Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review
Abstract
:1. Introduction
2. PAH Formation during Biomass Burning
3. PAH Emissions from Biomass Burning
4. Factors That Influence PAH Emissions
4.1. Types and Compositions of Biomass
4.1.1. Volatile Matter
4.1.2. Nonvolatile Matter
4.1.3. Potassium Salts
4.1.4. Moisture
4.1.5. Density of Biomass
4.2. Burning Conditions
4.2.1. Burning Temperature
4.2.2. Oxygen Supply
4.2.3. Stove Designs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, N.; Hattori, T.; Taga, R.; Igarashi, K.; Yang, X.Y.; Tamura, K.; Kakimoto, H.; Mishukov, V.F.; Toriba, A.; Kizu, R.; et al. Polycyclic aromatic hydrocarbons and nitro polycyclic aromatic hydrocarbons in urban air particulates and their relationship to emission sources in the Pan–Japan Sea countries. Atmos. Environ. 2005, 39, 5817–5826. [Google Scholar] [CrossRef]
- Zhang, L.L.; Yang, L.; Zhou, Q.Y.; Zhang, X.; Xing, W.L.; Wei, Y.J.; Hu, M.; Zhao, L.X.; Toriba, A.; Hayakawa, K.; et al. Size distribution of particulate polycyclic aromatic hydrocarbons in fresh combustion smoke and ambient air: A review. J. Environ. Sci. 2020, 88, 370–384. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, X.; Xing, W.L.; Zhou, Q.Y.; Zhang, L.L.; Wu, Q.; Zhou, Z.J.; Chen, R.J.; Toriba, A.; Hayakawa, K.; et al. Yearly variation in characteristics and health risk of polycyclic aromatic hydrocarbons and nitro-PAHs in urban shanghai from 2010–2018. J. Environ. Sci. 2021, 99, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, K. Environmental Behaviors and Toxicities of Polycyclic Aromatic Hydrocarbons and Nitropolycyclic Aromatic Hydrocarbons. Chem. Pharm. Bull. 2016, 64, 83–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.L.; Morisaki, H.; Wei, Y.J.; Li, Z.G.; Yang, L.; Zhou, Q.Y.; Zhang, X.; Xing, W.L.; Hu, M.; Shima, M.; et al. PM2.5-bound polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons inside and outside a primary school classroom in Beijing: Concentration, composition, and inhalation cancer risk. Sci. Total Environ. 2020, 705, 135840. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.L.; Tokuda, T.; Yang, L.; Zhou, Q.Y.; Zhang, X.; Xing, W.L.; Wu, Q.; Zhou, Z.J.; Chen, R.J.; Kameda, T.; et al. Characteristics and health risks of particulate polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons at urban and suburban elementary schools in Shanghai, China. Asian J. Atmos. Environ. 2019, 13, 266–275. [Google Scholar] [CrossRef]
- Zhang, L.L.; Morisaki, H.; Wei, Y.J.; Li, Z.G.; Yang, L.; Zhou, Q.Y.; Zhang, X.; Xing, W.L.; Hu, M.; Shima, M.; et al. Characteristics of air pollutants inside and outside a primary school classroom in Beijing and respiratory health impact on children. Environ. Pollut. 2019, 255, 113147. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, H.; Zhang, X.; Xing, W.L.; Wang, Y.; Bai, P.C.; Zhang, L.L.; Hayakawa, K.; Toriba, A.; Tang, N. Exposure to atmospheric particulate matter-bound polycyclic aromatic hydrocarbons and their health effects: A review. Int. J. Environ. Res. Public Health 2021, 18, 2177. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, L.; Zhang, X.; Xing, W.L.; Wang, Y.; Bai, P.C.; Zhang, L.L.; Li, Y.; Hayakawa, K.; Toriba, A.; et al. Characteristics and health risks of polycyclic aromatic hydrocarbons and nitro-PAHs in Xinxiang, China in 2015 and 2017. Int. J. Environ. Res. Public Health 2021, 18, 3017. [Google Scholar] [CrossRef]
- Xu, Y.; Cui, G.M. Influence of spectral characteristics of the Earth’s surface radiation on the greenhouse effect: Principles and mechanisms. Atmos. Environ. 2021, 244, 117908. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, L.L.; Yang, L.; Zhou, Q.Y.; Xing, W.L.; Toriba, A.; Hayakawa, K.; Wei, Y.J.; Tang, N. Characteristics of polycyclic aromatic hydrocarbons (PAHs) and common air pollutants at Wajima, a remote background site in Japan. Int. J. Environ. Res. Public Health 2020, 17, 957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, W.L.; Zhang, L.L.; Yang, L.; Zhou, Q.Y.; Zhang, X.; Toriba, A.; Hayakawa, K.; Tang, N. Characteristics of PM2.5-bound polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons at a roadside air pollution monitoring station in Kanazawa, Japan. Int. J. Environ. Res. Public Health 2020, 17, 805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilgili, F.; Koçak, E.; Bulut, Ü.; Kuşkaya, S. Can biomass energy be an efficient policy tool for sustainable development. Renew. Sustain. Energy Rev. 2017, 71, 830–845. [Google Scholar] [CrossRef]
- World Energy Outlook 2019. Available online: https://www.iea.org/reports/world-energy-outlook-2019 (accessed on 22 January 2022).
- Li, M.Q. Peak oil, the rise of China and India, and the global energy crisis. J. Contemp. Asia 2007, 37, 449–471. [Google Scholar] [CrossRef]
- Bang, G. Energy security and climate change concerns: Triggers for energy policy change in the United States? Energy Policy 2010, 38, 1645–1653. [Google Scholar] [CrossRef]
- Saboori, B.; Sulaiman, J. Environmental degradation, economic growth and energy consumption: Evidence of the environmental Kuznets curve in Malaysia. Energy Policy 2013, 60, 892–905. [Google Scholar] [CrossRef]
- Vasylieva, T.; Lyulyov, O.; Bilan, Y.; Streimikiene, D. Sustainable Economic Development and Greenhouse Gas Emissions: The Dynamic Impact of Renewable Energy Consumption, GDP, and Corruption. Energies 2019, 12, 3289. [Google Scholar] [CrossRef] [Green Version]
- Górecki, J.; Płoszaj, E. Cost risk of construction of small hydroelectric power plants. MATEC Web Conf. 2019, 262, 07004. [Google Scholar] [CrossRef]
- Prăvălie, R.; Bandoc, G. Nuclear energy: Between global electricity demand, worldwide decarbonisation imperativeness, and planetary environmental implications. J. Environ. Manag. 2018, 209, 81–92. [Google Scholar] [CrossRef]
- Irfan, M.; Zhao, Z.Y.; Panjwani, M.; Mangi, F.; Li, H.; Jan, A.; Ahmad, M.; Rehman, A. Assessing the energy dynamics of Pakistan: Prospects of biomass energy. Energy Rep. 2020, 6, 80–93. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, N.; Baredar, P.; Shukla, A. A review on biomass energy resources, potential, conversion and policy in India. Renew. Sustain. Energy Rev. 2015, 45, 530–539. [Google Scholar] [CrossRef]
- The Energy Progress Report 2020. Available online: https://trackingsdg7.esmap.org/data/files/download-documents/03-sdg7-chapter2-accesstocleanfuelsandtech4cooking.pdf (accessed on 23 January 2022).
- Bhattacharya, S. Biomass energy in Asia: A review of status, technologies and policies in Asia. Energy Sustain. Dev. 2002, 6, 5–10. [Google Scholar] [CrossRef]
- Hansen, T.; Hansen, U. How many firms benefit from a window of opportunity? Knowledge spillovers, industry characteristics, and catching up in the Chinese biomass power plant industry. Ind. Corp. Chang. 2020, 29, 1211–1232. [Google Scholar] [CrossRef]
- Sarigiannis, D.; Karakitsios, S.; Zikopoulos, D.; Nikolaki, S.; Kermenidou, M. Lung cancer risk from PAHs emitted from biomass combustion. Environ. Res. 2015, 137, 147–156. [Google Scholar] [CrossRef]
- Clark, M.; Peel, J.; Burch, J.; Nelson, T.; Robinson, M.; Conway, S.; Bachand, A.; Reynolds, S. Impact of improved cookstoves on indoor air pollution and adverse health effects among Honduran women. Int. J. Environ. Health Res. 2009, 19, 357–368. [Google Scholar] [CrossRef]
- Lal, K.; Mani, U.; Pandey, R.; Singh, N.; Singh, A.; Patel, D.; Singh, M.; Murthy, R. Multiple approaches to evaluate the toxicity of the biomass fuel cow dung (Kanda) smoke. Ecotoxicol. Environ. Saf. 2011, 74, 2126–2132. [Google Scholar] [CrossRef]
- Zhang, L.L.; Yang, L.; Bi, J.R.; Liu, Y.Z.; Toriba, A.; Hayakawa, K.; Nagao, S.; Tang, N. Characteristics and unique sources of polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in PM2.5 at a highland background site in northwestern China. Environ. Pollut. 2021, 274, 116527. [Google Scholar] [CrossRef]
- Vicente, E.; Alves, C. An overview of particulate emissions from residential biomass combustion. Atmos. Res. 2018, 199, 159–185. [Google Scholar] [CrossRef]
- Stich, J.; Ramachandran, S.; Hamacher, T.; Stimming, U. Techno-economic estimation of the power generation potential from biomass residues in Southeast Asia. Energy 2017, 135, 930–942. [Google Scholar] [CrossRef]
- Lemieux, P.; Lutes, C.; Santoianni, D. Emissions of organic air toxics from open burning: A comprehensive review. Prog. Energy Combust. Sci. 2004, 30, 1–32. [Google Scholar] [CrossRef]
- Yang, L.; Suzuki, G.; Zhang, L.L.; Zhou, Q.Y.; Zhang, X.; Xing, W.L.; Shima, M.; Yoda, Y.; Nakatsubo, R.; Hiraki, T.; et al. The characteristics of polycyclic aromatic hydrocarbons in different emission source areas in Shenyang, China. Int. J. Environ. Res. Public Health 2019, 16, 2817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Zhou, Q.Y.; Zhang, H.; Zhang, X.; Xing, W.L.; Wang, Y.; Bai, P.C.; Yamauchi, M.; Chohji, T.; Zhang, L.L.; et al. Atmospheric Behaviour of Polycyclic and Nitro-Polycyclic Aromatic Hydrocarbons and Water-Soluble Inorganic Ions in Winter in Kirishima, a Typical Japanese Commercial City. Int. J. Environ. Res. Public Health 2021, 18, 688. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.Z.; Huang, Y.; Wang, R.; Zhu, D.; Li, W.; Shen, G.F.; Wang, B.; Zhang, Y.Y.; Cheng, Y.C.; Lu, Y.; et al. Global Atmospheric Emissions of Polycyclic Aromatic Hydrocarbons from 1960 to 2008 and Future Predictions. Environ. Sci. Technol. 2013, 47, 6415–6424. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.X.; Tao, S. Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos. Environ. 2009, 43, 812–819. [Google Scholar] [CrossRef]
- Chen, L.; Moosmüller, H.; Arnott, W.; Chow, J.; Watson, J.; Susott, R.; Babbitt, R.; Wold, C.; Lincoln, E.; Hao, W.M. Emissions from Laboratory Combustion of Wildland Fuels: Emission Factors and Source Profiles. Environ. Sci. Technol. 2007, 41, 4317–4325. [Google Scholar] [CrossRef]
- World Meteorological Organization. 2019. Available online: https://public.wmo.int/en/media/news/july-matched-and-maybe-broke-record-hottest-month-analysis-began (accessed on 21 January 2022).
- Touma, D.; Stevenson, S.; Lehner, F.; Coats, S. Human-driven greenhouse gas and aerosol emissions cause distinct regional impacts on extreme fire weather. Nat. Commun. 2021, 12, 212. [Google Scholar] [CrossRef]
- Kim Oanh, N.; Albina, D.; Ping, L.; Wang, X.K. Emission of particulate matter and polycyclic aromatic hydrocarbons from select cookstove–fuel systems in Asia. Biomass Bioenergy 2005, 28, 579–590. [Google Scholar] [CrossRef]
- Yang, H.H.; Tsai, C.H.; Chao, M.R.; Su, Y.L.; Chien, S.M. Source identification and size distribution of atmospheric polycyclic aromatic hydrocarbons during rice straw burning period. Atmos. Environ. 2006, 40, 1266–1274. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, L.L.; Chen, L.J.; Han, C.; Akutagawa, T.; Endo, O.; Yamauchi, M.; Neroda, A.; Toriba, A.; Tang, N. Polycyclic aromatic hydrocarbons and nitro-polycyclic aromatic hydrocarbons in five East Asian cities: Seasonal characteristics, health risks, and yearly variations. Environ. Pollut. 2021, 287, 117360. [Google Scholar] [CrossRef]
- Křůmal, K.; Mikuška, P.; Horák, J.; Hopan, F.; Krpec, K. Comparison of emissions of gaseous and particulate pollutants from the combustion of biomass and coal in modern and old-type boilers used for residential heating in the Czech Republic, Central Europe. Chemosphere 2019, 229, 51–59. [Google Scholar] [CrossRef]
- Yang, X.Y.; Liu, S.J.; Xu, Y.S.; Liu, Y.; Chen, L.J.; Tang, N.; Hayakawa, K. Emission factors of polycyclic and nitro-polycyclic aromatic hydrocarbons from residential combustion of coal and crop residue pellets. Environ. Pollut. 2017, 231, 1265–1273. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.; Hollingsworth, J.; Chartier, R.; Cooper, E.; Foster, W.; Gomes, G.; Kussin, P.; MacInnis, J.; Padhi, B.; Panigrahi, P.; et al. Biogas Stoves Reduce Firewood Use, Household Air Pollution, and Hospital Visits in Odisha, India. Environ. Sci. Technol. 2016, 51, 560–569. [Google Scholar] [CrossRef] [PubMed]
- Fleming, L.; Lin, P.; Roberts, J.; Selimovic, V.; Yokelson, R.; Laskin, J.; Laskin, A.; Nizkorodov, S. Molecular composition and photochemical lifetimes of brown carbon chromophores in biomass burning organic aerosol. Atmos. Chem. Phys. 2020, 20, 1105–1129. [Google Scholar] [CrossRef] [Green Version]
- Nolte, C.; Schauer, J.; Cass, G.; Simoneit, B. Highly Polar Organic Compounds Present in Wood Smoke and in the Ambient Atmosphere. Environ. Sci. Technol. 2001, 35, 1912–1919. [Google Scholar] [CrossRef] [PubMed]
- Orakij, W.; Chetiyanukornkul, T.; Kasahara, C.; Boongla, Y.; Chuesaard, T.; Furuuchi, M.; Hata, M.; Tang, N.; Hayakawa, K.; Toriba, A. Polycyclic aromatic hydrocarbons and their nitro derivatives from indoor biomass-fueled cooking in two rural areas of Thailand: A case study. Air Qual. Atmos. Health 2017, 10, 747–761. [Google Scholar] [CrossRef]
- Chiu, J.C.; Shen, Y.H.; Li, H.W.; Chang, S.S.; Wang, L.C.; Chang-Chien, G.P. Effect of biomass open burning on particulate matter and polycyclic aromatic hydrocarbon concentration levels and PAH dry deposition in ambient air. J. Environ. Sci. Health Part A 2011, 46, 188–197. [Google Scholar] [CrossRef] [PubMed]
- Gerde, P.; Medinsky, M.; Bond, J. Particle-associated polycyclic aromatic hydrocarbons—A reappraisal of their possible role in pulmonary carcinogenesis. Toxicol. Appl. Pharmacol. 1991, 108, 1–13. [Google Scholar] [CrossRef]
- Ekici, A.; Ekici, M.; Kurtipek, E.; Akin, A.; Arslan, M.; Kara, T.; Apaydin, Z.; Demir, S. Obstructive airway diseases in women exposed to biomass smoke. Environ. Res. 2005, 99, 93–98. [Google Scholar] [CrossRef]
- Puttaswamy, N.; Saidam, S.; Sivasamy, S.; Rajendran, G.; Balakrishnan, K.; Smith, S. Personal exposures to polycyclic aromatic hydrocarbons and biological monitoring among rural women cooking with different fuels in India. Environ. Epidemiol. 2019, 3, 318–319. [Google Scholar] [CrossRef]
- Pham, C.; Boongla, Y.; Nghiem, T.; Le, H.; Tang, N.; Toriba, A.; Hayakawa, K. Emission Characteristics of Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons from Open Burning of Rice Straw in the North of Vietnam. Int. J. Environ. Res. Public Health 2019, 16, 2343. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Shen, Z.X.; Sun, J.; Zhang, L.M.; Zhang, B.; Zou, H.J.; Zhang, T.; Ho, S.H.; Chang, X.J.; Xu, H.M.; et al. Parent, alkylated, oxygenated and nitrated polycyclic aromatic hydrocarbons in PM2.5 emitted from residential biomass burning and coal combustion: A novel database of 14 heating scenarios. Environ. Pollut. 2021, 268, 115881. [Google Scholar] [CrossRef] [PubMed]
- Emil, V. Fate of Fuel-Bound Nitrogen and Sulfur in Biomass-Fired Industrial Boilers. Ph.D. Thesis, Åbo Akademi University, Turku, Finland, 2014. [Google Scholar]
- Zając, G.; Szyszlak-Bargłowicz, J.; Szczepanik, M. Influence of Biomass Incineration Temperature on the Content of Selected Heavy Metals in the Ash Used for Fertilizing Purposes. Appl. Sci. 2019, 9, 1790. [Google Scholar] [CrossRef] [Green Version]
- Saastamoinen, J.; Richard, J. Drying, Pyrolysis and Combustion of Biomass Particles. In Research in Thermochemical Biomass Conversion, 1st ed.; Bridgwater, A.V., Kuester, J.L., Eds.; Springer: Dordrecht, The Netherlands, 1988; Volume 1, p. 1194. [Google Scholar]
- Chao, C.; Kwong, P.; Wang, J.; Cheung, C.; Kendall, G. Co-firing coal with rice husk and bamboo and the impact on particulate matters and associated polycyclic aromatic hydrocarbon emissions. Bioresour. Technol. 2008, 99, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Dhahak, A.; Bounaceur, R.; Le Dreff-Lorimier, C.; Schmidt, G.; Trouve, G.; Battin-Leclerc, F. Development of a detailed kinetic model for the combustion of biomass. Fuel 2019, 242, 756–774. [Google Scholar] [CrossRef] [Green Version]
- Mastral, A.; Callén, M. A Review on Polycyclic Aromatic Hydrocarbon (PAH) Emissions from Energy Generation. Environ. Sci. Technol. 2000, 34, 3051–3057. [Google Scholar] [CrossRef]
- Demirbas, A. Effect of Temperature on Pyrolysis Products from Biomass. Energy Sources Part A 2007, 29, 329–336. [Google Scholar] [CrossRef]
- Wang, C.Y.; Wang, Y.D.; Herath, H. Polycyclic aromatic hydrocarbons (PAHs) in biochar—Their formation, occurrence and analysis: A review. Org. Geochem. 2017, 114, 1–11. [Google Scholar] [CrossRef]
- Hussar, E.; Richards, S.; Lin, Z.; Dixon, R.; Johnson, K. Human Health Risk Assessment of 16 Priority Polycyclic Aromatic Hydrocarbons in Soils of Chattanooga, Tennessee, USA. Water Air Soil Pollut. 2012, 223, 5535–5548. [Google Scholar] [CrossRef]
- Wang, W.; Ding, X.; Turap, Y.; Tursun, Y.; Abulizi, A.; Wang, X.M.; Shao, L.Y.; Talifu, D.; An, J.Q.; Zhang, X.X.; et al. Distribution, sources, risks, and vitro DNA oxidative damage of PM2.5-bound atmospheric polycyclic aromatic hydrocarbons in Urumqi, NW China. Sci. Total Environ. 2020, 739, 139518. [Google Scholar] [CrossRef]
- Forsey, S.; Thomson, N.; Barker, J. Oxidation kinetics of polycyclic aromatic hydrocarbons by permanganate. Chemosphere 2010, 79, 628–636. [Google Scholar] [CrossRef]
- Dejchanchaiwong, R.; Tekasakul, P.; Tekasakul, S.; Phairuang, W.; Nim, N.; Sresawasd, C.; Thongboon, K.; Thongyen, T.; Suwattiga, P. Impact of transport of fine and ultrafine particles from open biomass burning on air quality during 2019 Bangkok haze episode. J. Environ. Sci. 2020, 97, 149–161. [Google Scholar] [CrossRef] [PubMed]
- Tipayarom, A.; Kim Oanh, N. Influence of rice straw open burning on levels and profiles of semi-volatile organic compounds in ambient air. Chemosphere 2020, 243, 125379. [Google Scholar] [CrossRef] [PubMed]
- Urbanski, S. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US. Atmos. Chem. Phys. 2013, 13, 7241–7262. [Google Scholar] [CrossRef] [Green Version]
- Kim Oanh, N.; Permadi, D.; Hopke, P.; Smith, K.; Dong, N.; Dang, A. Annual emissions of air toxics emitted from crop residue open burning in Southeast Asia over the period of 2010–2015. Atmos. Environ. 2018, 187, 163–173. [Google Scholar] [CrossRef]
- Schuster, J.; Harner, T.; Su, K.; Eng, A.; Wnorowski, A.; Charland, J. Temporal and Spatial Trends of Polycyclic Aromatic Compounds in Air across the Athabasca Oil Sands Region Reflect Inputs from Open Pit Mining and Forest Fires. Environ. Sci. Technol. Lett. 2019, 6, 178–183. [Google Scholar] [CrossRef] [Green Version]
- Wentworth, G.; Aklilu, Y.; Landis, M.; Hsu, Y. Impacts of a large boreal wildfire on ground level atmospheric concentrations of PAHs, VOCs and ozone. Atmos. Environ. 2018, 178, 19–30. [Google Scholar] [CrossRef]
- Wang, X.Y.; Meyer, C.; Reisen, F.; Keywood, M.; Thai, P.; Hawker, D.; Powell, J.; Mueller, J. Emission Factors for Selected Semivolatile Organic Chemicals from Burning of Tropical Biomass Fuels and Estimation of Annual Australian Emissions. Environ. Sci. Technol. 2017, 51, 9644–9652. [Google Scholar] [CrossRef] [Green Version]
- Bhargava, A.; Khanna, R.; Bhargava, S.; Kumar, S. Exposure risk to carcinogenic PAHs in indoor-air during biomass combustion whilst cooking in rural India. Atmos. Environ. 2004, 38, 4761–4767. [Google Scholar] [CrossRef]
- Zhang, J.D.; Liu, W.J.; Xu, Y.S.; Cai, C.Y.; Liu, Y.; Tao, S.; Liu, W.X. Distribution characteristics of and personal exposure with polycyclic aromatic hydrocarbons and particulate matter in indoor and outdoor air of rural households in Northern China. Environ. Pollut. 2019, 255, 113176. [Google Scholar] [CrossRef]
- Wang, H.L.; Zhuang, Y.H.; Hao, Z.P.; Cao, M.Q.; Zhong, J.X.; Wang, X.K.; Nguyen, T. Polycyclic aromatic hydrocarbons from rural household biomass burning in a typical Chinese village. Sci. China Ser. D Earth Sci. 2008, 51, 1013–1020. [Google Scholar] [CrossRef]
- Ding, J.N.; Zhong, J.J.; Yang, Y.F.; Li, B.G.; Shen, G.F.; Su, Y.H.; Wang, C.; Li, W.; Shen, H.Z.; Wang, B.; et al. Occurrence and exposure to polycyclic aromatic hydrocarbons and their derivatives in a rural Chinese home through biomass fuelled cooking. Environ. Pollut. 2012, 169, 160–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrino, C.; Tofful, L.; Torre, S.; Sargolini, T.; Canepari, S. Biomass burning contribution to PM10 concentration in Rome (Italy): Seasonal, daily and two-hourly variations. Chemosphere 2019, 222, 839–848. [Google Scholar] [CrossRef] [PubMed]
- Soleimanian, E.; Mousavi, A.; Taghvaee, S.; Sowlat, M.; Hasheminassab, S.; Polidori, A.; Sioutas, C. Spatial trends and sources of PM2.5 organic carbon volatility fractions (OCx) across the Los Angeles Basin. Atmos. Environ. 2019, 209, 201–211. [Google Scholar] [CrossRef]
- Jeong, C.; Evans, G.; Dann, T.; Graham, M.; Herod, D.; Dabek-Zlotorzynska, E.; Mathieu, D.; Ding, L.Y.; Wang, D. Influence of biomass burning on wintertime fine particulate matter: Source contribution at a valley site in rural British Columbia. Atmos. Environ. 2008, 42, 3684–3699. [Google Scholar] [CrossRef]
- Pehnec, G.; Jakovljević, I. Carcinogenic Potency of Airborne Polycyclic Aromatic Hydrocarbons in Relation to the Particle Fraction Size. Int. J. Environ. Res. Public Health 2018, 15, 2485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuskowska, K.; Rogula-Kozłowska, W. Seasonal variation in health exposure to PM-bound Polycyclic Aromatic Hydrocarbons in selected sport facility. MATEC Web Conf. 2018, 247, 00047. [Google Scholar] [CrossRef] [Green Version]
- Godec, R.; Jakovljević, I.; Šega, K.; Čačković, M.; Bešlić, I.; Davila, S.; Pehnec, G. Carbon species in PM10 particle fraction at different monitoring sites. Environ. Pollut. 2016, 216, 700–710. [Google Scholar] [CrossRef]
- Finardi, S.; Radice, P.; Cecinato, A.; Gariazzo, C.; Gherardi, M.; Romagnoli, P. Seasonal variation of PAHs concentration and source attribution through diagnostic ratios analysis. Urban Clim. 2017, 22, 19–34. [Google Scholar] [CrossRef]
- Schnelle-Kreis, J.; Sklorz, M.; Orasche, J.; Stölzel, M.; Peters, A.; Zimmermann, R. Semi Volatile Organic Compounds in Ambient PM2.5 Seasonal Trends and Daily Resolved Source Contributions. Environ. Sci. Technol. 2007, 41, 3821–3828. [Google Scholar] [CrossRef]
- Han, Y.; Chen, Y.J.; Feng, Y.L.; Song, W.H.; Cao, F.; Zhang, Y.L.; Li, Q.; Yang, X.; Chen, J.M. Different formation mechanisms of PAH during wood and coal combustion under different temperatures. Atmos. Environ. 2020, 222, 117084. [Google Scholar] [CrossRef]
- Li, Z.Y.; Wang, Y.T.; Li, Z.X.; Guo, S.T.; Hu, Y. Levels and Sources of PM2.5-associated PAHs during and after the Wheat Harvest in a Central Rural Area of the Beijing-Tianjin-Hebei (BTH) Region. Aerosol Air Qual. Res. 2020, 20, 1070–1082. [Google Scholar] [CrossRef] [Green Version]
- Parvez, A.; Wu, T. Characteristics and interactions between coal and carbonaceous wastes during co-combustion. J. Energy Inst. 2017, 90, 12–20. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar Nandi, B. Combustion characteristics of high ash Indian coal, wheat straw, wheat husk and their blends. Mater. Sci. Energy Technol. 2021, 4, 274–281. [Google Scholar] [CrossRef]
- Li, L.N.; Ren, Q.Q.; Wang, X.; Li, S.Y.; Lu, Q.G. TG–MS analysis of thermal behavior and gaseous emissions during co-combustion of straw with municipal sewage sludge. J. Therm. Anal. Calorim. 2014, 118, 449–460. [Google Scholar] [CrossRef]
- Shen, G.F.; Wang, W.; Yang, Y.F.; Ding, J.N.; Xue, M.; Min, Y.J.; Zhu, C.; Shen, H.Z.; Li, W.; Wang, B.; et al. Emissions of PAHs from Indoor Crop Residue Burning in a Typical Rural Stove: Emission Factors, Size Distributions, and Gas−Particle Partitioning. Environ. Sci. Technol. 2011, 45, 1206–1212. [Google Scholar] [CrossRef] [Green Version]
- Verma, P.; Sah, D.; Dubey, J.; Kumari, K.; Lakhani, A. Mutagenic and Cancer Risk Estimation of Particulate Bound Polycyclic Aromatic Hydrocarbons from the Emission of Different Biomass Fuels. Chem. Res. Toxicol. 2021, 34, 743–753. [Google Scholar] [CrossRef]
- Wang, X.L.; Yang, Z.L.; Liu, X.; Huang, G.Q.; Xiao, W.H.; Han, L.J. The composition characteristics of different crop straw types and their multivariate analysis and comparison. Waste Manag. 2020, 110, 87–97. [Google Scholar] [CrossRef]
- Shen, G.F.; Tao, S.; Chen, Y.C.; Zhang, Y.Y.; Wei, S.Y.; Xue, M.; Wang, B.; Wang, R.; Lu, Y.; Li, W.; et al. Emission Characteristics for Polycyclic Aromatic Hydrocarbons from Solid Fuels Burned in Domestic Stoves in Rural China. Environ. Sci. Technol. 2013, 47, 14485–14494. [Google Scholar] [CrossRef]
- Hosseini, S.; Urbanski, S.; Dixit, P.; Qi, L.; Burling, I.; Yokelson, R.; Johnson, T.; Shrivastava, M.; Jung, H.; Weise, D.; et al. Laboratory characterization of PM emissions from combustion of wildland biomass fuels. J. Geophys. Res. Atmos. 2013, 118, 9914–9929. [Google Scholar] [CrossRef]
- Lea-Langton, A.; Spracklen, D.; Arnold, S.; Conibear, L.; Chan, J.; Mitchell, E.; Jones, J.; Williams, A. PAH emissions from an African cookstove. J. Energy Inst. 2019, 92, 587–593. [Google Scholar] [CrossRef]
- Sun, J.; Shen, Z.X.; Zhang, Y.; Zhang, Q.; Lei, Y.L.; Huang, Y.; Niu, X.Y.; Xu, H.M.; Cao, J.J.; Ho, S.; et al. Characterization of PM2.5 source profiles from typical biomass burning of maize straw, wheat straw, wood branch, and their processed products (briquette and charcoal) in China. Atmos. Environ. 2019, 205, 36–45. [Google Scholar] [CrossRef]
- Shen, Z.X.; Cao, J.J.; Liu, S.X.; Zhu, C.S.; Wang, X.; Zhang, T.; Xu, H.M.; Hu, T.F. Chemical Composition of PM10 and PM2.5 Collected at Ground Level and 100 Meters during a Strong Winter-Time Pollution Episode in Xi’an, China. J. Air Waste Manag. Assoc. 2011, 61, 1150–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim Oanh, N.; Bætz Reutergårdh, L.; Dung, N. Emission of Polycyclic Aromatic Hydrocarbons and Particulate Matter from Domestic Combustion of Selected Fuels. Environ. Sci. Technol. 1999, 33, 2703–2709. [Google Scholar] [CrossRef]
- Soleimanian, E.; Taghvaee, S.; Sioutas, C. Characterization of organic compounds and oxidative potential of aqueous PM2.5 suspensions collected via an aerosol-into-liquid collector for use in toxicology studies. Atmos. Environ. 2020, 241, 117839. [Google Scholar] [CrossRef]
- Pehnec, G.; Jakovljević, I.; Šišović, A.; Bešlić, I.; Vađić, V. Influence of ozone and meteorological parameters on levels of polycyclic aromatic hydrocarbons in the air. Atmos. Environ. 2016, 131, 263–268. [Google Scholar] [CrossRef]
- Li, Q.; Qi, J.; Jiang, J.K.; Wu, J.J.; Duan, L.; Wang, S.X.; Hao, J.M. Significant reduction in air pollutant emissions from household cooking stoves by replacing raw solid fuels with their carbonized products. Sci. Total Environ. 2019, 650, 653–660. [Google Scholar] [CrossRef]
- Růžičková, J.; Kucbel, M.; Raclavská, H.; Švédová, B.; Raclavský, K.; Juchelková, D. Comparison of organic compounds in char and soot from the combustion of biomass in boilers of various emission classes. J. Environ. Manag. 2019, 236, 769–783. [Google Scholar] [CrossRef]
- Yang, C.R.; Lin, T.C.; Chang, F.H. Particle size distribution and PAH concentrations of incense smoke in a combustion chamber. Environ. Pollut. 2007, 145, 606–615. [Google Scholar] [CrossRef]
- McGrath, T.; Chan, W.; Hajaligol, M. Low temperature mechanism for the formation of polycyclic aromatic hydrocarbons from the pyrolysis of cellulose. J. Anal. Appl. Pyrolysis 2003, 66, 51–70. [Google Scholar] [CrossRef]
- Meï, C.; Michaud, M.; Cussac, M.; Albrieux, C.; Gros, V.; Maréchal, E.; Block, M.; Jouhet, J.; Rébeillé, F. Levels of polyunsaturated fatty acids correlate with growth rate in plant cell cultures. Sci. Rep. 2015, 5, 15207. [Google Scholar] [CrossRef] [Green Version]
- Ji, J.M.; Liu, Y.L.; Ma, Y.X. Variations of Polycyclic Aromatic Hydrocarbons in Vegetable Oils During Seed Roasting Pre-Treatment. Polycycl. Aromat. Compd. 2020, 1–18. [Google Scholar] [CrossRef]
- Wongmaneepratip, W.; Vangnai, K. Effects of oil types and pH on carcinogenic polycyclic aromatic hydrocarbons (PAHs) in grilled chicken. Food Control 2017, 79, 119–125. [Google Scholar] [CrossRef]
- Hays, M.; Fine, P.; Geron, C.; Kleeman, M.; Gullett, B. Open burning of agricultural biomass: Physical and chemical properties of particle-phase emissions. Atmos. Environ. 2005, 39, 6747–6764. [Google Scholar] [CrossRef]
- Sharma, R.; Wooten, J.; Baliga, V.; Lin, X.; Geoffrey Chan, W.; Hajaligol, M. Characterization of chars from pyrolysis of lignin. Fuel 2004, 83, 1469–1482. [Google Scholar] [CrossRef]
- Schmidt, G.; Trouvé, G.; Leyssens, G.; Schönnenbeck, C.; Genevray, P.; Cazier, F.; Dewaele, D.; Vandenbilcke, C.; Faivre, E.; Denance, Y.; et al. Wood washing: Influence on gaseous and particulate emissions during wood combustion in a domestic pellet stove. Fuel Process. Technol. 2018, 174, 104–117. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.F.; Xue, M.; Wei, S.Y.; Chen, Y.C.; Zhao, Q.Y.; Li, B.; Wu, H.S.; Tao, S. Influence of fuel moisture, charge size, feeding rate and air ventilation conditions on the emissions of PM, OC, EC, parent PAHs, and their derivatives from residential wood combustion. J. Environ. Sci. 2013, 25, 1808–1816. [Google Scholar] [CrossRef]
- Guerrero, F.; Yáñez, K.; Vidal, V.; Cereceda-Balic, F. Effects of wood moisture on emission factors for PM2.5, particle numbers and particulate-phase PAHs from Eucalyptus globulus combustion using a controlled combustion chamber for emissions. Sci. Total Environ. 2019, 648, 737–744. [Google Scholar] [CrossRef]
- Rogge, W.; Hildemann, L.; Mazurek, M.; Cass, G.; Simoneit, B.R. Sources of Fine Organic Aerosol. 9. Pine, Oak, and Synthetic Log Combustion in Residential Fireplaces. Environ. Sci. Technol. 1998, 32, 13–22. [Google Scholar] [CrossRef]
- Simoneit, B. Biomass burning—A review of organic tracers for smoke from incomplete combustion. Appl. Geochem. 2002, 17, 129–162. [Google Scholar] [CrossRef]
- Korenaga, T.; Liu, X.X.; Huang, Z.Y. The influence of moisture content on polycyclic aromatic hydrocarbons emission during rice straw burning. Chemosphere Glob. Chang. Sci. 2001, 3, 117–122. [Google Scholar] [CrossRef]
- Sanchis, E.; Ferrer, M.; Calvet, S.; Coscollà, C.; Yusà, V.; Cambra-López, M. Gaseous and particulate emission profiles during controlled rice straw burning. Atmos. Environ. 2014, 98, 25–31. [Google Scholar] [CrossRef] [Green Version]
- Noblet, C.; Besombes, J.; Lemire, M.; Pin, M.; Jaffrezo, J.; Favez, O.; Plouzeau, R.; Dermigny, A.; Karoski, N.; Elsuve, D.; et al. Emission factors and chemical characterization of particulate emissions from garden green waste burning. Sci. Total Environ. 2021, 798, 149367. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.Y.; Ma, Y.T.; Ma, L.R. Utilization of straw in biomass energy in China. Renew. Sustain. Energy Rev. 2007, 11, 976–987. [Google Scholar] [CrossRef]
- Stelte, W.; Sanadi, A.; Shang, L.; Holm, J.; Ahrenfeldt, J.; Henriksen, U. Recent developments in biomass pelletization—A review. BioResources 2012, 7, 4451–4490. [Google Scholar] [CrossRef]
- Nunes, L.; Matias, J.; Catalão, J. Mixed biomass pellets for thermal energy production: A review of combustion models. Appl. Energy 2014, 127, 135–140. [Google Scholar] [CrossRef]
- Shen, G.F.; Tao, S.; Wei, S.Y.; Zhang, Y.Y.; Wang, R.; Wang, B.; Li, W.; Shen, H.Z.; Huang, Y.; Chen, Y.C.; et al. Reductions in Emissions of Carbonaceous Particulate Matter and Polycyclic Aromatic Hydrocarbons from Combustion of Biomass Pellets in Comparison with Raw Fuel Burning. Environ. Sci. Technol. 2012, 46, 6409–6416. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.F. Quantification of emission reduction potentials of primary air pollutants from residential solid fuel combustion by adopting cleaner fuels in China. J. Environ. Sci. 2015, 37, 1–7. [Google Scholar] [CrossRef]
- Singh, D.; Gadi, R.; Mandal, T.; Saud, T.; Saxena, M.; Sharma, S. Emissions estimates of PAH from biomass fuels used in rural sector of Indo-Gangetic Plains of India. Atmos. Environ. 2013, 68, 120–126. [Google Scholar] [CrossRef]
- Riojas-Rodriguez, H.; Schilmann, A.; Marron-Mares, A.; Masera, O.; Li, Z.; Romanoff, L.; Sjödin, A.; Rojas-Bracho, L.; Needham, L.; Romieu, I. Impact of the Improved Patsari Biomass Stove on Urinary Polycyclic Aromatic Hydrocarbon Biomarkers and Carbon Monoxide Exposures in Rural Mexican Women. Environ. Health Perspect. 2011, 119, 1301–1307. [Google Scholar] [CrossRef] [Green Version]
- Munyeza, C.; Osano, A.; Maghanga, J.; Forbes, P. Polycyclic Aromatic Hydrocarbon Gaseous Emissions from Household Cooking Devices: A Kenyan Case Study. Environ. Toxicol. Chem. 2020, 39, 538–547. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Dou, H.; Chang, B.; Wei, Z.C.; Qiu, W.X.; Liu, S.Z.; Liu, W.X.; Tao, S. Emission of Polycyclic Aromatic Hydrocarbons from Indoor Straw Burning and Emission Inventory Updating in China. Ann. N. Y. Acad. Sci. 2008, 1140, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.S.; Liu, W.X.; Tao, S. Emission of Polycyclic Aromatic Hydrocarbons in China. Environ. Sci. Technol. 2006, 40, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Ozgen, S.; Becagli, S.; Bernardoni, V.; Caserini, S.; Caruso, D.; Corbella, L.; Dell’Acqua, M.; Fermo, P.; Gonzalez, R.; Lonati, G.; et al. Analysis of the chemical composition of ultrafine particles from two domestic solid biomass fired room heaters under simulated real-world use. Atmos. Environ. 2017, 150, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Du, W.; Wang, J.Z.; Zhuo, S.J.; Zhong, Q.R.; Wang, W.; Chen, Y.C.; Wang, Z.L.; Mao, K.; Huang, Y.; Shen, G.F.; et al. Emissions of particulate PAHs from solid fuel combustion in indoor cookstoves. Sci. Total Environ. 2021, 771, 145411. [Google Scholar] [CrossRef]
- Venkataraman, C.; Negi, G.; Brata Sardar, S.; Rastogi, R. Size distributions of polycyclic aromatic hydrocarbons in aerosol emissions from biofuel combustion. J. Aerosol Sci. 2002, 33, 503–518. [Google Scholar] [CrossRef]
- Lu, H.; Zhu, L.Z.; Zhu, N.L. Polycyclic aromatic hydrocarbon emission from straw burning and the influence of combustion parameters. Atmos. Environ. 2009, 43, 978–983. [Google Scholar] [CrossRef]
- Iinuma, Y.; Brüggemann, E.; Gnauk, T.; Müller, K.; Andreae, M.; Helas, G.; Parmar, R.; Herrmann, H. Source characterization of biomass burning particles: The combustion of selected European conifers, African hardwood, savanna grass, and German and Indonesian peat. J. Geophys. Res. Atmos. 2007, 112, D08209. [Google Scholar] [CrossRef]
- Vicente, E.D.; Vicente, A.M.; Evtyugina, M.; Oduber, F.I.; Amato, F.; Querol, X.; Alves, C. Impact of wood combustion on indoor air quality. Sci. Total Environ. 2020, 705, 135769. [Google Scholar] [CrossRef]
- De Gennaro, G.; Dambruoso, P.; Di Gilio, A.; Di Palma, V.; Marzocca, A.; Tutino, M. Discontinuous and Continuous Indoor Air Quality Monitoring in Homes with Fireplaces or Wood Stoves as Heating System. Int. J. Environ. Res. Public Health 2015, 13, 78. [Google Scholar] [CrossRef]
- Wei, S.Y.; Shen, G.F.; Zhang, Y.Y.; Xue, M.; Xie, H.; Lin, P.C.; Chen, Y.C.; Wang, X.L.; Tao, S. Field measurement on the emissions of PM, OC, EC and PAHs from indoor crop straw burning in rural China. Environ. Pollut. 2014, 184, 18–24. [Google Scholar] [CrossRef] [Green Version]
- Shen, G.F.; Chen, Y.C.; Xue, C.Y.; Lin, N.; Huang, Y.; Shen, H.Z.; Wang, Y.L.; Li, T.C.; Zhang, Y.Y.; Su, S.; et al. Pollutant Emissions from Improved Coal- and Wood-Fuelled Cookstoves in Rural Households. Environ. Sci. Technol. 2015, 49, 6590–6598. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, J.; Schmid, J.; Müller, S.; Mauerhofer, A.; Benedikt, F.; Hofbauer, H. The impact of gasification temperature on the process characteristics of sorption enhanced reforming of biomass. Biomass Convers. Biorefinery 2020, 10, 925–936. [Google Scholar] [CrossRef] [Green Version]
- Akhavan, O.; Bijanzad, K.; Mirsepah, A. Synthesis of graphene from natural and industrial carbonaceous wastes. RSC Adv. 2014, 4, 20441–20448. [Google Scholar] [CrossRef]
- Jouyandeh, M.; Tavakoli, O.; Sarkhanpour, R.; Sajadi, S.; Zarrintaj, P.; Rabiee, N.; Akhavan, O.; Lima, E.; Saeb, M. Green products from herbal medicine wastes by subcritical water treatment. J. Hazard. Mater. 2022, 424, 127294. [Google Scholar] [CrossRef] [PubMed]
- Wahyudiono, W.; Machmudah, S.; Goto, M. Utilization of Sub and Supercritical Water Reactions in Resource Recovery of Biomass Wastes. Eng. J. 2013, 17, 1–12. [Google Scholar] [CrossRef]
- Zhang, H.W.; Wang, C.Y.; Zhang, X.M.; Zhang, R.H.; Ding, L. Formation and inhibition of polycyclic aromatic hydrocarbons from the gasification of cyanobacterial biomass in supercritical water. Chemosphere 2020, 253, 126777. [Google Scholar] [CrossRef]
- Jetter, J.; Zhao, Y.; Smith, K.; Khan, B.; Yelverton, T.; DeCarlo, P.; Hays, M. Pollutant Emissions and Energy Efficiency under Controlled Conditions for Household Biomass Cookstoves and Implications for Metrics Useful in Setting International Test Standards. Environ. Sci. Technol. 2012, 46, 10827–10834. [Google Scholar] [CrossRef]
- Riva, G.; Pedretti, E.; Toscano, G.; Duca, D.; Pizzi, A. Determination of polycyclic aromatic hydrocarbons in domestic pellet stove emissions. Biomass Bioenergy 2011, 35, 4261–4267. [Google Scholar] [CrossRef]
- Szramowiat-Sala, K.; Korzeniewska, A.; Sornek, K.; Marczak, M.; Wierońska, F.; Berent, K.; Gołaś, J.; Filipowicz, M. The properties of particulate matter generated during wood combustion in in-use stoves. Fuel 2019, 253, 792–801. [Google Scholar] [CrossRef]
Region | First PAH Emissions 1 | Second PAH Emissions 1 | Third PAH Emissions 1 | |||
---|---|---|---|---|---|---|
Industry | Amount (Gg) | Industry | Amount (Gg) | Industry | Amount (Gg) | |
World | IBB 2 | 293 | Motor Vehicle | 64.5 | Wildfire | 56.4 |
China | IBB | 57.7 | Coke burning | 13.8 | Motor Vehicle | 13.4 |
India | IBB | 55.8 | Motor Vehicle | 5.03 | BOB 3 | 2.35 |
Brazil | Wildfire | 17.4 | IBB | 5.13 | Motor Vehicle | 4.35 |
Indonesia | IBB | 15.4 | Motor Vehicle | 2.89 | Wildfire | 0.43 |
Russia | Motor Vehicle | 2.83 | Wildfire | 1.87 | Industry | 1.11 |
Angola | Wildfire | 3.49 | IBB | 0.86 | Motor Vehicle | 0.14 |
The United States | IBB | 4.96 | Motor Vehicle | 1.50 | Wildfire | 1.02 |
Traditional Fuel | Biomass Fuel | Reference | ||
---|---|---|---|---|
Fuel Type | EFs (mg/kg) | Fuel Type | EFs (mg/kg) | |
Anthracite | 2.1 | Mixed wood | 60.6 | [40] |
Mixed coal | 119.1 | Mixed wood | 38.9 | [43] |
Mixed coal | 15.5 | Crop residue pellets | 43.9 | [44] |
Anthracite and bituminous | 123.1 | Crop residue and wood | 191.1 | [54] |
PAHs Number | Cities | Non-Burning Period (ng/m3) | Open Burning Period (ng/m3) | Reference |
---|---|---|---|---|
16 | Taichung, China | 11.0 ± 1.51 | 30.8 ± 3.93 | [41] |
9 | Hanoi, Vietnam | 14.4 ± 3.69 | 4488 ± 3850 | [53] |
9 | Hanoi, Vietnam | 2.60 ± 1.31 | 3064 ± 2370 | [53] |
16 | Bangkok, Thailand | 32.4 ± 17.1 | 108 ± 25.7 | [66] |
14 | Klong Luang, Thailand | 43.4 ± 20.0 | 414 ± 24.0 | [67] |
PAHs Number | Cities | Non-Cooking (ng/m3) | Cooking (ng/m3) | Reference |
---|---|---|---|---|
7 | Lucknow, India | 1120 ±190 | 9110 ± 3570 | [73] |
7 | Lucknow, India | 3530 ± 890 | 15600 ± 2950 | [73] |
15 | Laiyang, China | 513 ± 225 | 696 ± 230 | [74] |
16 | Nanyang, China | 210 ± 23.4 | 443 ± 59.7 | [75] |
15 | Zhuanghu, China | 1530 ± 244 | 2660 ± 1120 | [76] |
PAHs Number | Cities | Non-Heating Period (ng/m3) | Heating Period (ng/m3) | Reference |
---|---|---|---|---|
10 | Zagreb, Croatian | 0.54 | 41.2 | [80] |
15 | Warsaw, Poland (Outdoor) | 36.0 | 106 | [81] |
15 | Warsaw, Poland (Indoor) | 131 | 461 | [81] |
10 | Delnice, Croatia (Rural) | 0.80 | 48.5 | [82] |
10 | Delnice, Croatia (Urban) | 0.40 | 21.7 | [82] |
9 | Rome, Italy | 1.28 | 10.6 | [83] |
9 | Augsburg, Germany | 0.44 | 13.0 | [84] |
City | 4-Ring PAHs (ng/m3) | 5-Ring PAHs (ng/m3) | 6-Ring PAHs (ng/m3) | Total PAHs (ng/m3) | Reference |
---|---|---|---|---|---|
Tainan, China | 6.64 | 0.56 | 1.12 | 2.83 | [49] |
Hanoi, Vietnam | 401 | 219 | 86.0 | 311 | [53] |
Baoding, China | 3.89 | 3.58 | 3.27 | 3.59 | [86] |
Biomass | Ignition (°C) | Peak (°C) | Burnout (°C) | Reference |
---|---|---|---|---|
Oat straw | 260 | 300 | 512 | [87] |
Wheat straw | 227 | 281 | 436 | [88] |
Wheat husk | 242 | 299 | 490 | [88] |
cotton stalks | 261 | 294 | 480 | [89] |
3-Ring | 4-Ring | 5-Ring | 6-Ring | Total PAHs (mg/kg) | Stove | Reference | |
---|---|---|---|---|---|---|---|
Rice Straw | 49% | 38% | 8% | 4% | 42.5 | Brick cooking stove | [90] |
Wheat Straw | 63% | 28% | 6% | 3% | 65.2 | ||
Corn Straw | 60% | 30% | 7% | 3% | 19.0 | ||
Dung Cakes | 30% | 44% | 16% | 11% | 53.8 | Open burning | [91] |
Charcoal | 21% | 47% | 19% | 13% | 27.3 | ||
Crop residue | 66% | 26% | 6% | 3% | 30.0 | Brick cooking stove | [93] |
Fuel wood | 59% | 33% | 5% | 2% | 6.76 | ||
Brushwood | 38% | 42% | 12% | 7% | 47.1 | ||
Ceanothus | 37% | 34% | 23% | 6% | 6.47 | Laboratory burning stove | [94] |
California sage | 5% | 47% | 39% | 8% | 11.7 | ||
Coastal sage | 6% | 49% | 30% | 15% | 11.3 |
Biomass | Volatile Matter (wt%) | PAHs (μg/g) | Reference |
---|---|---|---|
Maize straw (Raw) | 76.00 | 7.70 | [96] |
Maize straw (Carbonization) | 25.01 | 1.10 | |
wheat straw (Raw) | 67.36 | 18.8 | |
wheat straw (Carbonization) | 16.95 | 1.60 | |
Wood branch (Raw) | 82.96 | 8.70 | |
Wood branch (Carbonization) | 44.94 | 2.90 | |
Wheat straw (Raw) | 73.27 | 213 | [101] |
Wheat straw (Carbonization) | 29.99 | 13.1 | |
Rice Straw (Raw) | 71.53 | 189 | |
Rice Straw (Carbonization) | 25.67 | 18.2 | |
Maize Straw (Raw) | 74.22 | 203 | |
Maize Straw (Carbonization) | 28.26 | 4.03 | |
Sawdust (Raw) | 77.47 | 241 | |
Sawdust (Carbonization) | 38.44 | 4.73 |
Moisture (%) | Total PAHs (mg/kg) | Reference |
---|---|---|
0 | 3.19 × 10−3 | [112] |
25 | 5.57 × 10−3 | |
0 | 33.87 | [115] |
5 | 4.22 | |
10 | 2.42 | |
15 | 1.75 | |
20 | 4.06 | |
25 | 3.43 | |
30 | 5.42 | |
5 | 3.02 | [116] |
10 | 8.14 | |
20 | 17.1 | |
15 | 3.20 | [117] |
25 | 24.3 |
Stove Type | PAHs EFs (mg/kg) | Reference |
---|---|---|
Top-feed pellet stove | 0.04 | [128] |
Wood stove | 0.96 | |
Gasifier wood stove | 31.2 | [129] |
Guizhou brick stove | 132 | |
Sichuan brick stove | 262 | |
Metal stove | 5.50 | [130] |
Grihalaxmi stove | 3.80 | |
Traditional stove | 3.10 |
PAHs | R300/200 1,2 | R400/200 2 | R500/200 2 | R600/200 2 | R700/200 2 |
---|---|---|---|---|---|
Rice | |||||
3-ring | 1.48 | 1.50 | 1.74 | 2.52 | 2.63 |
4-ring | 1.68 | 2.43 | 3.72 | 6.26 | 7.35 |
5-ring | 1.81 | 1.95 | 2.54 | 3.04 | 3.15 |
6-ring | 2.33 | 1.56 | 2.24 | 2.11 | 3.35 |
Bean | |||||
3-ring | 1.06 | 1.28 | 3.54 | 5.17 | 16.1 |
4-ring | 0.87 | 1.19 | 2.04 | 4.10 | 9.16 |
5-ring | 0.75 | 0.99 | 1.83 | 2.93 | 19.7 |
6-ring | 1.01 | 1.04 | 1.45 | 2.46 | 24.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhang, X.; Wang, Y.; Bai, P.; Hayakawa, K.; Zhang, L.; Tang, N. Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review. Int. J. Environ. Res. Public Health 2022, 19, 3944. https://doi.org/10.3390/ijerph19073944
Zhang H, Zhang X, Wang Y, Bai P, Hayakawa K, Zhang L, Tang N. Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review. International Journal of Environmental Research and Public Health. 2022; 19(7):3944. https://doi.org/10.3390/ijerph19073944
Chicago/Turabian StyleZhang, Hao, Xuan Zhang, Yan Wang, Pengchu Bai, Kazuichi Hayakawa, Lulu Zhang, and Ning Tang. 2022. "Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review" International Journal of Environmental Research and Public Health 19, no. 7: 3944. https://doi.org/10.3390/ijerph19073944
APA StyleZhang, H., Zhang, X., Wang, Y., Bai, P., Hayakawa, K., Zhang, L., & Tang, N. (2022). Characteristics and Influencing Factors of Polycyclic Aromatic Hydrocarbons Emitted from Open Burning and Stove Burning of Biomass: A Brief Review. International Journal of Environmental Research and Public Health, 19(7), 3944. https://doi.org/10.3390/ijerph19073944