Assessment of the Development of Poverty in EU Countries
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methods
- Selection of variables on the complex phenomenon;
- Determination of the impact direction of variables in relation to the complex phenomenon;
- Normalization of the variable values;
- Determine the positive ideal (PIS) and negative ideal (NIS) solutions;
- Calculating the distance of all alternatives to the PIS (A+) and the negative ideal (A−) solution, using the Euclidean distance;
- Determination of the value of a synthetic measure;
- Linear ordering of object and identification of developmental types.
- For stimulant:
- For destimulant:
- Class I: —very high level
- Class II: —high level
- Class III: —medium level
- Class IV: —low levelwhere: —arithmetic mean, Sμ—standard deviation of the value of the synthetic measure.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Anti-Poverty Network. Ubóstwo i Nierówności w UE. Przewodnik EAPN#6, 2014. Available online: https://www.eapn.org.pl/eapn/uploads/2014/12/2014-Poverty-Explainer_PL.pdf (accessed on 11 January 2022).
- Łobacz, M. The Problem and the Meaning of Material Poverty in the Age of Globalization. The Ethical and Pedagogical Aspect. Studia Gilsoniana 2018, 7, 103–108. [Google Scholar] [CrossRef]
- World Bank. World Development Report 2000/2001: Attacking Poverty; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Agenda 2030 na Rzecz Zrównoważonego Rozwoju—Implementacja w Polsce. Available online: http://www.un.org.pl/files/170/Agenda2030PL_pl-5.pdf (accessed on 11 December 2021).
- Kalinowski, S. Ubóstwo Wiejskie. Ewolucja Zjawiska, Jego Przyczyny, Formy i Przestrzenne Zróżnicowanie [Rural poverty. Phenomenon Evolution, Its Causes, Forms and Spatial Differentiation]. In Polska Wieś; Raport o stanie wsi; Wilkin, J., Hałasiewicz, A.J., Eds.; Scholar: Warsaw, Poland, 2020. [Google Scholar]
- Biernat-Jarka, A.; Trębska, P. Poverty in Poland and the European Union and the Forms of Overcome it, in the Context of Sustainable Development and the EU Experience. Scientific Journal Warsaw University of Life Sciences—SGGW. Probl. World Agric. 2018, 18, 38–47. [Google Scholar] [CrossRef]
- Abraham, R.A.; Kumar, K.S.K. Multidimensional poverty and vulnerability. Econ. Polit. Wkly. 2008, 43, 79–87. [Google Scholar]
- ONZ. Ostateczna Wersja Wytycznych w Sprawie Skrajnego Ubóstwa i Praw Człowieka, Przedłożonych Przez Specjalnego Sprawozdawcę ds. Skrajnego Ubóstwa, I. Praw Człowieka, M. Sepulveda Carmona, A/HRC/21/39, ONZ 18 July 2012. Available online: https://www.ohchr.org/Documents/Issues/Poverty/GuidingPrinciples_Polish.pdf (accessed on 11 January 2022).
- Brady, D. Theories of the Causes of Poverty. Annu. Rev. Sociol. 2019, 45, 155–175. [Google Scholar] [CrossRef]
- Bradshaw, J.; Nieuwenhuis, R. Poverty and the family in Europe. In Research Handbook on the Sociology of the Family; Schneider, N.F., Kreyenfeld, M., Eds.; Edward Elgar Publishing: Northampton, MA, USA, 2021. [Google Scholar]
- Durlauf, S.N. Groups, Social Influences and Inequality. In Poverty Traps; Bowles, S., Durlauf, S.N., Hoff, K., Eds.; Princeton University Press: Princeton, NJ, USA, 2011; pp. 141–175. [Google Scholar]
- Arnania-Kepuladze, T.; Sologashvili, D.; Kepuladze, G. Labor market: COVID-19 pandemic and working poverty. FBIM Trans. 2021, 9, 1–10. [Google Scholar] [CrossRef]
- Tomaskovic-Devey, D.A. Structural Model of Poverty Creation and Change: Political Economy, Local Opportunity, and U.S. Poverty, 1959–1979. Res. Soc. Stratif. Mobil. 1991, 10, 289–322. [Google Scholar]
- Bradshaw, T.K. Theories of Poverty and Anti-Poverty Programs in Community Development. Community Dev. 2007, 38, 7–25. [Google Scholar] [CrossRef]
- Kumor, I. Ubóstwo—Ujęcie Teoretyczne. [Poverty - theoretical approach]. Edukacja Humanistyczna 2011, 1, 101–110. [Google Scholar]
- Gebelein, H.; Schiller, B.R. The Economics of Poverty and Discrimination. ILR Rev. 1998, 27, 641. [Google Scholar] [CrossRef]
- Webb, H. Crossroads: How Race, Class, and Gender Affect Views of Poverty. Honor. Proj. 2016, 273. [Google Scholar]
- European Parliament. Available online: https://www.europarl.europa.eu/factsheets/pl (accessed on 11 January 2022).
- Eurostat. Available online: https://ec.europa.eu/eurostat/web/income-and-living-conditions/overview (accessed on 11 December 2021).
- Kroll, C.; Warchold, A.; Pradhan, P. Sustainable Development Goals (SDGs): Are we successful in turning trade-offs into synergies? Palgrave Commun. 2019, 5, 140. [Google Scholar] [CrossRef] [Green Version]
- Pradhan, P.; Costa, L.; Rybski, D.; Lucht, W.; Kropp, J.P. A Systematic Study of Sustainable Development Goal (SDG) Interactions. Earth’s Future 2017, 5, 1169–1179. [Google Scholar] [CrossRef] [Green Version]
- Szymkowiak, M. Pomiar ubóstwa na poziomie powiatów (LAU 1)—Etap II. Jachranka; Centrum Badań i Edukacji Statystycznej GUS: Warszawa, Poland, 2015. [Google Scholar]
- Panek, T. Ubóstwo i Wykluczenie Społeczne. In Statystyka Społeczna; Panek, T., Ed.; Polskie Wydawnictwo Ekonomiczne: Warszawa, Poland, 2014. [Google Scholar]
- Panek, T.; Zwierzchowski, J. Ubóstwo w krajach Unii Europejskich. [Poverty in the EU countries]. Ekonomista 2016, 2, 180–199. [Google Scholar]
- Smeeding, T.M.; Rainwater, L.; Burtless, G. Child Poverty Across States, Nations and Continents. In Proceedings of the International Conference on Child Well-Being, Child Poverty and Child Policy in Modern Nations: What Do We Know? Luxembourg, 15 April 1999. [Google Scholar]
- Piacentini, M. Measuring Income Inequality and Poverty at the Regional Level in OECD Countries. In OECD Statistics Working Papers; OECD: Paris, France, 2014. [Google Scholar] [CrossRef]
- Dudek, H. Zastosowanie beta regresji w modelowaniu wskaźnika pogłębionej deprywacji materialnej w krajach Unii Europejskiej. [The use of beta regression in the modelling of severe material deprivation indicator in the European Union countries]. Wiadomości Statystyczne 2018, 3, 24–39. [Google Scholar] [CrossRef]
- Panek, T.; Zwierzchowski, J. Porównawcza analiza sfery ubóstwa w krajach UE w ujęciu regionalnym. Instytut Statystyki i Demografii SGH: Warszawa, Poland, 2013. [Google Scholar]
- EPSCO. Available online: https://www.consilium.europa.eu/en/council-eu/configurations/epsco/ (accessed on 15 March 2022).
- Michorowski, M.; Pollok, A. Zagrożenie ubóstwem w krajach Unii Europejskiej w latach 2005–2011. Diagnoza i przeciwdziałanie. [Population At-risk-of-poverty in EU Member States in 2005-2011: A Diagnosis and Counteracting Measures]. Zeszyty Naukowe PTE 2012, 13, 69–110. [Google Scholar]
- Thorbecke, E. Multidimensional Poverty: Conceptual and Measurement Issues. In The Many Dimensions of Poverty; Palgrave Macmillan: London, UK, 2013; pp. 3–19. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Multiple Attribute Decision Making: A State of the Art Survey; Lecture Notes in Economics and Mathematical Systems 186; Springer: Berlin/Heidelberg, Germany, 1981; p. 186. [Google Scholar] [CrossRef]
- Łuczak, A.; Kalinowski, S. Assessing the level of the material deprivation of European Union countries. PLoS ONE 2020, 15, e0238376. [Google Scholar] [CrossRef] [PubMed]
- Kurdyś-Kujawska, A.; Sompolska-Rzechuła, A.; Pawłowska-Tyszko, J.; Soliwoda, M. Crop Insurance, Land Productivity and the Environment: A Way forward to a Better Understanding. Agriculture 2021, 11, 1108. [Google Scholar] [CrossRef]
- Dinçer, H.; Yüksel, S.; Martínez, L. Collaboration enhanced hybrid fuzzy decision-making approach to analyze the renewable energy investment projects. Energy Rep. 2021, 8, 377–389. [Google Scholar] [CrossRef]
- Wysocki, F. Metody Taksonomiczne w Rozpoznawaniu Typów Ekonomicznych Rolnictwa i Obszarów Wiejskich; University Publisher–Poznań University of Life Sciences: Poznan, Poland, 2010. [Google Scholar]
- Kukuła, K. Metoda Unitaryzacji Zerowanej. PWN: Warszawa, Poland, 2000. [Google Scholar]
- Vafaei, N.; Ribeiro, R.A.; Camarinha-Matos, L. Data normalisation techniques in decision making: Case study with TOPSIS method. Int. J. Inf. Decis. Sci. 2018, 10, 19. [Google Scholar] [CrossRef]
- Sompolska-Rzechuła, A. Selection of the Optimal Way of Linear Ordering of Objects: Case of Sustainable Development in EU Countries. Stat. Stat. Econ. J. 2021, 101, 24–36. [Google Scholar]
- Cousineau, D.; Chartier, S. Outliers detection and treatment: A review. Int. J. Psychol. Res. 2010, 3, 58–67. [Google Scholar] [CrossRef]
- Aguinis, H.; Gottfredson, R.K.; Joo, H. Best-Practice Recommendations for Defining, Identifying, and Handling Outliers. Organ. Res. Methods 2013, 16, 270–301. [Google Scholar] [CrossRef]
- Hawkins, D. Identification of Outliers; Chapman and Hall: London, UK; New York, NY, USA, 1980. [Google Scholar]
- Trzęsiok, M. Wybrane Metody Identyfikacji Obserwacji Oddalonych; [Selected Methods for Outlier Detection]; Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu: Wrocław, Poland, 2014; Volume 327, pp. 166–176. [Google Scholar]
- Lira, J.; Wagner, W.; Wysocki, F. Mediana w zagadnieniach porządkowania obiektów wielocechowych. In Statystyka Regionalna w Służbie Samorządu Terytorialnego i Biznesu Poznań–Kiekrz 2000; Paradysz, J., Ed.; Poznań Academy of Economics: Poznan, Poland, 2002; pp. 87–99. [Google Scholar]
- Łuczak, A.; Wysocki, F. Zastosowanie Mediany Przestrzennej Webera i Metody TOPSIS w Ujęciu Pozycyjnym do Konstrukcji Syntetycznego Miernika Poziomu Życia. [The application of spatial median of Weber and the method TOPSIS in positional formulation for the construction of synthetic measure of standard of living]. In Klasyfikacja i Analiza Danych—Teoria i Zastosowania; Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu: Wroclaw, Poland, 2013; Volume 20, pp. 63–73, 278. [Google Scholar]
- Spicker, P. Definitions of poverty: Eleven clusters of meaning. In The International Glossary on Poverty; Gordon, D., Spicker, P., Eds.; Zed Books: London, UK, 1998. [Google Scholar]
- Gołębiowska, M.; Kuczyńska-Zonik, A. Gdy Brakuje na Jedzenie—Ubóstwo w Europie Środkowej; Komentarze Instytut Europy Środkowej: Lublin, Poland, 2021; p. 345. [Google Scholar]
- Saraceno, C.; Benassi, D.; Morlicchio, E. Powerty in Italy. Features and Drivers in a European Perspective; Bristol University Press: Bristol, UK, 2020. [Google Scholar]
- Panori, A.; Psychari, Y. The impact of the economic crisis on poverty and welfare in Athens. Reg. Dev. 2018, 48, 23–40. [Google Scholar]
- Miłaszewicz, D.; Łatuszyńska, M.; Nermend, K.; Piwowarski, M. Poverty of the European Union—Temporal and land cross-sectional comparisons. Res. Pap. Wrocław Univ. Econ. 2018, 539, 136–145. [Google Scholar]
- Canale, R.R.; Liotti, G.; Marani, U. Structural public balance adjustment and poverty in Europe. Struct. Chang. Econ. Dyn. 2019, 50, 227–236. [Google Scholar] [CrossRef]
- Hujo, K.; Gaia, E. Social policy and poverty: An introduction1. Int. J. Soc. Welf. 2011, 20, 230–239. [Google Scholar] [CrossRef]
- Hoelscher, P.; Alexander, G.; Scholz, W. Preventing and reducing poverty in times of crisis—The role of non-contributory cash transfers. In Proceedings of the Conference on Social Impacts of the Economic Crisis in Eastern Europe, Almaty, Turkey, 7–8 December 2009; Available online: http://www.ilo.org/public/english/region/eurpro/geneva/what/events/almaty2009/index.htm (accessed on 15 March 2022).
- Karanikolos, M.; Mladovsky, P.; Cylus, J.; Thomson, S.; Basu, S.; Stuckler, D.; Mackenbach, J.P.; McKee, M. Financial crisis, austerity, and health in Europe. Lancet 2013, S0140-6736, 60102–60106. [Google Scholar] [CrossRef]
- Ifanti, A.A.; Argyriou, A.A.; Kalofonou, F.H.; Kalofonos, H. Financial crisis and austerity measures in Greece: Their impact on health promotion policies and public health care. Health Policy 2013, 113, 8–12. [Google Scholar] [CrossRef]
- OECD Divided We Stand: Why Inequality Keeps Rising OECD Publishing 2011. Available online: http://www.oecd.org/els/soc/dividedwestandwhyinequalitykeepsrising.htm (accessed on 15 March 2022).
- Andriopoulou, E.; Tsakloglou, P. The Determinants of Poverty Transitions in Europe and the Role of Duration Dependence; IZA Discussion Paper No. 5692; Institute for the Study of the Labor: Bonn, Germany, 2011. [Google Scholar]
- Andriopoulou, E.; Karakitsios, A.; Tsakloglou, P. Inequality and Poverty in Greece: Changes in Times of Crisis. In Socioeconomic Fragmentation and Exclusion in Greece under the Crisis 2018; Palgrave Macmillan: London, UK, 2018; pp. 23–54. [Google Scholar] [CrossRef]
- Zabarauskaite-Mieziene, R.; Krutulienė, S. The Impact of Social Transfers on Poverty Reduction in EU Countries. Balt. J. Eur. Stud. 2019, 9, 157–175. [Google Scholar] [CrossRef] [Green Version]
- Europe Sustainable Development Report 2021. Transforming the European Union to Achieve the Sustainable Development Goals. Institute for European Environmental Policy. Available online: https://www.sdgindex.org/reports/europe-sustainable-development-report-2021/ (accessed on 11 January 2022).
- Hirschl, R. The Nordic counter narrative: Democracy, human development, and judicial review. Int. J. Const. Law 2011, 9, 449–469. [Google Scholar] [CrossRef] [Green Version]
- OECD. Growth: Building Jobs and Prosperity in Developing Countries. Department for International Development. Great Britain 2008. Available online: https://www.oecd.org/derec/unitedkingdom/40700982.pdf (accessed on 11 January 2022).
- Sabir, H.; Tahir, S. Impact of Different Macroeconomic Variables on Poverty in Pakistan. Interdiscip. J. Contemp. Res. Bus. 2010, 3, 788–799. [Google Scholar]
- Bergstrom, K. The Role of Income Inequality for Poverty Reduction. The World Bank Econ. Rev. 2022, Ihab026. [Google Scholar] [CrossRef]
- Beales, S.; Gelber, G.; Heidegger, P. A Wake-up Call for Change: The Impacts of COVID-19 on SDG Implementation and Reduction of Inequalities in and by the EU. In Time to Reach for the Moon. The EU Needs to Step up Action and Lead the Transformation to Sustainability; Civil Society SDG Monitoring Report; Beales, S., Gelber, G., Gelber, B., Eds.; European Union: Brussels, Belgium, 2020; Available online: https://www.sdgwatcheurope.org/wp-content/uploads/2020/10/Time-to-reach-for-the-moon-web.pdf (accessed on 15 January 2022).
No. | Indicator (%) | Definition of the Indicator |
---|---|---|
1. | People at risk of poverty or social exclusion | The indicator corresponds to the sum of persons who are: at risk of poverty after social transfers, severely materially deprived, or living in households with very low work intensity. Persons are counted only once, even if they are affected by more than one of these phenomena. This is the multidimensional poverty index. The next three indicators are part of the multidimensional poverty index. |
2. | People at risk of income poverty after social transfers | People at risk of poverty are persons with an equivalized disposable income below the risk-of-poverty threshold, which is set at 60% of the national median equivalized disposable income (after social transfers). |
3. | Severely materially deprived people | The indicator measures the share of severely materially deprived persons who have living conditions severely constrained by a lack of resources. They experience at least 4 out of 9 following deprivations items: cannot afford: (1) to pay rent or utility bills, (2) keep home adequately warm, (3) face unexpected expenses, (4) eat meat, fish or a protein equivalent every second day, (5) a week holiday away from home, (6) a car, (7) a washing machine, (8) a color TV, or (9) a telephone. |
4. | People living in households with very low work intensity | The indicator is defined as the share of people aged 0–59 living in households with very low work intensity. These are households where on average, the adults (aged 18–59, excluding students) worked 20% or less of their total work potential during the past year. |
5. | In work at-risk-of-poverty rate | The indicator measures the share of persons who are employed and have an equivalized disposable income below the risk-of-poverty threshold, which is set at 60% of the national median equivalized disposable income (after social transfers). For the purpose of this indicator, an individual is considered as being employed if he/she was employed for more than half of the reference year. The indicator is based on the EU-SILC (statistics on income, social inclusion, and living conditions). |
6. | Population living in a dwelling with a leaking roof, damp walls, floors, or foundation or rot in window frames of floor by poverty status | The indicator measures the share of the population experiencing at least one of the following basic deficits in their housing condition: a leaking roof, damp walls, floors or foundation, or rot in window frames or floor. |
7. | Self-reported unmet need for medical examination and care | The indicator measures the share of the population aged 16 and over reporting unmet needs for medical care due to one of the following reasons: (1) financial reasons, (2) waiting list, and (3) too far to travel. Self-reported unmet needs concern a person’s own assessment of whether he or she needed medical examination or treatment (dental care excluded) but did not have it or did not seek it. The data stem from the EU Statistics on Income and Living Conditions (EU-SILC). |
8. | Population having neither a bath, nor a shower, nor indoor flushing toilet in their household by poverty status | The indicator measures the share of total population having neither a bath, nor a shower, nor an indoor flushing toilet in their household. |
9. | Population unable to keep home adequately warm by poverty status | The indicator measures the share of population who are unable to keep home adequately warm. Data for this indicator are being collected as part of the European Union Statistics on Income and Living Conditions (EU-SILC) to monitor the development of poverty and social inclusion in the EU. |
10. | Overcrowding rate by poverty status | The indicator measures the share of people living in overcrowded conditions in the EU. A person is considered to be living in an overcrowded household if the house does not have at least one room for the entire household as well as a room for a couple, for each single person above 18, for a pair of teenagers (12 to 17 years of age) of the same sex, for each teenager of different sex and for a pair of children (under 12 years of age). |
Year | Mean | Median | Min | Max | St. Dev. | Skewness | Kurtosis | |
---|---|---|---|---|---|---|---|---|
1. | 2010 | 23.83 | 21.70 | 14.40 | 34.90 | 6.40 | 0.45 | −0.96 |
2019 | 21.09 | 20.10 | 12.50 | 31.60 | 5.16 | 0.57 | −0.46 | |
2. | 2010 | 15.99 | 15.50 | 9.00 | 21.60 | 3.53 | 0.05 | −0.91 |
2019 | 16.33 | 15.40 | 10.10 | 23.80 | 3.94 | 0.39 | −1.00 | |
3. | 2010 | 9.40 | 6.50 | 0.50 | 21.50 | 6.72 | 0.80 | −0.59 |
2019 | 5.54 | 4.70 | 1.30 | 11.90 | 3.31 | 0.67 | −0.72 | |
4. | 2010 | 9.24 | 9.00 | 5.40 | 13.10 | 2.22 | 0.23 | −0.73 |
2019 | 7.85 | 7.60 | 4.20 | 11.80 | 2.28 | 0.21 | −0.91 | |
5. | 2010 | 7.69 | 7.20 | 3.70 | 12.80 | 2.76 | 0.55 | −0.76 |
2019 | 7.78 | 7.80 | 2.90 | 13.70 | 2.93 | 0.27 | −0.71 | |
6. | 2010 | 15.76 | 17.10 | 6.50 | 20.50 | 4.67 | −0.73 | −0.64 |
2019 | 12.91 | 12.50 | 4.10 | 19.90 | 4.54 | 0.00 | −0.69 | |
7. | 2010 | 3.14 | 1.90 | 0.10 | 8.30 | 2.76 | 0.88 | −0.55 |
2019 | 1.94 | 1.40 | 0.00 | 4.70 | 1.60 | 0.73 | −0.78 | |
8. | 2010 | 1.77 | 0.40 | 0.00 | 6.60 | 2.56 | 1.28 | −0.14 |
2019 | 0.86 | 0.30 | 0.00 | 2.70 | 1.07 | 1.06 | −0.64 | |
9. | 2010 | 10.03 | 6.80 | 0.50 | 24.10 | 7.98 | 0.73 | −0.88 |
2019 | 6.61 | 5.40 | 1.80 | 14.40 | 4.53 | 0.74 | −0.82 | |
10. | 2010 | 23.16 | 14.60 | 2.00 | 55.70 | 18.69 | 0.41 | −1.53 |
2019 | 17.98 | 13.90 | 2.20 | 44.90 | 13.80 | 0.74 | −0.90 |
Countries | Values of Syntethic Measures | Rank of Countries | Level of Poverty | |||
---|---|---|---|---|---|---|
2010 | 2019 | 2010 | 2019 | 2010 | 2019 | |
Austria | 0.298 | 0.259 | 22 | 25 | medium | low |
Belgium | 0.385 | 0.403 | 14 | 15 | medium | medium |
Bulgaria | 0.724 | 0.696 | 4 | 3 | very high | very high |
Croatia | 0.593 | 0.474 | 6 | 13 | high | high |
Cyprus | 0.471 | 0.475 | 12 | 12 | high | high |
Czechia | 0.206 | 0.136 | 27 | 27 | low | low |
Denmark | 0.256 | 0.339 | 24 | 19 | low | medium |
Estonia | 0.542 | 0.522 | 9 | 7 | high | high |
Finland | 0.235 | 0.333 | 25 | 20 | low | medium |
France | 0.303 | 0.321 | 21 | 21 | medium | medium |
Germany | 0.352 | 0.279 | 17 | 24 | medium | low |
Greece | 0.566 | 0.655 | 8 | 4 | high | very high |
Hungary | 0.569 | 0.492 | 7 | 9 | high | high |
Ireland | 0.371 | 0.377 | 15 | 16 | medium | medium |
Italy | 0.537 | 0.590 | 10 | 6 | high | high |
Latvia | 0.864 | 0.707 | 1 | 1 | very high | very high |
Lithuania | 0.745 | 0.620 | 3 | 5 | very high | very high |
Luxembourg | 0.323 | 0.367 | 19 | 17 | medium | medium |
Malta | 0.334 | 0.256 | 18 | 26 | medium | low |
Netherlands | 0.229 | 0.295 | 26 | 23 | low | medium |
Poland | 0.651 | 0.477 | 5 | 11 | very high | high |
Portugal | 0.533 | 0.511 | 11 | 8 | high | high |
Romania | 0.787 | 0.701 | 2 | 2 | very high | very high |
Slovakia | 0.310 | 0.412 | 20 | 14 | medium | medium |
Slovenia | 0.362 | 0.342 | 16 | 18 | medium | medium |
Spain | 0.466 | 0.479 | 13 | 10 | high | high |
Sweden | 0.256 | 0.307 | 23 | 22 | low | medium |
Max | 0.864 | 0.707 | ||||
Min | 0.206 | 0.136 | ||||
Range | 0.658 | 0.571 | ||||
Average | 0.454 | 0.438 | ||||
Coefficient of variation (%) | 41.192 | 34.872 |
Group | Level of Poverty | Approaches | |||
---|---|---|---|---|---|
2010 | 2019 | ||||
Number of Class | % | Number of Class | % | ||
I | Very high | 5 | 18.5 | 5 | 18.5 |
II | High | 8 | 29.6 | 8 | 29.6 |
III | Medium | 9 | 33.3 | 10 | 37.0 |
IV | Low | 5 | 18.5 | 4 | 14.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sompolska-Rzechuła, A.; Kurdyś-Kujawska, A. Assessment of the Development of Poverty in EU Countries. Int. J. Environ. Res. Public Health 2022, 19, 3950. https://doi.org/10.3390/ijerph19073950
Sompolska-Rzechuła A, Kurdyś-Kujawska A. Assessment of the Development of Poverty in EU Countries. International Journal of Environmental Research and Public Health. 2022; 19(7):3950. https://doi.org/10.3390/ijerph19073950
Chicago/Turabian StyleSompolska-Rzechuła, Agnieszka, and Agnieszka Kurdyś-Kujawska. 2022. "Assessment of the Development of Poverty in EU Countries" International Journal of Environmental Research and Public Health 19, no. 7: 3950. https://doi.org/10.3390/ijerph19073950
APA StyleSompolska-Rzechuła, A., & Kurdyś-Kujawska, A. (2022). Assessment of the Development of Poverty in EU Countries. International Journal of Environmental Research and Public Health, 19(7), 3950. https://doi.org/10.3390/ijerph19073950