Risk Assessment and Potential Analysis of the Agricultural Use of Sewage Sludge in Central Shanxi Province
Abstract
:1. Introduction
2. Materials and Methods
2.1. Studying Area
2.2. Sampling and Chemical Analysis
2.3. Ecological Risk Assessment
2.4. Soil Environment Capacity of Heavy Metal
2.5. Agricultural Use Potential of Sewage Sludge
2.6. Data Analysis
3. Results
3.1. The Heavy Metal Content in Sewage Sludge
Station | Cu | Zn | As | Hg | Pb | Cd | Cr |
---|---|---|---|---|---|---|---|
1 | 261.00 | 63.44 | 14.39 | 3.74 | 57.39 | 0.45 | 186.24 |
2 | 244.87 | 107.16 | 17.61 | 2.88 | 41.13 | 1.06 | 91.55 |
3 | 149.94 | 86.98 | 13.85 | 3.72 | 55.55 | 0.80 | 131.80 |
4 | 160.19 | 121.10 | 15.09 | 1.93 | 56.53 | 0.74 | 54.48 |
5 | 254.39 | 89.51 | 22.51 | 1.72 | 43.57 | 0.33 | 93.66 |
6 | 129.84 | 66.84 | 14.84 | 5.11 | 37.42 | 0.59 | 71.57 |
7 | 180.55 | 81.46 | 15.94 | 4.12 | 51.09 | 0.96 | 665.31 |
8 | 146.79 | 99.29 | 16.92 | 3.08 | 44.64 | 10.57 | 65.23 |
9 | 88.62 | 86.17 | 12.73 | 4.38 | 34.24 | 0.36 | 41.27 |
10 | 256.65 | 105.75 | 8.99 | 2.48 | 42.59 | 0.88 | 48.99 |
11 | 170.03 | 83.43 | 12.13 | 1.50 | 51.77 | 0.76 | 41.71 |
12 | 138.35 | 52.27 | 7.87 | 1.52 | 43.43 | 0.55 | 33.29 |
13 | 106.60 | 855.00 | 23.40 | 0.88 | 26.80 | 17.23 | 121.70 |
Min | 88.62 | 52.27 | 7.87 | 0.88 | 26.80 | 0.33 | 33.29 |
Max | 261.00 | 855.00 | 23.40 | 5.11 | 57.39 | 17.23 | 665.31 |
Mean | 175.99 | 146.03 | 15.10 | 2.85 | 45.09 | 2.71 | 126.68 |
SD | 109.18 | 559.72 | 6.37 | 2.02 | 21.63 | 11.87 | 45.63 |
Cu | Zn | As | Hg | Pb | Cd | Cr | |
---|---|---|---|---|---|---|---|
USEPA [55] | 1500 | 2800 | 41 | - | 300 | 39 | 1200 |
European Union [56] Directive 86/278/EEC | 1000–1750 | 2500–4000 | - | 16–25 | 750–1200 | 20–40 | - |
Canada [57] | 500 | 2000 | 10 | 10 | 200 | 20 | 1000 |
Netherlands [56] | 75 | 300 | 15 | 0.75 | 100 | 1.25 | 75 |
Austria (Salzburg) [56] | application of sewage sludge and its mixtures is prohibited | ||||||
Austria (Tyrol) [56] | application of sewage sludge and products on farmland is prohibited | ||||||
Austria (Vienna) [56] | application of sewage sludge is prohibited | ||||||
GB 18918-2002 [58] | |||||||
pH < 6.5 | 800 | 2000 | 75 | 5 | 300 | 5 | 600 |
pH ≥ 6.5 | 1500 | 3000 | 75 | 15 | 1000 | 20 | 1000 |
Mean of China [51] | 182.5 | 729.6 | 11.5 | 1.4 | 65.3 | 2.1 | 97.5 |
3.2. Assessment of Potential Ecological Risk
Station | RI | |||||||
---|---|---|---|---|---|---|---|---|
Cu | Zn | As | Hg | Pb | Cd | Cr | ||
1 | 29.00 | 0.54 | 11.07 | 427.12 | 8.44 | 33.80 | 6.01 | 515.97 |
2 | 27.21 | 0.91 | 13.55 | 328.60 | 6.05 | 79.37 | 2.95 | 458.63 |
3 | 16.66 | 0.74 | 10.65 | 425.38 | 8.17 | 60.21 | 4.25 | 526.06 |
4 | 17.80 | 1.03 | 11.61 | 220.80 | 8.31 | 55.62 | 1.76 | 316.92 |
5 | 28.27 | 0.76 | 17.31 | 196.54 | 6.41 | 24.94 | 3.02 | 277.25 |
6 | 14.43 | 0.57 | 11.41 | 583.80 | 5.50 | 44.09 | 2.31 | 662.11 |
7 | 20.06 | 0.69 | 12.26 | 471.30 | 7.51 | 71.92 | 21.46 | 605.21 |
8 | 16.31 | 0.84 | 13.02 | 352.19 | 6.57 | 792.52 | 2.10 | 1183.55 |
9 | 9.85 | 0.73 | 9.79 | 500.59 | 5.03 | 27.26 | 1.33 | 554.59 |
10 | 28.52 | 0.90 | 6.92 | 283.18 | 6.26 | 66.13 | 1.58 | 393.48 |
11 | 18.89 | 0.71 | 9.33 | 171.05 | 7.61 | 56.74 | 1.35 | 265.68 |
12 | 15.37 | 0.44 | 6.06 | 173.84 | 6.39 | 41.60 | 1.07 | 244.77 |
13 | 11.84 | 7.25 | 18.00 | 101.03 | 3.94 | 1292.40 | 3.93 | 1438.39 |
Min | 9.85 | 0.44 | 6.06 | 101.03 | 3.94 | 24.94 | 1.07 | 244.77 |
Max | 29.00 | 7.25 | 18.00 | 583.80 | 8.44 | 1292.40 | 21.46 | 1438.39 |
Mean | 19.55 | 1.24 | 11.61 | 325.80 | 6.63 | 203.58 | 4.09 | 572.51 |
SD | 12.13 | 4.74 | 4.90 | 230.58 | 3.18 | 889.97 | 1.47 | 652.25 |
Low risk | 100% | 100% | 100% | 0 | 100% | 23.08% | 100% | 0 |
Moderate risk | 0 | 0 | 0 | 0 | 0 | 61.54% | 0 | 23.08% |
High risk | 0 | 0 | 0 | 7.69% | 0 | 0 | 0 | 46.15% |
Very high risk | 0 | 0 | 0 | 38.46% | 0 | 0 | 0 | 30.77% |
Extremely high risk | 0 | 0 | 0 | 53.85% | 0 | 15.38% | 0 |
3.3. Soil Environment Capacity of Heavy Metals
3.4. Potential of Agricultural Use of Sewage Sludge
Station | Cu | Zn | As | Hg | Pb | Cd | Cr | N |
---|---|---|---|---|---|---|---|---|
1 | 84.02 | 1061.71 | 212.68 | 78.10 | 806.02 | 314.22 | 303.16 | 78.10 |
2 | 89.56 | 628.49 | 181.33 | 101.52 | 1127.93 | 133.81 | 616.68 | 89.56 |
3 | 146.26 | 774.31 | 240.26 | 78.42 | 837.56 | 176.38 | 428.38 | 78.42 |
4 | 136.90 | 556.14 | 229.32 | 151.09 | 825.35 | 190.93 | 1036.37 | 136.90 |
5 | 86.21 | 752.44 | 159.65 | 169.74 | 1074.03 | 425.74 | 602.85 | 86.21 |
6 | 168.90 | 1007.56 | 251.16 | 57.14 | 1254.21 | 240.90 | 788.88 | 57.14 |
7 | 121.46 | 826.77 | 242.16 | 70.78 | 921.13 | 147.67 | 84.86 | 70.78 |
8 | 149.39 | 678.33 | 235.97 | 94.72 | 1057.09 | 13.40 | 865.57 | 13.40 |
9 | 247.46 | 781.62 | 324.09 | 66.64 | 1382.33 | 389.63 | 1367.97 | 66.64 |
10 | 85.45 | 636.91 | 473.77 | 117.80 | 1114.32 | 160.59 | 1152.48 | 85.45 |
11 | 128.98 | 807.27 | 362.24 | 195.03 | 919.34 | 187.16 | 1353.78 | 128.98 |
12 | 158.51 | 1288.44 | 575.01 | 191.90 | 1099.03 | 255.31 | 1696.01 | 158.51 |
13 | 205.72 | 78.77 | 199.15 | 330.20 | 1785.82 | 8.22 | 217.42 | 8.2 |
Min | 84.02 | 78.77 | 159.65 | 57.14 | 806.02 | 8.22 | 84.86 | 8.22 |
Max | 247.46 | 1288.44 | 575.01 | 330.20 | 1785.82 | 425.74 | 1696.01 | 158.51 |
Mean | 139.14 | 759.90 | 283.60 | 131.01 | 1092.63 | 203.38 | 808.80 | 81.41 |
SD | 86.05 | 695.04 | 9.57 | 178.26 | 692.83 | 216.37 | 60.63 | 49.41 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Tang, X.H.; Zhao, L. The development of sludge disposal strategy. Environ. Sci. Manag. 2005, 30, 68–70. [Google Scholar]
- Yu, J.; Tian, N.N.; Wang, K.J.; Ren, Y. Analysis and discussion of sludge disposal and treatment of sewage treatment plants in China. Chin. J. Environ. Eng. 2007, 1, 82–86. [Google Scholar]
- Kendir, E.; Kentel, E.; Sanin, F.D. Evaluation of heavy metals and associated health risks in a metropolitan wastewater treatment plant’s sludge for its land application. Hum. Ecol. Risk Assess. Int. J. 2015, 21, 1631–1643. [Google Scholar] [CrossRef]
- Alvarenga, P.; Mourinha, C.; Farto, M.; Santos, T.; Palma, P.; Sengo, J.; Morais, M.C.; Cunha-Queda, C. Sewage sludge, compost and other representative organic wastes as agricultural soil amendments: Benefifits versus limiting factors. Waste Manag. 2015, 40, 44–52. [Google Scholar] [CrossRef]
- Chen, T.B.; Huang, Q.F.; Gao, D.; Zheng, Y.Q.; Wu, J.F. Heavy metal concentrations and their decreasing trends in sewage sludges of China. Acta Sci. Circumstantiae 2003, 23, 561–569. [Google Scholar]
- Chen, T.B.; Gao, D.; Li, X.B. Effect of sewage sludge compost on available nutrients and water retention ability of planting substrate. Acta Ecol. Sin. 2002, 22, 802–807. [Google Scholar]
- Wu, G.N.; Xie, Z.Y.; Zhang, W.Y. Analysis on potential of the agricultural sewage sludge in cities of China. Guangdong Chem. Ind. 2014, 41, 141–142. [Google Scholar]
- Elmi, A.; Al-Khaldy, A.; AlOlayan, M. Sewage sludge land application: Balancing act between agronomic benefits and environmental concerns. J. Clean. Prod. 2020, 250, 119512. [Google Scholar] [CrossRef]
- Zhou, G.; Gu, Y.; Yuan, H.; Gong, Y.; Wu, Y. Selecting sustainable technologies for disposal of municipal sewage sludge using a multi-criterion decision-making method: A case study from China. Resour. Conserv. Recycl. 2020, 161, 104881. [Google Scholar] [CrossRef]
- Li, Q.; Hua, L.; Xu, X.H.; Wei, D.P.; Ma, Y.B. A review on environmental effects and control criteria of biosolid agricultural application. Chin. J. Eco-Agric. 2011, 19, 468–476. [Google Scholar] [CrossRef]
- Liu, J.Y.; Zhuo, Z.X.; Sun, S.Y.; Ning, X.N.; Zhao, S.Y.; Xie, W.M.; Wang, Y.J.; Zheng, L.; Huang, R.; Li, B. Concentrations of heavy metals in six municipal sludges from Guangzhou and their potential ecological risk assessment for agricultural land use. Pol. J. Environ. Stud. 2015, 24, 165–174. [Google Scholar] [CrossRef]
- Wang, N. The Temporal-Spatial Distribution Characteristics and Pollution Assessment of Mercury in Municipal Sewage Sludge in China. Master’s Thesis, Henan Polytechnic University, Jiaozuo, China, 2018. [Google Scholar]
- Duan, B.L.; Zhang, W.P.; Zheng, H.X.; Wu, C.Y.; Zhang, Q.; Bu, Y.S. Disposal Situation of Sewage Sludge from Municipal Wastewater Treatment Plants (WWTPs) and Assessment of the Ecological Risk of Heavy Metals for Its Land Use in Shanxi, China. Int. J. Environ. Res. Public Health 2017, 14, 823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olawoyin, R.; Oyewole, S.A.; Grayson, R.L. Potential risk effect from elevated levels of soil heavy metals on human health in the Niger delta. Ecotoxicol. Environ. Saf. 2012, 85, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Mazurek, R.; Kowalska, J.; Gąsiorek, M.; Zadrożny, P.; Józefowska, A.; Zaleski, T.; Kepke, W.; Tymczuk, M.; Orlowska, K. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere 2016, 168, 839–850. [Google Scholar] [CrossRef]
- Nicholson, F.A. An inventory of heavy metals inputs to agricultural soils in England and Wales. Sci. Total Environ. 2003, 311, 205–219. [Google Scholar] [CrossRef]
- Mcbride, M.B. Toxic metals in sewage sludge-amended soils: Has promotion of beneficial use discounted the risks. Adv. Environ. Res. 2004, 8, 5–19. [Google Scholar] [CrossRef]
- Sun, Y.B.; Zhou, Q.X.; Xie, X.K.; Liu, R. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J. Hazard. Mater. 2009, 174, 455–462. [Google Scholar] [CrossRef]
- Zhang, L.L.; Li, H.F.; Su, D.C. Characteristics and changes of heavy metals in sewage sludge of China. Res. Environ. Sci. 2013, 26, 313–319. [Google Scholar]
- Tytla, M. Assessment of heavy metal pollution and potential ecological risk in sewage sludge from municipal wastewater treatment plant located in the most industrialized region in Poland—Case study. Int. J. Environ. Res. Public Health 2019, 16, 2430. [Google Scholar] [CrossRef] [Green Version]
- Van Wesenbeeck, S.; Prins, W.; Ronsse, F.; Antal, M.J. Sewage sludge carbonization for biochar applications: Fate of heavy metals. Energy Fuels 2014, 28, 5318–5326. [Google Scholar] [CrossRef]
- Yakamercan, E.; Ari, A.; Aygun, A. Land application of municipal sewage sludge: Human health risk assessment of heavy metals. J. Clean. Prod. 2021, 319, 128568. [Google Scholar] [CrossRef]
- Tang, J.; Tang, H.J.; Slima, W.P.; Wang, H.Y.; Zou, D.B.; Qiu, B.; Qu, J.; Liang, R.; Dong, J.W.; Liao, Y.; et al. Heavy metal pollution level and potential ecological risk assessment of sludge landfill. Environ. Prog. Sustain. Energy 2022, 40, e13795. [Google Scholar] [CrossRef]
- You, M.; Hu, Y.H.; Yan, Y.L.; Yao, J. Speciation characteristics and ecological risk assessment of heavy metals in municipal sludge of Huainan, China. Molecules 2021, 26, 6711. [Google Scholar] [CrossRef] [PubMed]
- Kowalik, R.; Latosinska, J.; Gawdzik, J. Risk analysis of heavy metal accumulation from sewage sludge of selected wastewater treatment plants in Poland. Water 2021, 13, 2070. [Google Scholar] [CrossRef]
- Koupaie, E.H.; Eskicioglu, C. Health risk assessment of heavy metals through the consumption of food crops fertilized by biosolids: A probabilistic—based analysis. J. Hazard. Mater. 2015, 300, 855–865. [Google Scholar] [CrossRef]
- Pan, L.; Ma, J.; Hu, Y.; Su, B.; Fang, G.; Wang, Y.; Wang, Z.S.; Wang, L.; Xiang, B. Assessments of levels, potential ecological risk, and human health risk of heavy metals in the soils from a typical county in Shanxi province, China. Environ. Sci. Pollut. Res. 2016, 23, 19330–19340. [Google Scholar] [CrossRef]
- Yang, J.; Lei, M.; Chen, T.; Gao, D.; Zheng, G.D.; Guo, G.H.; Lee, D.J. Current status and developing trends of the contents of heavy metals in sewage sludges in China. Front. Environ. Sci. Eng. 2014, 8, 719–728. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollution control, a sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Shi, C.W.; Zhao, L.Z.; Guo, X.B.; Gao, S.; Yang, J.P.; Li, J.H. Background values of soil elements in Shanxi and their distribution feature. J. Geol. Min. Res. North China 1994, 9, 188–196. [Google Scholar]
- Zhang, J.; Zhang, Z.S.; Wang, D.Q.; Yang, H.P.; Chen, J.; Xiao, X.; Liu, M.Z.; Song, Y.P. Physicochemical property and potential ecological risk assessment of heavy metals in sludge from sewage plants in Guangxi. Environ. Eng. 2014, 32, 108–112. [Google Scholar]
- Shafie, N.A.; Aris, A.Z.; Zakaria, M.P.; Haris, H.; Lim, W.Y.; Isa, N.M. Application of geoaccumulation index and enrichment factors on the assessment of heavy metal pollution in the sediments. J. Environ. Sci. Health Part A 2013, 48, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Kouidri, M.; Youcef, N.D.; Benabdellah, I.; Ghoubali, R.; Bernoussi, A.; Lagha, A. Enrichment and geoaccumulation of heavy metals and risk assessment of sediments from coast of Ain Temouchent (Algeria). Arab. J. Geosci. 2016, 9, 354. [Google Scholar] [CrossRef]
- Abrahim, G.M.; Parker, R.J. Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ. Monit. Assess. 2008, 136, 227–238. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.C.; Wang, W.Y.; Pan, J.J.; Wang, H.Q.; Yin, Z.Y. Spatial temporal variation and source apportionment of soil heavy metals in peri-urban area—A case study of Zhetang town, Nanjing. Acta Pedol. Sin. 2014, 51, 1066–1077. [Google Scholar]
- Li, K.Q.; Wang, X.L. Calculation methodology of marine environmental capacity for heavy metal: A case study in Jiaozhou Bay, China. Chin. Sci. Bull. 2013, 58, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Ma, C.; Zhao, J.H.; Zhang, H.Z.; Wei, M.B.; Ye, C.M. Estimate of safety land application years of municipal sewage sludge. Environ. Eng. 2014, 6, 102–104. [Google Scholar]
- Davis, H.T.; Aelion, C.M.; McDermott, S.; Lawson, A.B. Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environ. Pollut. 2009, 157, 2378–2385. [Google Scholar] [CrossRef] [Green Version]
- Duan, B.L.; Liu, F.W.; Zhang, W.P.; Zheng, H.X.; Zhang, Q.; Li, X.M.; Bu, Y.S. Evaluation and source apportionment of heavy metals (HMs) in sewage sludge of municipal wastewater treatment plants (WWTPs) in Shanxi, China. Int. J. Environ. Res. Public Health 2015, 12, 15807–15818. [Google Scholar] [CrossRef] [Green Version]
- Shamuyarira, K.K.; Gumbo, J.R. Assessment of Heavy Metals in Municipal Sewage Sludge: A Case Study of Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 2014, 11, 2569–2579. [Google Scholar] [CrossRef] [Green Version]
- Loska, K.; Wiechuła, D.; Korus, I. Metal contamination of farming soils affected by industry. Environ. Int. 2004, 30, 159–165. [Google Scholar] [CrossRef]
- Dartan, G.; Taspinar, F.; Toroz, I. Assessment of heavy metals in agricultural soils and their source apportionment: A Turkish district survey. Environ. Monit. Assess. 2015, 187, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.B.; Zheng, Y.M.; Lei, M.; Huang, Z.C.; Wang, H.T.; Chen, H.; Fan, K.K.; Yu, K.; Wu, X.; Tian, Q.Z. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 2005, 60, 542–551. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.Q.; Pang, X.G.; Wang, Z.H.; Zhang, J.C. Study on the characteristics of heavy metal contents and annual fluxes of atmospheric dry and wet deposition in Jinan city using AFS and ICP-MS. Rock Miner. Anal. 2015, 34, 245–251. [Google Scholar]
- Li, B.B.; Fan, H.H.; Ding, S.X.; Luan, Y.X.; Sun, Y.M. Influence of temperature on characteristics of particulate matter and ecological risk assessment of heavy metals during sewage sludge pyrolysis. Materials 2021, 14, 5838. [Google Scholar] [CrossRef] [PubMed]
- Akagi, H. Methyl mercury pollution in the Amazon, Brazil. Jpn. J. Toxicol. Environ. Health 1995, 41, 107–115. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.B.; Dai, Q.Q.; Qiu, G.L.; Li, G.H.; He, L.; Wang, D.Y. Gold mining related mercury contamination in Tongguan, Shanxi province, PR China. Appl. Geochem. 2006, 21, 1955–1968. [Google Scholar] [CrossRef]
- Wu, J.G.; Zhao, Z.N.; Cai, Y.X. Analysis of chromium pollution for the leather processing industry. Environ. Impact Assess. 2015, 37, 64–77. [Google Scholar]
- Liu, C.H.; Cote, R.P. Controlling chromium slag pollution utilising scavengers: A case of Shandong Province, China. Waste Manag. Res. 2015, 33, 363–369. [Google Scholar] [CrossRef]
- Johansson, C.; Norman, M.; Burman, L. Road traffic emission factors for heavy metals. Atmos. Environ. 2009, 43, 4681–4688. [Google Scholar] [CrossRef]
- Guo, G.H.; Chen, T.B.; Yang, J. Regional distribution characteristics and variation of heavy metals in sewage sludge of China. Acta Sci. Circumstantiae 2014, 34, 2455–2461. [Google Scholar]
- Hu, X.F.; Wu, H.X.; Hu, X.; Fang, S.Q.; Wu, C.J. Impact of Urbanization on Shanghai’s Soil Environmental Quality. Pedosphere 2004, 14, 151–158. [Google Scholar]
- Zheng, G.D.; Chen, T.B.; Gao, D.; Liu, H.T.; Yang, J.; Xu, R.X.; Yang, S.C. Pollution risk of heavy metals to crops after sewage sludge land application. China Waste Wastewater 2012, 28, 98–101. [Google Scholar]
- Gao, D.; Zheng, G.D.; Chen, T.B.; Liu, H.T.; Yang, J.; Yang, S.C.; Gao, W. Pollution risk of heavy metals to soil after sewage sludge land application. China Water Wastewater 2012, 28, 102–105. [Google Scholar]
- USEPA. A Guide to the Biosolids Risk Assessments for the EPA Part 503 Rule; U.S. Environmental Protection Agency Office of Wastewater Management: Washington, DC, USA, 1995. [Google Scholar]
- Hudcova, H.; Vymazal, J.; Rozkosny, M. Present restrictions of sewage sludge application in agriculture within the European Union. Soil Water Res. 2019, 14, 104–120. [Google Scholar] [CrossRef]
- Cao, J.Z. The agricultural value analysis of surplus sludge from municipal wastewater treatment plant. Taiyuan Sci.-Technol. 2003, 3, 14–15. [Google Scholar]
- Beijing Municipal Research Institute of Eco–Environmental Protection. Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918–2002); Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2002. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/shjbh/swrwpfbz/200307/W020061027518964575034.pdf (accessed on 1 February 2022).
- Qin, F.X.; Wei, C.F.; Zhong, S.Q.; Huang, X.F.; Pang, W.P.; Jiang, X. Soil heavy metal (loid)s and risk assessment in vicinity of a coal mining area from southwest Guizhou, China. J. Cent. South Univ. 2016, 23, 2205–2213. [Google Scholar] [CrossRef]
- Ding, Y.C.; Jiao, X.Y.; Nie, D.; Cheng, B.; Zhao, R.F.; Liu, P. Contents and distribution of exchangeable magnesium and their relationship with the chemical properties of main farm soils in Shanxi Province, China. J. Nat. Resour. 2012, 27, 311–321. [Google Scholar]
- Nanjing Institute of Environmental Sciences, MEE; Institute of Soil Science, Chinese Academy of Sciences; Institute of Agricultural Research and Regional Planning, CAAS; Chinese Research Academy of Environmental Science. Soil Environmental Quality–Risk Control Standard for Soil Contamination of Agricultural Land (GB 15618–2018); Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2018. Available online: http://www.mee.gov.cn/ywgz/fgbz/bz/bzwb/trhj/201807/W020190626595212456114.pdf (accessed on 1 February 2022).
- China National Environmental Monitoring Center. Background Values of Soil Elements in China, 1st ed.; China Environmental Science Press: Beijing, China, 1990; pp. 330–378. [Google Scholar]
- Li, C.H.; Sun, J.Y.; Han, K. Analysis and evaluation of occupational hazard control effect in a malleable steel processing company. Chin. Remedies Clin. 2021, 2, 2066–2068. [Google Scholar]
- Yesil, H.; Molaey, R.; Tugtas, A.E. Removal and recovery of heavy metals from sewage sludge via three stage integrated process. Chemosphere 2021, 280, 130650. [Google Scholar] [CrossRef]
- Babel, S.; Dacera, D.D. Heavy metal removal from contaminated sludge for land application: A review. Waste Manag. 2006, 26, 988–1004. [Google Scholar] [CrossRef]
- Chu, S.; Jacobs, D.F.; Sloan, J.L.; Xue, L.; Wu, D.; Zeng, S. Changes in soil properties under Eucalyptus relative to Pinus massoniana and natural broadleaved forests in South China. J. For. Res. 2018, 29, 1299–1306. [Google Scholar] [CrossRef]
- Wu, D.; Chu, S.; Lai, C.; Mo, Q.; Jacobs, D.F.; Chen, X.; Zeng, S. Application rate and plant species affect the ecological safety of sewage sludge as a landscape soil amendment. Urban For. Urban Green. 2017, 27, 138–147. [Google Scholar] [CrossRef]
- Belhaj, D.; Elloumi, N.; Jerbi, B.; Zouari, M.; Abdallah, F.B.; Ayadi, H.; Kallel, M. Effects of sewage sludge fertilizer on heavy metal accumulation and consequent responses of sunflower (Helianthus annuus). Environ. Sci. Pollut. Res. 2016, 23, 20168–20177. [Google Scholar] [CrossRef] [PubMed]
Cu | Zn | As | Hg | Pb | Cd | Cr | |
---|---|---|---|---|---|---|---|
Cu | 1 | ||||||
Zn | −0.333 | 1 | |||||
As | 0.037 | 0.578 * | 1 | ||||
Hg | −0.100 | −0.471 | −0.189 | 1 | |||
Pb | 0.402 | −0.591 * | −0.316 | 0.103 | 1 | ||
Cd | −0.383 | 0.854 ** | 0.558 * | −0.378 | −0.534 | 1 | |
Cr | 0.112 | −0.021 | 0.171 | 0.325 | 0.251 | −0.052 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, B.; Feng, Q. Risk Assessment and Potential Analysis of the Agricultural Use of Sewage Sludge in Central Shanxi Province. Int. J. Environ. Res. Public Health 2022, 19, 4236. https://doi.org/10.3390/ijerph19074236
Duan B, Feng Q. Risk Assessment and Potential Analysis of the Agricultural Use of Sewage Sludge in Central Shanxi Province. International Journal of Environmental Research and Public Health. 2022; 19(7):4236. https://doi.org/10.3390/ijerph19074236
Chicago/Turabian StyleDuan, Baoling, and Qiang Feng. 2022. "Risk Assessment and Potential Analysis of the Agricultural Use of Sewage Sludge in Central Shanxi Province" International Journal of Environmental Research and Public Health 19, no. 7: 4236. https://doi.org/10.3390/ijerph19074236
APA StyleDuan, B., & Feng, Q. (2022). Risk Assessment and Potential Analysis of the Agricultural Use of Sewage Sludge in Central Shanxi Province. International Journal of Environmental Research and Public Health, 19(7), 4236. https://doi.org/10.3390/ijerph19074236