Sci. 2020, 38, 961–969. [Google Scholar] [CrossRef]
- Driller, M.; Halson, S. The effects of lower-body compression garments on recovery between exercise bouts in highly-trained cyclists. J. Sci. Cycl. 2013, 2, 45–50. [Google Scholar]
- Brown, F.; Gissane, C.; Howatson, G.; Van Someren, K.; Pedlar, C.; Hill, J. Compression garments and recovery from exercise: A meta-analysis. Sports Med. 2017, 47, 2245–2267. [Google Scholar] [CrossRef] [PubMed]
- da Silva, C.; Helal, L.; da Silva, R.; Belli, K.; Umpierre, D.; Stein, R. Association of lower limb compression garments during high-intensity exercise with performance and physiological responses: A systematic review and meta-analysis. Sports Med. 2018, 48, 1859–1873. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Ali, A.; Sheridan, S.; Chan, D.; Wong, S. Wearing compression garment enhances central hemodynamics? A systematic review and meta-analysis. J. Strength Cond. Res. 2020, 01, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Broatch, J.; Petersen, A.; Bishop, D. The influence of post-exercise cold-water immersion on adaptive responses to exercise: A review of the literature. Sports Med. 2018, 48, 1369–1387. [Google Scholar] [CrossRef] [PubMed]
- Lundberg, T.; Howatson, G. Analgesic and anti-inflammatory drugs in sports: Implications for exercise performance and training adaptations. Scand. J. Med. Sci. Sports 2018, 28, 2252–2262. [Google Scholar] [CrossRef]
- Hu, J.; Browne, J.; Baum, J.; Robinson, A.; Arnold, M.; Reid, S.; Neufeld, E.; Dolezal, B. Lower limb graduated compression garments modulate autonomic nervous system and improve post-training recovery measured via heart Rate variability. Int. J. Exerc. Sci. 2020, 13, 1794–1806. [Google Scholar]
- Earp, J.; Hatfield, D.; Sherman, A.; Lee, E.; Kraemer, W. Cold-water immersion blunts and delays increases in circulating testosterone and cytokines post-resistance exercise. Eur. J. Appl. Physiol. 2019, 119, 1901–1907. [Google Scholar] [CrossRef]
- Roberts, L.; Nosaka, K.; Coombes, J.; Peake, J.; Peake, J. Cold water immersion enhances recovery of submaximal muscle function following resistance exercise. Am. J. Physiology. Regul. Integr. Comp. Physiol. 2014, 307, R998–R1008. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, C.; Kouw, I.; Churchward-Venne, T.; Smeets, J.; Senden, J.; Lichtenbelt, W.; Verdijk, L.; van Loon, L. Postexercise cooling impairs muscle protein synthesis rates in recreational athletes. J. Physiol. 2020, 598, 755–772. [Google Scholar] [CrossRef] [Green Version]
- Fyfe, J.; Broatch, J.; Trewin, A.; Hanson, E.; Argus, C.; Garnham, A.; Halson, S.; Polman, R.; Bishop, D.; Petersen, A. Cold water immersion attenuates anabolic signaling and skeletal muscle fiber hypertrophy, but not strength gain, following whole-body resistance training. J. Appl. Physiol. 2019, 127, 1403–1418. [Google Scholar] [CrossRef] [PubMed]
- Chazaud, B. Inflammation and skeletal muscle regeneration: Leave it to the macrophages! Trends Immunol. 2020, 41, 481–492. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Law, H.; Ali, A.; Sheridan, S.; Wong, S.; Lee, S. Compression garment-induced leg changes increase hemodynamic responses in healthy individuals. Int. J. Sports Med. 2020, 41, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Kennzeichnung, D. Medizinische Kompressionsstrumpfe Deutsches Institut Fur Gutesicherung UND Kennzeichnung; Beuth: Berlin, Germany, 2000. [Google Scholar]
- Dascombe, B.; Hoare, T.; Sear, J.; Reaburn, P.; Scanlan, A. The effects of wearing undersized lower-body compression garments on endurance running performance. Int. J. Sports Physiol. Perform. 2011, 6, 160–173. [Google Scholar] [CrossRef]
- Brophy-Williams, N.; Driller, M.; Halson, S.; Fell, J.; Shing, C. Evaluating the Kikuhime pressure monitor for use with sports compression clothing. Sports Eng. 2014, 17, 55–60. [Google Scholar] [CrossRef]
- Edgar, D.; Gill, N.; Beaven, C.; Zaslona, J.; Driller, M. Sleep duration and physical performance during a 6-week military training course. J. Sleep Res. 2021, 30, e13393. [Google Scholar] [CrossRef]
- Halson, S. Sleep and the elite athlete. Sports Sci. Exch. 2013, 26, 1–4. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Routledge: New York, NY, USA, 1988. [Google Scholar]
- Roberts, L.; Raastad, T.; Markworth, J.; Figueiredo, V.; Egner, I.; Shield, A.; Cameron-Smith, D.; Coombes, J.; Peake, J. Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J. Physiol. 2015, 593, 4285–4301. [Google Scholar] [CrossRef] [Green Version]
- Yamane, M.; Ohnishi, N.; Matsumoto, T. Does regular post-exercise cold application attenuate trained muscle adaptation. Int. J. Sports Med. 2015, 36, 647–653. [Google Scholar] [CrossRef] [Green Version]
- Halson, S.; Bartram, J.; West, N.; Stephens, J.; Argus, C.; Driller, M.; Sargent, C.; Lastella, M.; Hopkins, W.; Martin, D. Does hydrotherapy help or hinder adaptation to training in competitive cyclists. Med. Sci. Sport Exerc. 2014, 46, 1631–1639. [Google Scholar] [CrossRef] [Green Version]
- Tavares, F.; Beaven, M.; Teles, J.; Baker, D.; Healey, P.; Smith, T.; Driller, M. Effects of chronic cold-water immersion in elite rugby players. Int. J. Sports Physiol. Perform. 2019, 14, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Born, D.; Sperlich, B.; Holmberg, H. Bringing light into the dark: Effects of compression clothing on performance and recovery. Int. J. Sports Physiol. Perform. 2013, 8, 4–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leeder, J.; Gissane, C.; van Someren, K.; Gregson, W.; Howatson, G. Cold water immersion and recovery from strenuous exercise: A meta-analysis. Br. J. Sports Med. 2012, 46, 233–240. [Google Scholar] [CrossRef]
- Hettchen, M.; Glöckler, K.; von Stengel, S.; Piechele, A.; Lötzerich, H.; Kohl, M.; Kemmler, W. Effects of compression tights on recovery parameters after exercise induced muscle bamage: A randomized controlled crossover study. Evid. Based Complementary Altern. Med. 2019, 2019, e5698460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variation | Activity | Duration | Number of Sessions Per Week | ||||||
---|---|---|---|---|---|---|---|---|---|
Physical Training | Wk 1 | Wk 2 | Wk 3 | Wk 4 | Wk 5 | Wk 6 | Total | ||
1 | Aerobic Interval Running | 90 min | 1 | 1 | 1 | 1 | 1 | 5 | |
2 | Circuit Training (Strength Endurance) | 90 min | 1 | 1 | 1 | 1 | 1 | 5 | |
3 | Swimming/Pool Circuit | 90 min | 1 | 1 | 1 | 1 | 1 | 5 | |
4 | Stretch, Mobility and Recovery Flush | 90 min | 1 | 1 | 1 | 1 | 4 | ||
Military Training | |||||||||
1 | Drill (Parade Ground) | 30–60 min | 3 | 2 | 3 | 2 | 2 | 3 | 15 |
2 | Weapons Training | 4 h+ | 1 | 4 | 3 | 2 | 2 | 3 | 15 |
3 | Land Navigation | 3–6 h | 1 | 2 | 1 | 4 | |||
4 | Sea Survival | 24 h | 1 | 1 | |||||
5 | Bush Craft | 6 h | 1 | 1 | 1 | 3 | |||
6 | Tactical Field Exercise | 5 days | 1 | 1 | |||||
Weekly Total | 8 | 12 | 12 | 10 | 7 | 9 |
Pre (mmHg) | Post (mmHg) | Change (mmHg) | p-Value | |
---|---|---|---|---|
Ankle | 25.4 ± 2.1 | 19.7 ± 1.8 | −5.7 ± 1.9 | <0.01 |
Calf | 21.6 ± 2.8 | 18.3 ± 1.9 | −3.3 ± 1.9 | =0.01 |
Thigh | 15.0 ± 4.3 | 11.8 ± 3.1 | −3.2 ± 2.0 | <0.01 |
Group × Time Interaction | ||||||
---|---|---|---|---|---|---|
Pre | Post | Change | p-Value | ES (d) ± 90% CI | ||
2.4 km Run (s) | ||||||
CG | 650.5 ± 88.7 | 603.7 ± 79.5 | −46.8 ± 66.1 | 0.284 | 0.24 ± 0.36, Small | |
CON | 620.7 ± 70.1 | 591.8 ± 55.2 | −28.9 ± 53.3 | |||
Press-Ups (repetitions) | ||||||
CG | 31 ± 10 | 36 ± 10 | 5 ± 8 | 0.171 | 0.36 ± 0.43, Small | |
CON | 28 ± 7 | 29 ± 10 | 1 ± 10 | |||
Curl-Ups (repetitions) | ||||||
CG | 37 ± 13 | 41 ± 18 | 4 ± 18 | 0.521 | 0.19 ± 0.50, Trivial | |
CON | 40 ± 20 | 41 ± 17 | 1 ± 20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Edgar, D.T.; Beaven, C.M.; Gill, N.D.; Driller, M.W. Under Pressure: The Chronic Effects of Lower-Body Compression Garment Use during a 6-Week Military Training Course. Int. J. Environ. Res. Public Health 2022, 19, 3912. https://doi.org/10.3390/ijerph19073912
Edgar DT, Beaven CM, Gill ND, Driller MW. Under Pressure: The Chronic Effects of Lower-Body Compression Garment Use during a 6-Week Military Training Course. International Journal of Environmental Research and Public Health. 2022; 19(7):3912. https://doi.org/10.3390/ijerph19073912
Chicago/Turabian StyleEdgar, David T., Christopher Martyn Beaven, Nicholas D. Gill, and Matthew W. Driller. 2022. "Under Pressure: The Chronic Effects of Lower-Body Compression Garment Use during a 6-Week Military Training Course" International Journal of Environmental Research and Public Health 19, no. 7: 3912. https://doi.org/10.3390/ijerph19073912
APA StyleEdgar, D. T., Beaven, C. M., Gill, N. D., & Driller, M. W. (2022). Under Pressure: The Chronic Effects of Lower-Body Compression Garment Use during a 6-Week Military Training Course. International Journal of Environmental Research and Public Health, 19(7), 3912. https://doi.org/10.3390/ijerph19073912