Environmental Sustainability Assessment of the European Union’s Capital Cities
Abstract
:1. Introduction
2. Rankings and Indicators of Environmental Sustainability
3. Materials and Methods
- (a)
- for stimulants, i.e., diagnostic variables, whose increase in value causes an increase in the assessment of a complex phenomenon:
- (b)
- for destimulants, i.e., diagnostic variables, whose increase in value causes a decrease in the evaluation of a complex phenomenon:
- (c)
- for nominants, i.e., diagnostic variables, which have a specific value, most favourable from the point of view of the evaluation of a complex phenomenon, called the nominal value:
- zij—a normalised diagnostic variable i for object j taking a value between [0;1];
- xij—the value of characteristic i in j-th object;
- mini xij—the lowest value of characteristic i among the objects in the set [1, 2,…, j];
- maxi xij—the highest value of characteristic i among the objects in the set [1, 2,…, j];
- c0j—nominal value of the characteristic at j-th object.
- -
- benzo(a)pyrene (BaP);
- -
- nitrogen dioxide (NO2);
- -
- ozone (O3);
- -
- particulate matter (both PM2.5 and PM10).
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Specification | X1 | X2 | X3 | X4 | X5 | X6 | X7 | X8 | X9 | X10 | X11 | X12 | X13 | X14 | X15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Amsterdam | 0.791 | 0.435 | 0.743 | 0.508 | 0.697 | 0.300 | 1.000 | 0.000 | 0.796 | 0.935 | 0.864 | 1.000 | 0.656 | 0.639 | 0.641 |
Athens | 0.985 | 0.174 | 0.297 | 0.144 | 0.201 | 0.998 | 0.068 | 0.124 | 0.056 | 0.000 | 0.000 | 0.441 | 0.037 | 0.000 | 0.256 |
Berlin | 0.816 | 0.180 | 0.119 | 0.368 | 0.677 | 0.097 | 0.122 | 0.616 | 1.000 | 0.920 | 0.488 | 0.379 | 0.717 | 0.511 | 0.465 |
Bratislava | 0.787 | 0.613 | 0.000 | 0.346 | 0.556 | 0.050 | 0.024 | 0.351 | 0.772 | 0.406 | 0.217 | 0.250 | 0.434 | 0.509 | 0.267 |
Brussels | 0.928 | 0.324 | 0.564 | 0.422 | 0.675 | 0.411 | 0.185 | 0.010 | 0.089 | 0.876 | 0.662 | 0.254 | 0.399 | 0.404 | 0.382 |
Budapest | 0.483 | 0.338 | 0.531 | 0.284 | 0.225 | 0.124 | 0.055 | 0.215 | 0.586 | 0.640 | 0.405 | 0.254 | 0.371 | 0.315 | 0.407 |
Copenhagen | 0.885 | 0.710 | 0.677 | 0.535 | 0.611 | 0.250 | 0.004 | 0.176 | 0.924 | 0.970 | 0.490 | 0.873 | 0.651 | 0.682 | 0.732 |
Dublin | 0.955 | 0.550 | 0.997 | 0.672 | 0.927 | 1.000 | 0.097 | 0.030 | 0.320 | 0.914 | 0.841 | 0.305 | 0.931 | 1.000 | 0.634 |
Helsinki | 0.783 | 0.719 | 0.703 | 0.897 | 0.698 | 0.000 | 0.061 | 0.834 | 0.908 | 1.000 | 1.000 | 0.342 | 1.000 | 0.906 | 0.835 |
Lisbon | 0.960 | 0.503 | 0.648 | 0.562 | 0.723 | 0.328 | 0.205 | 0.318 | 0.296 | 0.605 | 0.438 | 0.186 | 0.424 | 0.356 | 0.392 |
Ljubljana | 0.212 | 0.537 | 0.223 | 0.149 | 0.476 | 0.001 | 0.055 | 0.702 | 0.466 | 0.920 | 0.848 | 0.529 | 0.783 | 0.697 | 0.904 |
Luxembourg | 0.890 | 0.393 | 0.488 | 0.608 | 0.759 | 0.026 | 0.170 | 0.489 | 0.341 | 0.946 | 0.942 | 0.276 | 0.876 | 0.830 | 1.000 |
Madrid | 0.937 | 0.153 | 0.207 | 0.599 | 0.737 | 0.612 | 0.027 | 0.283 | 0.218 | 0.610 | 0.353 | 0.279 | 0.101 | 0.264 | 0.352 |
Paris | 0.919 | 0.083 | 0.549 | 0.390 | 0.491 | 0.745 | 0.760 | 0.251 | 0.648 | 0.868 | 0.517 | 0.270 | 0.059 | 0.335 | 0.404 |
Prague | 0.439 | 0.443 | 0.154 | 0.254 | 0.506 | 0.141 | 0.015 | 0.328 | 0.842 | 0.790 | 0.924 | 0.162 | 0.550 | 0.446 | 0.570 |
Riga | 0.738 | 0.577 | 1.000 | 0.450 | 0.351 | 0.023 | 0.015 | 1.000 | 0.422 | 0.889 | 0.360 | 0.171 | 0.685 | 0.743 | 0.767 |
Rome | 0.663 | 0.000 | 0.409 | 0.371 | 0.406 | 0.036 | 0.011 | 0.288 | 0.000 | 0.475 | 0.423 | 0.057 | 0.096 | 0.262 | 0.000 |
Sofia | 0.389 | 0.444 | 0.795 | 0.000 | 0.089 | 0.010 | 0.000 | 0.140 | 0.499 | 0.553 | 0.018 | 0.000 | 0.000 | 0.096 | 0.298 |
Stockholm | 1.000 | 0.664 | 0.484 | 0.917 | 0.540 | 0.754 | 0.071 | 0.953 | 0.785 | 0.979 | 0.465 | 0.478 | 0.836 | 0.831 | 0.732 |
Tallin | 0.903 | 1.000 | 0.714 | 1.000 | 1.000 | 0.157 | 0.044 | 0.438 | 0.692 | 0.892 | 0.626 | 0.147 | 0.823 | 0.695 | 0.826 |
Vienna | 0.777 | 0.650 | 0.069 | 0.416 | 0.706 | 0.083 | 0.194 | 0.271 | 0.954 | 0.963 | 0.613 | 0.320 | 0.944 | 0.790 | 0.918 |
Vilnius | 0.679 | 0.738 | 0.487 | 0.348 | 0.547 | 0.029 | 0.002 | 0.644 | 0.633 | 0.890 | 0.358 | 0.311 | 0.733 | 0.775 | 0.816 |
Warsaw | 0.066 | 0.379 | 0.402 | 0.005 | 0.227 | 0.146 | 0.007 | 0.365 | 0.588 | 0.865 | 0.649 | 0.156 | 0.350 | 0.268 | 0.677 |
Zagreb | 0.000 | 0.215 | 0.178 | 0.176 | 0.000 | 0.002 | 0.006 | 0.455 | 0.468 | 0.833 | 0.450 | 0.138 | 0.682 | 0.631 | 0.709 |
References
- United Nations Department of Economic and Social Affairs (UN DESA). World Urbanization Prospects: The 2018 Revision; United Nations: New York, NY, USA, 2019. [Google Scholar]
- He, L.; Tao, J.; Meng, P.; Chen, D.; Yan, M.; Vasa, L. Analysis of socio-economic spatial structure of urban agglomeration in China based on spatial gradient and clustering. Oecon. Copernic. 2021, 12, 789–819. [Google Scholar] [CrossRef]
- European Commission. Reflection Paper: Towards a Sustainable Europe by 2030; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- UN-Habitat. World Cities Report 2020. The Value of Sustainable Urbanization. Available online: https://unhabitat.org/World%20Cities%20Report%202020 (accessed on 15 February 2022).
- Janovská, K.; Vozňáková, I.; Besta, P.; Šafránek, M. Ecological and economic multicriteria optimization of operating alternative propulsion vehicles within the city of Ostrava in the Czech Republic. Equilib. Q. J. Econ. Econ. Policy 2021, 16, 907–943. [Google Scholar] [CrossRef]
- Poliak, M.; Svabova, L.; Konecny, V.; Zhuravleva, N.A.; Culik, K. New paradigms of quantification of economic efficiency in the transport sector. Oecon. Copernic. 2021, 12, 193–212. [Google Scholar] [CrossRef]
- United Nations (UN). Transforming Our World: The 2030 Agenda for Sustainable Development. Available online: https://sustainabledevelopment.un.org/post2015/transformingourworld (accessed on 18 February 2022).
- United Nations (UN). New Urban Agenda. Available online: https://unhabitat.org/sites/default/files/2019/05/nua-english.pdf (accessed on 18 February 2022).
- United Nations Framework Convention on Climate Change. The Paris Agreement. Available online: https://unfccc.int/sites/default/files/resource/parisagreement_publication.pdf (accessed on 19 February 2022).
- Steurer, R.; Hametner, M. Objectives and indicators in sustainable development strategies: Similarities and variances across Europe. Sustain. Dev. 2013, 21, 224–241. [Google Scholar] [CrossRef]
- Nabielek, K.; Hamers, D.; Evers, D. Cities in Europe—Facts and Figures on Cities and Urban Area. Available online: https://ec.europa.eu/futurium/en/system/files/ged/pbl_2016_cities_in_europe_23231.pdf (accessed on 19 February 2022).
- Feleki, E.; Vlachokostas, C.; Moussiopoulos, N. Characterisation of sustainability in urban areas: An analysis of assessment tools with emphasis on European cities. Sustain. Cities Soc. 2018, 43, 563–577. [Google Scholar] [CrossRef]
- Brilhante, O.; Klaas, J. Green City Concept and a Method to Measure Green City Performance over Time Applied to Fifty Cities Globally: Influence of GDP, Population Size and Energy Efficiency. Sustainability 2018, 10, 2031. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.; Cirach, M.; Swart, W.; Dėdelė, A.; Gidlow, C.; van Kempen, E.; Kruize, H.; Gražulevičienė, R.; Nieuwenhuijsen, M.J. Characterisation of the natural environment: Quantitative indicators across Europe. Int. J. Health Geogr. 2017, 16. [Google Scholar] [CrossRef] [Green Version]
- Phillis, Y.A.; Kouikoglou, V.S.; Verdugo, C. Urban sustainability assessment and ranking of cities. Comput. Environ. Urban Syst. 2017, 64, 254–265. [Google Scholar] [CrossRef]
- Kulin, J.; Johansson Sevä, I. Quality of government and the relationship between environmental concern and pro-environmental behavior: A cross-national study. Environ. Politics 2021, 30, 727–752. [Google Scholar] [CrossRef]
- Brzustewicz, P. Zrównoważone rozwiązania w transporcie miejskim—kierunki rozwoju. Acta Univ. Nicolai Copernici. Zarządzanie 2014, 40, 85–96. [Google Scholar] [CrossRef]
- Kola-Bezka, M. Community-led local development in urban and other areas: Lessons from Kujawsko-Pomorskie voivodship. Econ. Law 2020, 19, 505–521. [Google Scholar] [CrossRef]
- Cong Doanh, D.; Gadomska-Lila, K.; Thi Loan, L. Antecedents of green purchase intention: A cross-cultural empirical evidence from Vietnam and Poland. Oecon. Copernic. 2021, 12, 935–971. [Google Scholar] [CrossRef]
- Cohen, S. The Sustainable City; Columbia University Press: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Huterska, A. Public-private partnership in building sustainable development of the Kuyavian-Pomeranian voivodship. Eur. J. Interdiscip. Stud. 2017, 9, 8–13. [Google Scholar] [CrossRef]
- Emelianoff, C. Local energy transition and multilevel climate governance: The contrasted experiences of two pioneer cities (Hanover, Germany, and Vaxjo, Sweden). Urban Stud. 2013, 51, 1378–1393. [Google Scholar] [CrossRef]
- Buehler, R.; Pucher, J. Sustainable transport in Freiburg: Lessons from Germany’s environmental capital. Int. J. Sustain. Transp. 2011, 5, 43–70. [Google Scholar] [CrossRef] [Green Version]
- International Energy Agency (IEA). Empowering Cities for a Net Zero Future: Unlocking resilient, smart, sustainable urban energy systems. Available online: https://www.iea.org/reports/empowering-cities-for-a-net-zero-future (accessed on 17 February 2022).
- Huterski, R.; Huterska, A.; Zdunek-Rosa, E.; Voss, G. Evaluation of the Level of Electricity Generation from Renewable Energy Sources in European Union Countries. Energies 2021, 14, 8150. [Google Scholar] [CrossRef]
- Wałachowska, A.; Ignasiak-Szulc, A. Comparison of Renewable Energy Sources in ‘New’ EU Member States in the Context of National Energy Transformations. Energies 2021, 14, 7963. [Google Scholar] [CrossRef]
- Smid, M.; Russo, S.; Costa, A.C.; Granell, C.; Pebesma, E. Ranking European capitals by exposure to heat waves and cold waves. Urban Clim. 2019, 27, 388–402. [Google Scholar] [CrossRef]
- Poveda, C.A.; Lipsett, M.G. A review of sustainability assessment and sustainability/environmental rating systems and credit weighting tools. J. Sustain. Dev. 2011, 4, 36–55. [Google Scholar] [CrossRef]
- Skvarciany, V.; Lapinskaite, I.; Volskyte, G. Circular economy as assistance for sustainable development in OECD countries. Oecon. Copernic. 2021, 12, 11–34. [Google Scholar] [CrossRef]
- Gasparatos, A.; Scolobig, A. Choosing the most appropriate sustainability assessment tool. Ecol. Econ. 2012, 80, 1–7. [Google Scholar] [CrossRef]
- Yang, X.; Teng, F.; Xi, X.; Khayrullin, E.; Zhang, Q. Cost–benefit analysis of China’s Intended Nationally Determined Contributions based on carbon marginal cost curves. Appl. Energy 2018, 227, 415–425. [Google Scholar] [CrossRef]
- Weinzettel, J.; Steen-Olsen, K.; Hertwich, E.G.; Borucke, M.; Galli, A. Ecological footprint of nations: Comparison of process analysis, and standard and hybrid multiregional input–output analysis. Ecol. Econ. 2014, 101, 115–126. [Google Scholar] [CrossRef]
- Akandea, A.; Cabrala, P.; Gomesa, P.; Casteleyn, S. The Lisbon ranking for smart sustainable cities in Europe. Sustain. Cities Soc. 2019, 44, 475–487. [Google Scholar] [CrossRef]
- Al-Nasrawi, S.; Adams, C.; El-Zaart, A. A Conceptual Multidimensional Model for Assessing Smart Sustainable Cities. J. Inf. Syst. Technol. Manag. 2015, 12, 541–558. [Google Scholar] [CrossRef] [Green Version]
- Macnaghten, P.; Jacobs, M. Public identification with sustainable development. Glob. Environ. Change 1997, 7, 5–24. [Google Scholar] [CrossRef]
- Glavič, P.; Lukman, R. Review of sustainability terms and their definitions. J. Clean. Prod. 2007, 15, 1875–1885. [Google Scholar] [CrossRef]
- Aktsoglou, D.; Gaidajis, G. Environmental Sustainability Assessment of Spatial Entities with Anthropogenic Activities-Evaluation of Existing Methods. Sustainability 2020, 12, 2680. [Google Scholar] [CrossRef] [Green Version]
- Chovancová, J.; Tej, J. Decoupling economic growth from greenhouse gas emissions: The case of the energy sector in V4 countries. Equilib. Q. J. Econ. Econ. Policy 2020, 15, 235–251. [Google Scholar] [CrossRef]
- Sachs, J.; Kroll, C.; Lafortune, G.; Fuller, G.; Woelm, F. The Decade of Action for the Sustainable Development Goals: Sustainable Development Report 2021; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar] [CrossRef]
- Acosta, L.A.; Zabrocki, S.; Eugenio, J.R.; Sabado Jr., R.; Gerrard, S.P.; Nazareth, M.; Luchtenbelt, H.G.H. Green Growth Index 2020—Measuring Performance in Achieving SDG Targets, GGGI Technical Report No. 16; Global Green Growth Institute (GGGI): Seoul, Korea, 2020. [Google Scholar]
- Tamanini, J. The Global Green Economy Index GGEI 2014. Measuring National Performance in the Green Economy 4th Edition-October 2014. Available online: https://www.greengrowthknowledge.org/sites/default/files/downloads/resource/GGEI-Report2014.pdf (accessed on 21 February 2022).
- Schmiedeknecht, M.H. Environmental Sustainability Index. In Encyclopedia of Corporate Social Responsibility; Idow, S.O., Capaldi, N., Zu, L., Gupta, A.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Wendling, Z.A.; Emerson, J.W.; de Sherbinin, A.; Esty, D.C.; Liu, Q.; Feldman, H.; Sierks, K.; Chang, R.; Madridejos, B.; Ballesteros-Figueroa, A.; et al. Environmental Performance Index 2020; Yale Center for Environmental Law & Policy: New Haven, CT, USA, 2020. [Google Scholar] [CrossRef]
- Singh, R.K.; Murty, H.R.; Gupta, S.K.; Dikshit, A.K. An overview of sustainability assessment methodologies. Ecol. Indic. 2012, 15, 281–299. [Google Scholar] [CrossRef]
- Stossel, Z.; Kissinger, M.; Meir, A. Assessing the state of environmental quality in cities—A multi-component urban performance (EMCUP) index. Environ. Pollut. 2015, 206, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Lancker, E.; Nijkamp, P. A policy scenario analysis of sustainable agricultural development options: A case study for Nepal. Impact Assess. Proj. Apprais. 2000, 18, 111–124. [Google Scholar] [CrossRef]
- Brandon, P.S.; Lombardi, P. Evaluating Sustainable Development in the Built Environment, 2nd ed.; Wiley-Blackwell: West Sussex, UK, 2011. [Google Scholar]
- Ness, B.; Urbel Piirsalu, E.; Anderberg, S.; Olsson, L. Categorising tools FOS sustainability assessment. Ecol. Econ. 2007, 60, 498–508. [Google Scholar] [CrossRef]
- Silva, L.T.; Mendes, J.F.G. City Noise-Air: An environmental quality index for cities. Sustain. Cities Soc. 2012, 4, 1–11. [Google Scholar] [CrossRef]
- Gong, W.; Lyu, H. Sustainable City Indexing: Towards the Creation of an Assessment Framework for Inclusive and Sustainable Urban-Industrial Development. Available online: https://www.unido.org/sites/default/files/files/2018-02/BRIDGE%20for%20Cities_Issue%20Paper_2.pdf (accessed on 22 February 2022).
- Siemens, European Green City Index. Assessing the Environmental Impact of Europe’s Major Cities. Available online: https://assets.new.siemens.com/siemens/assets/api/uuid:fddc99e7-5907-49aa-92c4-610c0801659e/european-green-city-index.pdf (accessed on 12 January 2022).
- Indicators of the City Blueprint Framework. Available online: https://www.power-h2020.eu/wp-content/uploads/Indicators-of-the-City-Blueprint-Framework.pdf (accessed on 14 January 2022).
- European Green Capital Award 2018. Technical Assessment Synopsis Report. Available online: https://ec.europa.eu/environment/europeangreencapital/wp-content/uploads/2016/05-2016/egca_2018_technical_assessment_synopsis_report.pdf (accessed on 16 January 2022).
- Arcadis Sustainable Cities Index 2018. Available online: https://www.arcadis.com/campaigns/citizencentriccities/index.html (accessed on 18 January 2022).
- Sustainable Development Solutions Network (SDSN) and the Brabant Center for Sustainable Development (Telos). The 2019 SDG Index and Dashboards Report for European Cities. Available online: https://www.sdgindex.org/reports/sdg-index-and-dashboards-report-for-european-cities/ (accessed on 22 January 2022).
- Sustainable Society Foundation. Sustainable City Index 2014 (SCI 2.0). Available online: http://pie.pascalobservatory.org/sites/default/files/summary-sci2.0.pdf (accessed on 14 January 2022).
- CITYkeys: City Handbook to Performance Measurement. Available online: https://nws.eurocities.eu/MediaShell/media/CITYkeys%20D4.6%20%20City%20handbook%20to%20performance%20measurement_web.pdf (accessed on 14 January 2022).
- Bal-Domańska, B.; Sobczak, E.; Stańczyk, E. A multivariate approach to the identification of initial smart specialisations of Polish voivodeships. Equilib. Q. J. Econ. Econ. Policy 2020, 15, 785–810. [Google Scholar] [CrossRef]
- IMD World Competitiveness Center. Singapore University of Technology and Design (SUTD). Smart City Index 2021. A Tool for Action, an Instrument for Better Lives for All Citizens. Available online: https://www.imd.org/smart-city-observatory/home/ (accessed on 14 January 2022).
- Małkowska, A.; Urbaniec, M.; Kosała, M. The Impact of Digital Transformation on European Countries: Insights from a COMPARATIVE Analysis. Equilib. Q. J. Econ. Econ. Policy 2021, 16, 325–355. [Google Scholar] [CrossRef]
- Business School University of Navarra. IESE Cities in Motion Index 2019. Available online: https://media.iese.edu/research/pdfs/ST-0509-E.pdf (accessed on 14 January 2022).
- Pira, M. A novel taxonomy of smart sustainable city indicators. Humanit. Soc. Sci. Commun. 2021, 8, 197–208. [Google Scholar] [CrossRef]
- Kourtzanidis, K.; Angelakoglou, K.; Apostolopoulos, V.; Giourka, P.; Nikolopoulos, N. Assessing Impact, Performance and Sustainability Potential of Smart City Projects: Towards a Case Agnostic Evaluation Framework. Sustainability 2021, 13, 7395. [Google Scholar] [CrossRef]
- European Commission. Special Eurobarometer 2017. 468. Attitudes of European Citizens towards the Environment. Available online: https://data.europa.eu/data/datasets/s2156_88_1_468_eng?locale=en (accessed on 14 January 2022).
- World Health Organization. Review of Evidence on Health Aspects of Air Pollution. Available online: https://www.euro.who.int/__data/assets/pdf_file/0004/193108/REVIHAAP-Final-technical-report-final-version.pdf (accessed on 14 January 2022).
- Cárdenas, M.; Rodríguez, L.; Dupont-Courtade, W. Oueslati W. Air pollution and urban structure linkages: Evidence from European cities. Renew. Sustain. Energy Rev. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- European Energy Agency. Air Quality in Europe—2020 Report. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report (accessed on 19 January 2022).
- World Health Organization. Burden of Disease from Environmental Noise: Quantification of Healthy Life Years Lost in Europe. Available online: https://www.euro.who.int/__data/assets/pdf_file/0008/136466/e94888.pdf (accessed on 18 January 2022).
- Goines, L.; Hagler, L. Noise Pollution: A Modem Plague. South Med. 2007, 100, 287–294. [Google Scholar] [CrossRef]
- Pineo, H.; Rydin, Y. Cities, Health and Well-Being; RICS: London, UK, 2018. [Google Scholar]
- Houlden, V.; Weich, S.; Jarvis, S. A cross-sectional analysis of green space prevalence and mental wellbeing in England. BMC Pub. Health 2017, 17, 460. [Google Scholar] [CrossRef] [PubMed]
- Ernstson, H. The social production of ecosystem services: A framework for studying environmental justice and ecological complexity in urbanized landscapes. Landsc. Urban Plann. 2012, 109, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Carrus, G.; Scopelliti, M.; Lafortezza, R.; Colangelo, G.; Ferrini, F.; Salbitano, F.; Agrimi, M.; Portoghesi, L.; Semenzato, P.; Sanesi, G. Go greener, feel better? The positive effects of biodiversity on the well-being of individuals visiting urban and peri-urban green areas. Landsc. Urban Plan. 2015, 134, 221–228. [Google Scholar] [CrossRef]
- Woo, J.; Tang, N.; Suen, E.; Leung, J.; Wong, M. Green space, psychological restoration, and telomere length. Lancet 2009, 373, 299–300. [Google Scholar] [CrossRef]
- Goldenberg, R.; Kalantari, Z.; Destouni, G. Increased access to nearby green–blue areas associated with greater metropolitan population well-being. Land Degrad. Dev. 2018, 29, 3607–3616. [Google Scholar] [CrossRef] [Green Version]
- Wolcha, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plann. 2014, 125, 234–244. [Google Scholar] [CrossRef] [Green Version]
- Checker, M. Wiped out by the Greenwave: Environmental gentrificaation and the paradoxical politics of urban sustainability. City Soc. 2011, 23, 210–229. [Google Scholar] [CrossRef]
- López Chao, A.; Casares Gallego, A.; Lopez-Chao, V.; Alvarellos, A. Indicators Framework for Sustainable Urban Design. Atmosphere 2020, 11, 1143. [Google Scholar] [CrossRef]
- Galotto, L.; Gerrard, S.P.; Acosta, L.A. GGGI’s concept for the Green Growth Index: Comparative assessment of relevant global green growth indices. GGPM Working Paper No. 1; Global Green Growth Institute (GGGI): Seoul, Korea, 2020. [Google Scholar]
- Bernard, M.R.; Hall, D.; Lutsey, N. Update on electric vehicle uptake in European cities. International Council on Clean Transportation. Working Paper 2021-37. Available online: https://theicct.org/sites/default/files/publications/ev-uptake-eu-cities-oct21.pdf (accessed on 19 January 2022).
- International Energy Agency. Global EV Outlook 2021. Accelerating ambitions despite the pandemic. Available online: https://iea.blob.core.windows.net/assets/ed5f4484-f556-4110-8c5c-4ede8bcba637/GlobalEVOutlook2021.pdf (accessed on 19 January 2022).
- The International Council on Clean Transportation. Market Monitor: European Passenger Car Registrations. Available online: https://theicct.org/publications/eu-ev-pv-co2-emission-performance-sept21 (accessed on 19 January 2022).
- Kukuła, K.; Bogocz, D. Zero Unitarization Method and Its Application in Ranking Research in Agriculture. Econ. Reg. Stud. 2014, 7, 5–13. [Google Scholar]
- Bock, R.D. Multivariate Statistical Methods in Behavioral Research; McGraw-Hill: New York, NY, USA, 1975. [Google Scholar]
- Kabe, D.G. On Some Multivariate Statistical Methodology with Applications to Statistics, Psychology, and Mathematical Programming. J. Indus. Math. Soc. 1985, 35, 1–18. [Google Scholar]
- Dawkins, B. Multivariate Analysis of National Track Records. Am. Stat. 1989, 43, 110–115. [Google Scholar]
- Vehkalahti, K.I.; Everitt, B. Multivariate Analysis for the Behavioral Sciences, 2nd ed.; Chapman & Hall: Cambridge, UK, 2019. [Google Scholar]
- Laparra, M.; Zugasti Mutilva, N.; García Lautre, I. The Multidimensional Conception of Social Exclusion and the Aggregation Dilemma: A Solution Proposal Based on Multiple Correspondence Analysis. Soc. Indic. Res. 2021, 158, 637–666. [Google Scholar] [CrossRef]
- Zeliaś, A. Some notes on the selection of normalization of diagnostic variables. Stat. Transit. 2002, 5, 787–802. [Google Scholar]
- Walesiak, M. The Choice of normalization method and rankings of the set of objects based on composite indicator values. Stat. Transit. 2018, 19, 693–710. [Google Scholar] [CrossRef]
- Kukuła, K. Metoda Unitaryzacji Zerowanej; PWN: Warszawa, Poland, 2000. [Google Scholar]
- European Union. Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 Relating to Arsenic, Cadmium, Mercury, Nickel and Polycyclic Aromatic Hydrocarbons in Ambient Air. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32004L0107&from=EN (accessed on 19 January 2022).
- European Union. Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32008L0050&from=en (accessed on 19 January 2022).
- World Health Organization. Air Quality Guidelines. Global Update 2005. Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide. Available online: https://www.euro.who.int/__data/assets/pdf_file/0005/78638/E90038.pdf (accessed on 24 January 2022).
- World Health Organization. WHO Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 19 January 2022).
- Serbanica, C.; Constantin, D.-L. Sustainable cities in central and eastern European countries. Moving towards smart specialization. Habitat Int. 2017, 68, 55–63. [Google Scholar] [CrossRef]
- Berrone, P.; Ricart, J.E. IESE Cities in Motion Index 2020. Available online: https://media.iese.edu/research/pdfs/ST-0542-E.pdf (accessed on 18 March 2022).
- The Mori Memorial Foundation’s Institute for Urban Strategies. Global Power City Index 2021. Available online: https://mori-m-foundation.or.jp/pdf/GPCI2021_summary.pdf (accessed on 19 March 2022).
- The Economist Intelligence Unit. Safe City Index 2021. New Expectations Demand a New Coherence. Available online: https://safecities.economist.com/safe-cities-2021-whitepaper/ (accessed on 19 March 2022).
- Arcadis Sustainable Cities Index 2015. Available online: https://www.preventionweb.net/publication/arcadis-sustainable-cities-index-2015 (accessed on 17 March 2022).
- Urban, F.; Nordensvärd, J. Low Carbon Energy Transitions in the Nordic Countries: Evidence from the Environmental Kuznets Curve. Energies 2018, 11, 2209. [Google Scholar] [CrossRef] [Green Version]
- Reyes, J.A.L. How Different Are the Nordics? Unravelling the Willingness to Make Economic Sacrifices for the Environment. Sustainability 2021, 13, 1294. [Google Scholar] [CrossRef]
- Quarmby, S.; Santos, G.; Mathias, M. Air Quality Strategies and Technologies: A Rapid Review of the International Evidence. Sustainability 2019, 11, 2757. [Google Scholar] [CrossRef] [Green Version]
Diagnostic Variable | Additional Explanations | Source |
---|---|---|
X1—Annual average BaP emissions ng/m3 | - | European Environment Agency, 2019 |
X2—Annual average NO2 emissions ug/m3 | - | |
X3—O3 emissions ug/m3 | The 93.15th percentile of daily 8 h maximum in a given year | |
X4—Annual average PM2.5 emissions ug/m3 | - | |
X5—PM10 emissions ug/m3 | The 90.41th percentile of daily averages in a given year | |
X6—Green buildings per square kilometre | LEED-certified buildings | U.S. Green Building Council (USGBC), 2021 |
X7—Public charging stations for electric cars per square kilometre | - | Chargemap, 2021 |
X8—Tree cover, percent of total functional urban area | - | OECD.STAT, 2019 |
X9—CO2 emission index | An estimation of CO2 consumption due to traffic time | Numbeo, 2021 |
X10—Green spaces such as public parks or gardens: very satisfied and rather satisfied, percentage | - | Eurostat, Perception Survey Results, 2019 |
X11—Sports facilities such as sport fields and indoor sport halls in the city: very satisfied and rather satisfied, percentage | - | |
X12—Means of transport most often used: bicycle and/or foot, percentage | - | |
X13—The quality of the air in the city: very satisfied and rather satisfied, percentage | - | |
X14—The noise level in the city: very satisfied and rather satisfied, percentage | - | |
X15—The cleanliness in the city: very satisfied and rather satisfied, percentage | - |
Ranking | Group | City | Qi |
---|---|---|---|
1 | I | Helsinki | 0.713 |
2 | Stockholm | 0.699 | |
3 | Dublin | 0.678 | |
4 | Amsterdam | 0.667 | |
5 | Tallinn | 0.664 | |
6 | II | Copenhagen | 0.611 |
7 | Luxembourg | 0.602 | |
8 | Vienna | 0.578 | |
9 | Riga | 0.546 | |
10 | Vilnius | 0.533 | |
11 | Ljubljana | 0.500 | |
12 | Berlin | 0.498 | |
13 | Paris | 0.486 | |
14 | III | Lisbon | 0.463 |
15 | Brussels | 0.439 | |
16 | Prague | 0.438 | |
17 | Madrid | 0.382 | |
18 | Bratislava | 0.372 | |
19 | Budapest | 0.349 | |
20 | Warsaw | 0.343 | |
21 | IV | Zagreb | 0.329 |
22 | Athens | 0.252 | |
23 | Rome | 0.233 | |
24 | Sofia | 0.222 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czupich, M.; Łapińska, J.; Bartoš, V. Environmental Sustainability Assessment of the European Union’s Capital Cities. Int. J. Environ. Res. Public Health 2022, 19, 4327. https://doi.org/10.3390/ijerph19074327
Czupich M, Łapińska J, Bartoš V. Environmental Sustainability Assessment of the European Union’s Capital Cities. International Journal of Environmental Research and Public Health. 2022; 19(7):4327. https://doi.org/10.3390/ijerph19074327
Chicago/Turabian StyleCzupich, Mariusz, Justyna Łapińska, and Vojtěch Bartoš. 2022. "Environmental Sustainability Assessment of the European Union’s Capital Cities" International Journal of Environmental Research and Public Health 19, no. 7: 4327. https://doi.org/10.3390/ijerph19074327
APA StyleCzupich, M., Łapińska, J., & Bartoš, V. (2022). Environmental Sustainability Assessment of the European Union’s Capital Cities. International Journal of Environmental Research and Public Health, 19(7), 4327. https://doi.org/10.3390/ijerph19074327