An Epidemiological Study to Investigate Links between Atmospheric Pollution from Farming and SARS-CoV-2 Mortality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Pollutant Exposure
2.3. Meteorological Variables
2.4. Additional Covariates
2.5. Outcome
2.6. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Coronavirus Disease (COVID-19). Available online: https://covid19.who.int (accessed on 25 January 2022).
- Raleigh, V.S. UK’s record on pandemic deaths. BMJ 2020, 370, m3348. [Google Scholar] [CrossRef] [PubMed]
- Rader, B.; Scarpino, S.V.; Nande, A.; Hill, A.L.; Adlam, B.; Reiner, R.C.; Pigott, D.M.; Gutierrez, B.; Zarebski, A.E.; Shrestha, M.; et al. Crowding and the shape of COVID-19 epidemics. Nat. Med. 2020, 26, 1829–1834. [Google Scholar] [CrossRef]
- Chen, G.; Zhang, W.; Li, S.; Williams, G.; Liu, C.; Morgan, G.G.; Jaakkola, J.J.K.; Guo, Y. Is short-term exposure to ambient fine particles associated with measles incidence in China? A multi-city study. Environ. Res. 2017, 156, 306–311. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Zhang, Z.F.; Froines, J.; Zhao, J.; Wang, H.; Yu, S.Z.; Detels, R. Air pollution and case fatality of SARS in the People’s Republic of China: An ecologic study. Environ. Health 2003, 2, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contiero, P.; Boffi, R.; Tagliabue, G.; Scaburri, A.; Tittarelli, A.; Bertoldi, M.; Borgini, A.; Favia, I.; Ruprecht, A.A.; Maiorino, A.; et al. A Case-Crossover Study to Investigate the Effects of Atmospheric Particulate Matter Concentrations, Season, and Air Temperature on Accident and Emergency Presentations for Cardiovascular Events in Northern Italy. Int. J. Environ. Res. Public Health 2019, 16, 4627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clay, K.; Lewis, J.; Severnini, E. Pollution, Infectious Disease, and Mortality: Evidence from the 1918 Spanish Influenza Pandemic. J. Econ. Hist. 2018, 78, 1179–1209. [Google Scholar] [CrossRef] [Green Version]
- Hu, B.; Huang, S.; Yin, L. The cytokine storm and COVID-19. J. Med. Virol. 2021, 93, 250–256. [Google Scholar] [CrossRef]
- Requia, W.J.; Adams, M.D.; Arain, A.; Papatheodorou, S.; Koutrakis, P.; Mahmoud, M. Global Association of Air Pollution and Cardio respiratory Diseases: A Systematic Review, Meta-Analysis, and Investigation of Modifier Variables. Am. J. Public Health 2018, 108, S123–S130. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Nethery, R.C.; Sabath, B.M.; Braun, D.; Dominici, F. Exposure to air pollution and COVID-19 mortality in the United States: A nationwide cross-sectional study. medRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Accarino, G.; Lorenzetti, S.; Aloisio, G. Assessing correlations between short-term exposure to atmospheric pollutants and COVID-19 spread in all Italian territorial areas. Environ. Pollut. 2021, 268 Pt A, 115714. [Google Scholar] [CrossRef]
- Coccia, M. How do low wind speeds and high levels of air pollution support the spread of COVID-19? Atmos. Pollut. Res. 2020, 12, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Setti, L.; Passarini, F.; De Gennaro, G.; Barbieri, P.; Licen, S.; Perrone, M.G.; Piazzalunga, A.; Borelli, M.; Palmisani, J.; Di Gilio, A.; et al. Potential role of particulate matter in the spreading of COVID-19 in Northern Italy: First observational study based on initial epidemic diffusion. BMJ Open 2020, 10, e039338. [Google Scholar] [CrossRef] [PubMed]
- Coker, E.S.; Cavalli, L.; Fabrizi, E.; Guastella, G.; Lippo, E.; Parisi, M.L.; Pontarollo, N.; Rizzati, M.; Varacca, A.; Vergalli, S. The Effects of Air Pollution on COVID-19 Related Mortality in Northern Italy. Environ. Resour. Econ. 2020, 76, 611–634. [Google Scholar] [CrossRef] [PubMed]
- Filippini, T.; Rothman, K.J.; Goffi, A.; Ferrari, F.; Maffeis, G.; Orsini, N.; Vinceti, M. Satellite-detected tropospheric nitrogen dioxide and spread of SARS-CoV-2 infection in Northern Italy. Sci. Total Environ. 2020, 739, 140278. [Google Scholar] [CrossRef] [PubMed]
- Van Donkelaar, A.; Martin, R.V.; Brauer, M.; Boys, B.L. Use of satellite observations for long-term exposure assessment of global concentrations of fine particulate matter. Environ. Health Perspect. 2015, 123, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Emissions from Agriculture and Their Control Potentials. Available online: https://ec.europa.eu/environment/air/pdf/TSAP-AGRI-20121129_v21.pdf (accessed on 25 January 2022).
- ISTAT. Consistenze Degli Allevamenti. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCSP_CONSISTENZE (accessed on 25 January 2022).
- ISTAT. Fertilizzanti. Available online: http://dati.istat.it/Index.aspx?DataSetCode=DCSP_FERTILIZZANTI (accessed on 25 January 2022).
- Silva, A.C.T.; Branco, P.T.B.S.; Sousa, S.I.V. Impact of COVID-19 Pandemic on Air Quality: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 1950. [Google Scholar] [CrossRef]
- Gkatzelis, G.I.; Gilman, J.B.; Brown, S.S.; Eskes, H.; Gomes, A.R.; Lange, A.C.; McDonald, B.C.; Peischl, J.; Petzold, A.; Thompson, C.R.; et al. The global impacts of COVID-19 lockdowns on urban air pollution: A critical review and recommendations. Elem. Sci. Anth. 2021, 9, 00176. [Google Scholar] [CrossRef]
- ISPRA: Emissioni di Ammoniaca Nell’ambiente. Available online: https://annuario.isprambiente.it/sys_ind/159 (accessed on 25 January 2022).
- Lovarelli, D.; Conti, C.; Finzi, A.; Bacenetti, J.; Guarino, M. Describing the trend of ammonia, particulate matter and nitrogen oxides: The role of livestock activities in northern Italy during COVID-19 quarantine. Environ. Res. 2020, 191, 110048. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.E.; Tsigaridis, K.; Miller, R. Significant atmospheric aerosol pollution caused by world food cultivation. Geophys. Res. Lett. 2016, 43, 5394–5400. [Google Scholar] [CrossRef] [Green Version]
- INEMAR (INventario EMissioni ARia). Available online: http://www.inemar.eu/xwiki/bin/view/Inemar/WebHome (accessed on 25 January 2022).
- Peng, Z.; Ao, S.; Liu, L.; Bao, S.; Hu, T.; Wu, H.; Wang, R. Estimating Unreported COVID-19 Cases with a Time-Varying SIR Regression Model. Int. J. Environ. Res. Public Health 2021, 18, 1090. [Google Scholar] [CrossRef] [PubMed]
- Kung, S.; Doppen, M.; Black, M.; Braithwaite, I.; Kearns, C.; Weatherall, M.; Beasley, R.; Kearns, N. Underestimation of COVID-19 mortality during the pandemic. ERJ Open Res. 2021, 7, 00766-2020. [Google Scholar] [CrossRef]
- Raleigh, V.S. Tackling UK’s mortality problem: COVID-19 and other causes. BMJ 2020, 369, m2295. [Google Scholar] [CrossRef] [PubMed]
- Saglietto, A.; D’ascenzo, F.; Cavarretta, E.; Frati, G.; Anselmino, M.; Versaci, F.; Biondi-Zoccai, G.; De Ferrari, G.M. Excess all-cause mortality during COVID-19 outbreak: Potential role of untreated cardiovascular disease. Minerva Cardioangiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Bontempi, E.; Coccia, M. International trade as critical parameter of COVID-19 spread that outclasses demographic, economic, environmental, and pollution factors. Environ. Res. 2021, 201, 111514. [Google Scholar] [CrossRef]
- ISPRA. Available online: https://annuario.isprambiente.it/pon/basic/6 (accessed on 25 January 2022).
- Altuwayjiri, A.; Soleimanian, E.; Moroni, S.; Palomba, P.; Borgini, A.; De Marco, C.; Ruprecht, A.A.; Sioutas, C. The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM2.5 in the metropolitan area of Milan, Italy. Sci. Total Environ. 2020, 14, 143582. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Kim, Y.J.; Peck, K.R.; Ko, Y.; Lee, J.; Jung, E. Keeping Low Reproductive Number Despite the Rebound Population Mobility in Korea, a Country Never under Lockdown during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 9551. [Google Scholar] [CrossRef]
- ARPA Lombardia. Available online: https://www.arpalombardia.it/Pages/Aria/Richiesta-Dati.aspx (accessed on 25 January 2022).
- ARPA Piemonte. Available online: http://www.sistemapiemonte.it/cms/privati/ambiente-e-energia/servizi/510-qualita-dell-aria-in-piemonte (accessed on 25 January 2022).
- ARPA Emilia-Romagna. Available online: https://www.arpae.it/dettaglio_generale.asp?id=2921&idlivello=1637 (accessed on 25 January 2022).
- ARPA Veneto. Available online: https://www.arpa.veneto.it/arpavinforma/indicatori-ambientali/indicatori_ambientali/atmosfera/qualita-dellaria (accessed on 25 January 2022).
- ARPA Sicilia. Available online: https://www.arpa.sicilia.it/temi-ambientali/aria/ (accessed on 25 January 2022).
- Backes, A.M.; Aulinger, A.; Bieser, J.; Matthias, V.; Quante, M. Ammonia emissions in Europe, part II: How ammonia emission abatement strategies affect secondary aerosols. Atmos. Environ. 2016, 126, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Dell’Olmo, M.M.; Gotsens, M.; Pasarín, M.I.; Rodríguez-Sanz, M.; Artazcoz, L.; de Olalla, P.G.; Rius, C.; Borrell, C. Socioeconomic Inequalities in COVID-19 in a European Urban Area: Two Waves, Two Patterns. Int. J. Environ. Res. Public Health 2021, 18, 1256. [Google Scholar] [CrossRef] [PubMed]
- Bello-Chavolla, O.M.; Bahena-López, J.P.; Antonio-Villa, N.E.; Vargas-Vázquez, A.; González-Díaz, A.; Márquez-Salinas, A.; Fermín-Martínez, C.A.; Jesús Naveja, J.; Aguilar-Salinas, C.A. Predicting mortality due to SARS-CoV-2: A mechanistic score relating obesity and diabetes to COVID-19 outcomes in Mexico. medRxiv 2020, 20072223. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J. Diabetes, obesity, metabolism, and SARS-CoV-2 infection: The end of the beginning. Cell Metab. 2021, 33, 479–498. [Google Scholar] [CrossRef] [PubMed]
- ISTAT. Aspetti della Vita Quotidiana—Persone: Indice di Massa Corporea—Regioni e Tipo di Comune. Available online: http://dati.istat.it/index.aspx?queryid=16738# (accessed on 25 January 2022).
- ISTAT. Report on Impact of the COVID-19 Epidemic on the Total Mortality. Available online: https://www.istat.it/en/archivio/243805 (accessed on 25 January 2022).
- R Development Core Team. R: A Language and Environment for Statistical Computing. 2007. Available online: http://www.rproject.org (accessed on 25 January 2022).
- Agnoletti, M.; Manganelli, S.; Piras, F. COVID-19 and rural landscape: The case of Italy. Landsc. Urban Plan. 2020, 204, 103955. [Google Scholar] [CrossRef] [PubMed]
- Dragone, R.; Licciardi, G.; Grasso, G.; Del Gaudio, C.; Chanussot, J. Analysis of the Chemical and Physical Environmental Aspects that Promoted the Spread of SARS-CoV-2 in the Lombard Area. Int. J. Environ. Res. Public Health 2021, 18, 1226. [Google Scholar] [CrossRef]
- Watts, N.; Amann, M.; Arnell, N.; Ayeb-Karlsson, S.; Beagley, J.; Belesova, K.; Boykoff, M.; Byass, P.; Cai, W.; Campbell-Lendrum, D.; et al. The 2020 report of The Lancet Countdown on health and climate change: Responding to converging crises. Lancet 2021, 397, 129–170. [Google Scholar] [CrossRef]
- Baliatsas, C.; Dückers, M.; Smit, L.; Heederik, D.; Yzermans, J. Morbidity Rates in an Area with High Livestock Density: A Registry-Based Study Including Different Groups of Patients with Respiratory Health Problems. Int. J. Environ. Res. Public Health 2020, 17, 1591. [Google Scholar] [CrossRef] [Green Version]
- Schulze, A.; Römmelt, H.; Ehrenstein, V.; van Strien, R.; Praml, G.; Küchenhoff, H.; Nowak, D.; Radon, K. Effects on pulmonary health of neighboring residents of concentrated animal feeding operations: Exposure assessed using optimized estimation technique. Arch. Environ. Occup. Health 2011, 66, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Loftus, C.; Afsharinejad, Z.; Sampson, P.; Vedal, S.; Torres, E.; Arias, G.; Tchong-French, M.; Karr, C. Estimated time-varying exposures to air emissions from animal feeding operations and childhood asthma. Int. J. Hyg. Environ. Health 2020, 223, 187–198. [Google Scholar] [CrossRef]
- Sigsgaard, T.; Basinas, I.; Doekes, G.; de Blay, F.; Folletti, I.; Heederik, D.; Lipinska-Ojrzanowska, A.; Nowak, D.; Olivieri, M.; Quirce, S.; et al. Respiratory diseases and allergy in farmers working with livestock: A EAACI position paper. Clin. Transl. Allergy 2020, 10, 29. [Google Scholar] [CrossRef]
- Manigrasso, M.; Protano, C.; Guerriero, E.; Vitali, M.; Avino, P. May SARS-CoV-2 Diffusion Be Favored by Alkaline Aerosols and Ammonia Emissions? Atmosphere 2020, 11, 995. [Google Scholar] [CrossRef]
- Steinberg, J.; Kennedy, E.D.; Basler, C.; Grant, M.P.; Jacobs, J.R.; Ortbahn, D.; Osburn, J.; Saydah, S.; Tomasi, S.; Clayton, J.L. COVID-19 Outbreak Among Employees at a Meat Processing Facility—South Dakota, March–April 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1015–1019. [Google Scholar] [CrossRef]
- Donham, K.J.; Cumro, D.; Reynolds, S. Synergistic effects of dust and ammonia on the occupational health effects of poultry production workers. J. Agromed. 2002, 8, 57–76. [Google Scholar] [CrossRef] [PubMed]
- Baudron, F.; Liégeois, F. Fixing our global agricultural system to prevent the next COVID-19. Outlook Agric. 2020, 49, 111–118. [Google Scholar] [CrossRef]
- Zilio, M.; Orzi, V.; Chiodini, M.E.; Riva, C.; Acutis, M.; Boccasile, G.; Adani, F. Evaluation of ammonia and odour emissions from animal slurry and digestate storage in the Po Valley (Italy). Waste Manag. 2020, 103, 296–304. [Google Scholar] [CrossRef] [PubMed]
Air Pollutant | PM10 | PM2.5 | NO2 | NH3 | Import-Export | GDPc |
---|---|---|---|---|---|---|
PM10 | 1.00 | 0.89 (0.83–0.93) | 0.65 (0.50–0.76) | 0.47 (0.27–0.62) | 0.49 (0.30–0.64) | 0.45 (0.27–0.61) |
PM2.5 | 0.89 (0.83–0.93) | 1.00 | 0.60 (0.53–0.78) | 0.47 (0.28–0.63) | 0.52 (0.39–0.67) | 0.52 (0.31–0.65) |
NO2 | 0.65 (0.50–0.76) | 0.60 (0.53–0.78) | 1.00 | 0.14 (–0.08–0.35) | 0.20 (0.07–0.48) | 0.41 (0.22–0.58) |
NH3 | 0.47 (0.27–0.62) | 0.47 (0.28–0.63) | 0.14 (–0.08–0.35) | 1.00 | 0.53 (0.35–0.68) | 0.35 (0.15–0.52) |
Import-export | 0.49 (0.30–0.64) | 0.52 (0.39–0.67) | 0.20 (0.07–0.48) | 0.53 (0.35–0.68) | 1.00 | 0.59 (0.44–0.72) |
GDPc | 0.45 (0.27–0.61) | 0.52 (0.31–0.65) | 0.41 (0.22–0.58) | 0.35 (0.15–0.52) | 0.59 (0.44–0.72) | 1.00 |
Variable | MRR * (95%CI) | |
---|---|---|
Basic Model § | Complete Model ‡ | |
PM10 | 0.997 (0.982–1.012) | 1.010 (0.990–1.031) |
PM10 and period interaction | 1.030 (1.009–1.052) | 0.991 (0.962–1.020) |
NO2 | 0.993 (0.983–1.003) | 0.992 (0.980–1.005) |
NO2 and period interaction | 1.017 (1.001–1.032) | 1.014 (0.996–1.032) |
NH3 | 0.991 (0.958–1.028) | 0.984 (0.943–1.029) |
NH3 and period interaction | 1.093 (1.039–1.149) | 1.069 (1.006–1.136) |
Temperature | 0.981 (0.898–1.073) | 1.000 (0.921–1.085) |
Temperature and period interaction | 0.937 (0.815–1.077) | 0.921 (0.816–1.039) |
Humidity | 1.004 (0.990 –1.020) | 1.003 (0.987–1.021) |
Humidity and period interaction | 0.997 (0.979–1.016) | 0.998 (0.978–1.020) |
Population density | 1.000 (0.999–1.001) | 1.000 (0.999–1.001) |
Population density and period interaction | 1.000 (0.999–1.001) | 1.000 (0.999–1.001) |
Import-export | 0.998 (0.990–1.006) | 0.999 (0.988–1.010) |
Import-export and period interaction | 1.022 (1.010–1.034) | 1.014 (0.998–1.029) |
GDP-pc | 0.995 (0.983–1.007) | 1.003 (0.988–1.017) |
GPD-pc and period interaction | 1.023 (1.005–1.042) | 0.998 (0.972–1.025) |
Period (2020 vs. 2015–2019) | 1.771 (1.551–2.021) | 3.017 (0.211–42.661) |
Variable | MRR * (95%CI) | |
---|---|---|
Basic Model § | Complete Model ^ | |
PM10 | 0.997 (0.982–1.012) | 1.009 (0.977–1.043) |
PM10 and period interaction | 1.026 (1.004–1.049) | 1.002 (0.957–1.050) |
PM2.5 | 0.993 (0.975–1.012) | 1.004 (0.960–1.050) |
PM2.5 and period interaction | 1.033 (1.005–1.061) | 0.974 (0.914–1.038) |
NO2 | 0.992 (0.982–1.003) | 0.990 (0.976–1.004) |
NO2 and period interaction | 1.016 (1.001–1.033) | 1.020 (1.000–1.041) |
NH3 | 0.991 (0.956–1.029) | 0.973 (0.924–1.025) |
NH3 and period interaction | 1.082 (1.027–1.139) | 1.072 (1.001–1.151) |
Temperature | 0.980 (0.883–1.087) | 1.026 (0.919–1.144) |
Temperature and period interaction | 1.010 (0.858–1.187) | 0.914 (0.776–1.076) |
Humidity | 1.006 (0.989–1.022) | 1.005 (0.987–1.024) |
Humidity and period interaction | 1.003 (0.983–1.023) | 1.000 (0.978–1.023) |
Population density | 1.000 (0.999–1.001) | 1.000 (0.999–1.001) |
Population density and period interaction | 1.000 (0.999–1.001) | 1.000 (0.999–1.001) |
Import-export | 0.998 (0.989–1.007) | 1.002 (0.989–1.015) |
Import-export and period interaction | 1.022 (1.009–1.035) | 1.016 (0.998–1.034) |
GDP-pc | 0.993 (0.979–1.007) | 1.001 (0.981–1.015) |
GPD-pc and period interaction | 1.015 (0.994–1.036) | 0.994 (0.966–1.022) |
Period (2020 vs. 2015-2019) | 1.846 (1.611–2.116) | 3.287 (0.144–73.775) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Contiero, P.; Borgini, A.; Bertoldi, M.; Abita, A.; Cuffari, G.; Tomao, P.; D’Ovidio, M.C.; Reale, S.; Scibetta, S.; Tagliabue, G.; et al. An Epidemiological Study to Investigate Links between Atmospheric Pollution from Farming and SARS-CoV-2 Mortality. Int. J. Environ. Res. Public Health 2022, 19, 4637. https://doi.org/10.3390/ijerph19084637
Contiero P, Borgini A, Bertoldi M, Abita A, Cuffari G, Tomao P, D’Ovidio MC, Reale S, Scibetta S, Tagliabue G, et al. An Epidemiological Study to Investigate Links between Atmospheric Pollution from Farming and SARS-CoV-2 Mortality. International Journal of Environmental Research and Public Health. 2022; 19(8):4637. https://doi.org/10.3390/ijerph19084637
Chicago/Turabian StyleContiero, Paolo, Alessandro Borgini, Martina Bertoldi, Anna Abita, Giuseppe Cuffari, Paola Tomao, Maria Concetta D’Ovidio, Stefano Reale, Silvia Scibetta, Giovanna Tagliabue, and et al. 2022. "An Epidemiological Study to Investigate Links between Atmospheric Pollution from Farming and SARS-CoV-2 Mortality" International Journal of Environmental Research and Public Health 19, no. 8: 4637. https://doi.org/10.3390/ijerph19084637
APA StyleContiero, P., Borgini, A., Bertoldi, M., Abita, A., Cuffari, G., Tomao, P., D’Ovidio, M. C., Reale, S., Scibetta, S., Tagliabue, G., Boffi, R., Krogh, V., Tramuto, F., Maida, C. M., Mazzucco, W., & on behalf of the “SARS-CoV-2 and Environment Working Group”. (2022). An Epidemiological Study to Investigate Links between Atmospheric Pollution from Farming and SARS-CoV-2 Mortality. International Journal of Environmental Research and Public Health, 19(8), 4637. https://doi.org/10.3390/ijerph19084637