Availability, Toxicology and Medical Significance of Antimony
Abstract
:1. Introduction
2. Mineralogy, Geochemistry, and Availability of Antimony
3. Exposure to Antimony
3.1. Environmental Contamination and Exposure at Industrial, Mining, and Urban Settings
3.2. Exposure to Antimony Related to Water Consumption
3.3. Exposure to Antimony Related to Food Consumption
4. Toxicity and Toxicology of Antimony
4.1. Cellular Mechanisms Associated with Antimony Entry and Processing
4.2. Physiological Mechanisms of Sb Toxicity Reduction in the Human Body
4.3. Effects on the Respiratory System
4.4. Effects on the Cardiovascular System
4.5. Effects on the Oral Cavity
4.6. Effects on the Gastrointestinal Tract
4.7. Effects on the Skin
5. Use of Antimony in Medicine
5.1. Antimonial Drugs for Leishmaniasis Treatment
5.2. Antimonial Drugs for Human African Trypanosomiasis Treatment
5.3. Antimonial Drugs for Schistosomiasis Treatment
5.4. Resistance to Antimonial Drugs
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. (In English) [Google Scholar] [CrossRef] [Green Version]
- Jarup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morais, S.; Costa, F.G.; Pereira, M.D.L. Heavy Metals and Human Health. In Environmental Health–Emerging Issues and Practice; Oosthuizen, J., Ed.; IntechOpen: Joondalup, Australia, 2012; pp. 227–246. [Google Scholar]
- Tamás, M.J. Cellular and molecular mechanisms of antimony transport, toxicity and resistance. Environ. Chem. 2016, 13, 955–962. [Google Scholar] [CrossRef]
- Grund, S.C.; Hanusch, K.; Breunig, H.J.; Wolf, H.U. Antimony and Antimony Compounds. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, Germany, 2006; pp. 11–42. [Google Scholar]
- Butterman, W.C.; Carlin, J.F., Jr. Mineral Commodity Profiles: Antimony. In Open-File Report; Report 2003-19; USGS: Reston, VA, USA, 2004. Available online: http://pubs.er.usgs.gov/publication/ofr0319 (accessed on 13 January 2022).
- Li, T. Antimony and Antimony Alloys. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: New York, NY, USA, 2011; pp. 1–15. [Google Scholar]
- Schrader, F.C. Antimony in 1919. In Metals: U.S. Geological Survey Mineral Resources of the United States; USGS: Washington, DC, USA, 1922; Volume 1, pp. 286–311. [Google Scholar]
- Johnstone, P.; McLeish, C. World wars and the age of oil: Exploring directionality in deep energy transitions. Energy Res. Soc. Sci. 2020, 69, 101732. (In English) [Google Scholar] [CrossRef] [PubMed]
- Slot, B.J. The «Original Naxian Emery» in the International Economy (14th–19th cen.). Flea 2008, 19, 17–19. [Google Scholar]
- Periferakis, A. The Importance of Emery in the Cultural, Social and Economic Development of Naxos Island, Cyclades, Greece. Presented at the 15th International Congress of the Geological Society of Greece, Athens, Greece, 22–24 May 2019. [Google Scholar]
- Periferakis, A. The Emery of Naxos: A Multidisciplinary Study of the Effects of Mining at a Local and National Context. J. NX-A Multidiscip. Peer Rev. J. 2021, 7, 93–115. [Google Scholar]
- Anderson, C.G. The metallurgy of antimony. Geochemistry 2012, 72, 3–8. [Google Scholar] [CrossRef]
- Tzamos, E.; Gamaletsos, P.N.; Grieco, G.; Bussolesi, M.; Xenidis, A.; Zouboulis, A.; Dimitriadis, D.; Pontikes, Y.; Godelitsas, A. New Insights into the Mineralogy and Geochemistry of Sb Ores from Greece. Minerals 2020, 10, 236. Available online: https://www.mdpi.com/2075-163X/10/3/236 (accessed on 13 January 2022). [CrossRef] [Green Version]
- Klocho, K. Antimony. In Mineral Commodity Summaries; U.S. Geological Survey: Reston, VA, USA, 2019. [Google Scholar]
- Karlsson, T.; Forsgren, C.; Steenari, B.-M. Recovery of Antimony: A Laboratory Study on the Thermal Decomposition and Carbothermal Reduction of Sb(III), Bi(III), Zn(II) Oxides, and Antimony Compounds from Metal Oxide Varistors. J. Sustain. Met. 2018, 4, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Graedel, T.E.; Reck, B.K. Recycling in Context. In Handbook of Recycling; Worrell, E., Reuter, M.A., Eds.; Elsevier: Boston, MA, USA, 2014; pp. 17–26. [Google Scholar]
- Rombach, E.; Friedrich, B. Recycling of Rare Metals. In Handbook of Recycling; Worrell, E., Reuter, M.A., Eds.; Elsevier: Boston, MA, USA, 2014; pp. 125–150. [Google Scholar]
- Yellishetty, M.; Huston, D.; Graedel, T.; Werner, T.; Reck, B.K.; Mudd, G. Quantifying the potential for recoverable resources of gallium, germanium and antimony as companion metals in Australia. Ore Geol. Rev. 2017, 82, 148–159. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Internal Market, Industry, Entrepreneurship and SMEs. Study on the Review of the list of Critical Raw Materials. Criticality Assessments; Publications Office of the European Union: Brussels, Belgium, 2017. [Google Scholar]
- Marsan, F.A.; Biasioli, M. Trace Elements in Soils of Urban Areas. Water Air Soil Pollut. 2010, 213, 121–143. [Google Scholar] [CrossRef]
- Sullivan, M.J.; Leavey, S. Heavy metals in bottled natural spring water. J. Environ. Health 2011, 73, 8–13. (In English) [Google Scholar] [PubMed]
- Liu, B.; Wu, F.; Li, X.; Fu, Z.; Deng, Q.; Mo, C.; Zhu, J.; Zhu, Y.; Liao, H. Arsenic, antimony and bismuth in human hair from potentially exposed individuals in the vicinity of antimony mines in Southwest China. Microchem. J. 2011, 97, 20–24. [Google Scholar] [CrossRef]
- Xi, J.; He, M.; Wang, P. Adsorption of Antimony on Sediments from Typical Water Systems in China: A Comparison of Sb(III) and Sb(V) Pattern. Soil Sediment Contam. Int. J. 2014, 23, 37–48. [Google Scholar] [CrossRef]
- Filella, M.; Belzile, N.; Chen, Y.-W. Antimony in the environment: A review focused on natural waters: I. Occurrence. Earth-Sci. Rev. 2002, 57, 125–176. [Google Scholar] [CrossRef]
- Krachler, M.; Zheng, J.; Koerner, R.; Zdanowicz, C.; Fisher, D.; Shotyk, W. Increasing atmospheric antimony contamination in the northern hemisphere: Snow and ice evidence from Devon Island, Arctic Canada. J. Environ. Monit. 2005, 7, 1169–1176. [Google Scholar] [CrossRef]
- Iijima, A.; Sato, K.; Yano, K.; Kato, M.; Kozawa, K.; Furuta, N. Emission Factor for Antimony in Brake Abrasion Dusts as One of the Major Atmospheric Antimony Sources. Environ. Sci. Technol. 2008, 42, 2937–2942. (In English) [Google Scholar] [CrossRef]
- Cook, A. Public Health and Geological Processes: An Overview of a Fundamental Relationship. In Essentials of Medical Geology (Revised Edition); Selinus, O., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 15–32. [Google Scholar]
- Davies, B.E.; Bowman, C.; Davies, T.C.; Selinus, O. Medical Geology: Perspectives and Prospects. In Essentials of Medical Geology (Revised Edition); Selinus, O., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 1–13. [Google Scholar]
- Reimann, C.; Matschullat, J.; Birke, M.; Salminen, R. Antimony in the environment: Lessons from geochemical mapping. Appl. Geochem. 2010, 25, 175–198. [Google Scholar] [CrossRef]
- Beyersmann, D.; Hartwig, A. Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms. Arch. Toxicol. 2008, 82, 493–512. (In English) [Google Scholar] [CrossRef]
- Ungureanu, G.; Santos, S.; Boaventura, R.; Botelho, C. Arsenic and antimony in water and wastewater: Overview of removal techniques with special reference to latest advances in adsorption. J. Environ. Manag. 2015, 151, 326–342. (In English) [Google Scholar] [CrossRef]
- de la Calle-Guntiñas, M.B.; Madrid, Y.; Cámara, C. Stability study of total antimony, Sb(III) and Sb(V) at the trace level. Fresenius’ J. Anal. Chem. 1992, 344, 27–29. [Google Scholar] [CrossRef]
- Zheng, J.; Ohata, M.; Furuta, N. Antimony Speciation in Environmental Samples by Using High-Performance Liquid Chromatography Coupled to Inductively Coupled Plasma Mass Spectrometry. Anal. Sci. 2000, 16, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Ho, T.-L. Hard soft acids bases (HSAB) principle and organic chemistry. Chem. Rev. 1975, 75, 1–20. [Google Scholar] [CrossRef]
- Burford, N.; Carpenter, Y.-Y.; Conrad, E.; Saunders, C.D.L. ChemInform Abstract: The Chemistry of Arsenic, Antimony and Bismuth. ChemInform 2012, 43, 1–17. [Google Scholar] [CrossRef]
- Wang, C.Y. Antimony: Its History, Chemistry, Mineralogy, Geology, Metallurgy, Uses, Preparations, Analysis, Production, and Valuation; with Complete Bibliographies. For Students, Manufacturers, and Users of Antimony; Griffin: Brussels, Belgium, 1909. [Google Scholar]
- Boyle, R.; Jonasson, I. The geochemistry of antimony and its use as an indicator element in geochemical prospecting. J. Geochem. Explor. 1984, 20, 223–302. [Google Scholar] [CrossRef]
- Kyono, A.; Kimata, M.; Matsuhisa, M.; Miyashita, Y.; Okamoto, K. Low-temperature crystal structures of stibnite implying orbital overlap of Sb 5s 2 inert pair electrons. Phys. Chem. Miner. 2002, 29, 254–260. [Google Scholar] [CrossRef]
- Kuze, S.; Saiki, A.; Du Boulay, D.; Ishizawa, N.; Pring, A. X-ray diffraction evidence for a monoclinic form of stibnite, Sb2S3, below 290 K. Am. Miner. 2004, 89, 1022–1025. [Google Scholar] [CrossRef]
- Chang, L.L.Y.; Li, X.; Zheng, C. The Jamesonite-Benavidesite Series. Can. Mineral. 1987, 25, 667–672. [Google Scholar]
- And, Y.M.; Ueda, Y. Structure and Physical Properties of 1D Magnetic Chalcogenide, Jamesonite (FePb4Sb6S14). Inorg. Chem. 2003, 42, 7830–7838. [Google Scholar] [CrossRef]
- Schaller, W.T. Crystallography of valentinite (Sb2O3) and andorite(?) (2PbS∙Ag2S∙3Sb2S3) from Oregon. Am. Mineral. 1937, 22, 651–666. [Google Scholar]
- Svensson, C. The crystal structure of orthorhombic antimony trioxide, Sb2O3. Acta Crystallogr. Sect. B 1974, 30, 458–461. [Google Scholar] [CrossRef]
- Svensson, C. Refinement of the crystal structure of cubic antimony trioxide, Sb2O3. Acta Crystallogr. Sect. B 1975, 31, 2016–2018. [Google Scholar] [CrossRef] [Green Version]
- Whitten, A.E.; Dittrich, B.; Spackman, M.A.; Turner, P.; Brown, T.C. Charge density analysis of two polymorphs of antimony(iii) oxide. Dalton Trans. 2004, 1, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitaliano, C.J.; Mason, B. Stibiconite and cervantite. Am. Mineral. 1952, 37, 982–999. [Google Scholar]
- Christy, A.; Atencio, D. Clarification of status of species in the pyrochlore supergroup. Miner. Mag. 2013, 77, 13–20. [Google Scholar] [CrossRef]
- Bothwell, D.I.; Davis, R.J.; Moss, A.A. A Bismuth-Bearing Variety of Bindheimite. Mineral. Mag. J. Mineral. Soc. 1960, 32, 664–666. [Google Scholar] [CrossRef]
- Cervelle, B. Détermination par microréflectométrie de propriétés optiques d’un cristal monoclinique absorbant (kermesite Sb2S2O). Deuxième partie. Bull. Minéralogie 1972, 95, 464–469. [Google Scholar] [CrossRef]
- Baumgardt, E.; Kupcik, V. Synthesis of kermesite Sb2S2O. J. Cryst. Growth 1977, 37, 346–348. [Google Scholar] [CrossRef]
- Kharbish, S.; Libowitzky, E.; Beran, A. Raman spectra of isolated and interconnected pyramidal XS3 groups (X = Sb,Bi) in stibnite, bismuthinite, kermesite, stephanite and bournonite. Eur. J. Miner. 2009, 21, 325–333. [Google Scholar] [CrossRef]
- Tatsuka, K.; Morimoto, N. Tetrahedrite stability relations in the Cu-Fe-Sb-S system. Am. Mineral. 1977, 62, 1101–1109. [Google Scholar]
- Johnson, N.E.; Craig, J.R.; Rimstidt, J.D. Compositional trends in tetrahedrite. Can. Mineral. 1986, 24, 385–397. [Google Scholar]
- Wenk, H.-R.; Bulakh, A. Minerals: Their Constitution and Origin; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Seal, R.R.I.; Schulz, K.J.; DeYoung, J.H.J. Antimony. In Critical Mineral Resources of the United States—Economic and Environmental Geology and Prospects for Future Supply; No. U.S. Geological Survey Professional Paper, 1802; Schulz, K.J., DeYoung, J.H.J., Seal, R.R.I., Bradley, D.C., Eds.; U.S. Geological Survey: Washington, DC, USA, 2017; Volume 1802, pp. C1–C17. [Google Scholar]
- Miller, M.H. Antimony. In United States Mineral Resources; Brobst, D.A., Pratt, W.P., Eds.; U.S. Geological Survey Professional Paper: Washington, DC, USA, 1973; Volume 820, pp. 45–50. [Google Scholar]
- Pohl, W.L. Economic Geology Principles and Practice: Metals, Minerals, Coal and Hydrocarbons—Introduction to Formation and Sustainable Exploitation of Mineral Deposits; Wiley-Blackwell: Hoboken, NJ, USA, 2011. [Google Scholar]
- Schwarz-Schampera, U. Antimony (Critical Metals Handbook); Wiley and Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Jiada, W. Antimony vein deposits of China. Ore Geol. Rev. 1993, 8, 213–232. [Google Scholar] [CrossRef]
- Williams-Jones, A.E.; Norman, C. Controls of mineral parageneses in the system Fe-Sb-S-O. Econ. Geol. 1997, 92, 308–324. [Google Scholar] [CrossRef]
- Diemar, G.A.; Filella, M.; Leverett, P.; Williams, P.A. Dispersion of antimony from oxidizing ore deposits. Pure Appl. Chem. 2009, 81, 1547–1553. [Google Scholar] [CrossRef] [Green Version]
- Pavlova, G.G.; Borisenko, A.S. The age of Ag–Sb deposits of Central Asia and their correlation with other types of ore systems and magmatism. Ore Geol. Rev. 2009, 35, 164–185. [Google Scholar] [CrossRef]
- Pavlova, G.G.; Borovikov, A.A. Physicochemical factors of formation of Au-As, Au-Sb, and Ag-Sb deposits. Geol. Ore Depos. 2009, 50, 433–444. [Google Scholar] [CrossRef]
- Bortnikov, N.S.; Gamynin, G.N.; Vikent’Eva, O.V.; Prokof’Ev, V.Y.; Prokop’Ev, A.V. The Sarylakh and Sentachan gold-antimony deposits, Sakha-Yakutia: A case of combined mesothermal gold-quartz and epithermal stibnite ores. Geol. Ore Depos. 2010, 52, 339–372. [Google Scholar] [CrossRef]
- Fornadel, A.P.; Spry, P.G.; Melfos, V.; Vavelidis, M.; Voudouris, P.C. Is the Palea Kavala Bi–Te–Pb–Sb±Au district, northeastern Greece, an intrusion-related system? Ore Geol. Rev. 2011, 39, 119–133. [Google Scholar] [CrossRef]
- Melfos, V.; Voudouris, P.C. Geological, Mineralogical and Geochemical Aspects for Critical and Rare Metals in Greece. Minerals 2012, 2, 300–317. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Xia, Y.; Song, X.; Liu, J.; Yang, C.; Yan, B. Study on the evolution of ore-formation fluids for Au-Sb ore deposits and the mechanism of Au-Sb paragenesis and differentiation in the southwestern part of Guizhou Province, China. Chin. J. Geochem. 2013, 32, 56–68. [Google Scholar] [CrossRef]
- Melfos, V.; Voudouris, P. Cenozoic metallogeny of Greece and potential for precious, critical and rare metals exploration. Ore Geol. Rev. 2017, 89, 1030–1057. [Google Scholar] [CrossRef]
- Voudouris, P.; Spry, P.G.; Melfos, V.; Alfieris, D.; Mavrogonatos, C.; Repstock, A.; Djiba, A.; Stergiou, C.; Periferakis, A.; Melfou, M. Porphyry and Epithermal Deposits in Greece: A Review and New Discoveries. In Proceedings of the 8. Geochemistry Symposium, Antalya, Turkey, 2–6 May 2018; p. 181. [Google Scholar]
- Němec, M.; Zachariáš, J. The Krásná Hora, Milešov, and Příčovy Sb-Au ore deposits, Bohemian Massif: Mineralogy, fluid inclusions, and stable isotope constraints on the deposit formation. Miner. Depos. 2018, 53, 225–244. [Google Scholar] [CrossRef]
- Qiu, K.-F.; Yu, H.-C.; Deng, J.; McIntire, D.; Gou, Z.-Y.; Geng, J.-Z.; Chang, Z.-S.; Zhu, R.; Li, K.-N.; Goldfarb, R. The giant Zaozigou Au-Sb deposit in West Qinling, China: Magmatic- or metamorphic-hydrothermal origin? Miner. Depos. 2020, 55, 345–362. [Google Scholar] [CrossRef]
- Hofstra, A.H.; Marsh, E.E.; Todorov, T.I.; Emsbo, P. Fluid inclusion evidence for a genetic link between simple antimony veins and giant silver veins in the Coeur d’Alene mining district, ID and MT, USA. Geofluids 2013, 13, 475–493. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking-Water Quality; World Health Organization: Geneva, Switzerland, 2011; Volume 216, pp. 303–304. [Google Scholar]
- Lai, Z.; He, M.; Lin, C.; Ouyang, W.; Liu, X. Interactions of antimony with biomolecules and its effects on human health. Ecotoxicol. Environ. Saf. 2022, 233, 113317. [Google Scholar] [CrossRef]
- Johnson, C.C.; Demetriades, A. Urban Geochemical Mapping: A Review of Case Studies in this Volume. In Mapping the Chemical Environment of Urban Areas; Johnson, C.C., Demetriades, A., Locutura, J., Ottesen, R.T., Eds.; Wiley: Hoboken, NJ, USA, 2011; pp. 7–27. [Google Scholar]
- Yesilonis, I.; Pouyat, R.; Neerchal, N. Spatial distribution of metals in soils in Baltimore, Maryland: Role of native parent material, proximity to major roads, housing age and screening guidelines. Environ. Pollut. 2008, 156, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Guéguen, F.; Stille, P.; Geagea, M.L.; Boutin, R. Atmospheric pollution in an urban environment by tree bark biomonitoring–Part I: Trace element analysis. Chemosphere 2012, 86, 1013–1019. [Google Scholar] [CrossRef]
- Levresse, G.; Lopez, G.; Tritlla, J.; López, E.C.; Chavez, A.C.; Salvador, E.M.; Soler, A.; Corbella, M.; Sandoval, L.H.; Corona-Esquivel, R. Phytoavailability of antimony and heavy metals in arid regions: The case of the Wadley Sb district (San Luis, Potosí, Mexico). Sci. Total Environ. 2012, 427–428, 115–125. [Google Scholar] [CrossRef]
- Ramsey, M.H.; Argyraki, A. Estimation of measurement uncertainty from field sampling: Implications for the classification of contaminated land. Sci. Total Environ. 1997, 198, 243–257. [Google Scholar] [CrossRef]
- Patinha, C.; Armienta, A.; Argyraki, A.; Durães, N. Chapter 6—Inorganic Pollutants in Soils. In Soil Pollution; Duarte, A.C., Cachada, A., Rocha-Santos, T., Eds.; Academic Press: Cambridge, MA, USA, 2018; pp. 127–159. [Google Scholar]
- Manta, D.S.; Angelone, M.; Bellanca, A.; Neri, R.; Sprovieri, M. Heavy metals in urban soils: A case study from the city of Palermo (Sicily), Italy. Sci. Total Environ. 2002, 300, 229–243. [Google Scholar] [CrossRef]
- Rodrigues, S.; Urquhart, G.; Hossack, I.; Pereira, E.; Duarte, A.; Davidson, C.; Hursthouse, A.; Tucker, P.; Roberston, D. The influence of anthropogenic and natural geochemical factors on urban soil quality variability: A comparison between Glasgow, UK and Aveiro, Portugal. Environ. Chem. Lett. 2009, 7, 141–148. [Google Scholar] [CrossRef]
- Kelepertsis, A.; Argyraki, A.; Alexakis, D. Multivariate statistics and spatial interpretation of geochemical data for assessing soil contamination by potentially toxic elements in the mining area of Stratoni, north Greece. Geochem. Explor. Environ. Anal. 2006, 6, 349–355. [Google Scholar] [CrossRef]
- Frenzel, M.; Voudouris, P.; Cook, N.J.; Ciobanu, C.L.; Gilbert, S.; Wade, B.P. Evolution of a hydrothermal ore-forming system recorded by sulfide mineral chemistry: A case study from the Plaka Pb–Zn–Ag Deposit, Lavrion, Greece. Miner. Depos. 2021, 57, 417–438. [Google Scholar] [CrossRef]
- Periferakis, A.; Paresoglou, N. Lavrion from Ancient Greece to the Present Day: A Study of how an Ore Deposit Shaped History. In Proceedings of the 15th International Congress of the Geological Society of Greece, Athens, Greece, 22–24 May 2019; pp. 704–705. [Google Scholar]
- Ross, J.; Voudouris, P.; Melfos, V.; Vaxevanopoulos, M.; Soukis, K.; Merigot, K. The Lavrion silver district: Reassessing its ancient mining history. Geoarchaeology 2021, 36, 617–642. [Google Scholar] [CrossRef]
- Periferakis, A.; Paresoglou, I.; Paresoglou, N. The significance of the Lavrion mines in Greek and European Geoheritage. Eur. Geol. 2019, 48, 24–27. [Google Scholar]
- Papastamatiou, D.; Skarpelis, N.; Argyraki, A. Air Quality in Mining Areas: The Case of Stratoni, Chalkidiki, Greece. Bull. Geol. Soc. Greece 2017, 43, 2510–2519. [Google Scholar] [CrossRef] [Green Version]
- Nocete, F.; Álex, E.; Nieto, J.M.; Sáez, R.; Rodríguez-Bayona, M. An archaeological approach to regional environmental pollution in the south-western Iberian Peninsula related to Third millennium BC mining and metallurgy. J. Archaeol. Sci. 2005, 32, 1566–1576. [Google Scholar] [CrossRef]
- Ferrier, G. Application of Imaging Spectrometer Data in Identifying Environmental Pollution Caused by Mining at Rodaquilar, Spain. Remote Sens. Environ. 1999, 68, 125–137. [Google Scholar] [CrossRef]
- Vaseashta, A.; Vaclavikova, M.; Gallios, G.; Roy, P.; Pummakarnchana, O. Nanostructures in environmental pollution detection, monitoring, and remediation. Sci. Technol. Adv. Mater. 2007, 8, 47–59. [Google Scholar] [CrossRef]
- Silva, L.; de Vallejuelo, S.F.O.; Martinez-Arkarazo, I.; Castro, K.; Oliveira, M.; Sampaio, C.H.; de Brum, I.A.; de Leão, F.B.; Taffarel, S.R.; Madariaga, J.M. Study of environmental pollution and mineralogical characterization of sediment rivers from Brazilian coal mining acid drainage. Sci. Total Environ. 2013, 447, 169–178. [Google Scholar] [CrossRef]
- Yurkevich, N.V.; Abrosimova, N.A.; Bortnikova, S.B.; Karin, Y.G.; Saeva, O.P. Geophysical investigations for evaluation of environmental pollution in a mine tailings area. Toxicol. Environ. Chem. 2017, 99, 1328–1345. [Google Scholar] [CrossRef]
- Periferakis, A. The Yukon Gold Rush: Early Examples of the Socioeconomic and Environmental Impact of Mining. In Proceedings of the 15th International Congress of the Geological Society of Greece, Athens, Greece, 22–24 May 2019; pp. 710–711. [Google Scholar]
- Adriano, D.C. Trace Elements in the Terrestrial Environment; Springer: Berlin, Germany, 1986. [Google Scholar]
- Telford, K.; Maher, W.; Krikowa, F.; Foster, S.; Ellwood, M.J.; Ashley, P.M.; Lockwood, P.V.; Wilson, S.C. Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia. Environ. Chem. 2009, 6, 133–143. [Google Scholar] [CrossRef]
- Wilson, N.; Webster-Brown, J. The fate of antimony in a major lowland river system, the Waikato River, New Zealand. Appl. Geochem. 2009, 24, 2283–2292. [Google Scholar] [CrossRef]
- Ragaini, R.C.; Ralston, H.R.; Roberts, N. Environmental trace metal contamination in Kellogg, Idaho, near a lead smelting complex. Environ. Sci. Technol. 1977, 11, 773–781. [Google Scholar] [CrossRef]
- Ainsworth, N.; Cooke, J.A.; Johnson, M.S. Biological significance of antimony in contaminated grassland. Water Air Soil Pollut. 1991, 57, 193–199. [Google Scholar] [CrossRef]
- Baroni, F.; Boscagli, A.; Protano, G.; Riccobono, F. Antimony accumulation in Achillea ageratum, Plantago lanceolata and Silene vulgaris growing in an old Sb-mining area. Environ. Pollut. 2000, 109, 347–352. [Google Scholar] [CrossRef]
- Pacyna, J.M.; Pacyna, E.G. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environ. Rev. 2001, 9, 269–298. [Google Scholar] [CrossRef]
- Qi, C.; Liu, G.; Chou, C.-L.; Zheng, L. Environmental geochemistry of antimony in Chinese coals. Sci. Total Environ. 2008, 389, 225–234. (In English) [Google Scholar] [CrossRef]
- Tian, H.Z.; Zhao, D.; He, M.C.; Wang, Y.; Cheng, K. Temporal and spatial distribution of atmospheric antimony emission inventories from coal combustion in China. Environ. Pollut. 2011, 159, 1613–1619. (In English) [Google Scholar] [CrossRef]
- He, M.; Wang, N.; Long, X.; Zhang, C.; Ma, C.; Zhong, Q.; Wang, A.; Wang, Y.; Pervaiz, A.; Shan, J. Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects. J. Environ. Sci. 2019, 75, 14–39. [Google Scholar] [CrossRef]
- He, M.; Wang, X.; Wu, F.; Fu, Z. Antimony pollution in China. Sci. Total Environ. 2012, 421–422, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Fu, Z.; Wu, F.; Amarasiriwardena, D.; Mo, C.; Liu, B.; Zhu, J.; Deng, Q.; Liao, H. Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China. Sci. Total Environ. 2010, 408, 3403–3410. [Google Scholar] [CrossRef] [PubMed]
- Courtin-Nomade, A.; Rakotoarisoa, O.; Bril, H.; Grybos, M.; Forestier, L.; Foucher, F.; Kunz, M. Weathering of Sb-rich mining and smelting residues: Insight in solid speciation and soil bacteria toxicity. Geochemistry 2012, 72, 29–39. [Google Scholar] [CrossRef]
- Hiller, E.; Lalinská, B.; Chovan, M.; Jurkovič, L.; Klimko, T.; Jankulár, M.; Hovorič, R.; Šottník, P.; Fľaková, R.; Ženišová, Z.; et al. Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia. Appl. Geochem. 2012, 27, 598–614. [Google Scholar] [CrossRef]
- Cidu, R.; Biddau, R.; Dore, E.; Vacca, A.; Marini, L. Antimony in the soil–water–plant system at the Su Suergiu abandoned mine (Sardinia, Italy): Strategies to mitigate contamination. Sci. Total Environ. 2014, 497–498, 319–331. (In English) [Google Scholar] [CrossRef]
- Macgregor, K.; MacKinnon, G.; Farmer, J.G.; Graham, M.C. Mobility of antimony, arsenic and lead at a former antimony mine, Glendinning, Scotland. Sci. Total Environ. 2015, 529, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Wilson, N.; Craw, D.; Hunter, K. Antimony distribution and environmental mobility at an historic antimony smelter site, New Zealand. Environ. Pollut. 2004, 129, 257–266. [Google Scholar] [CrossRef]
- Mykolenko, S.; Liedienov, V.; Kharytonov, M.; Makieieva, N.; Kuliush, T.; Queralt, I.; Marguí, E.; Hidalgo, M.; Pardini, G.; Gispert, M. Presence, mobility and bioavailability of toxic metal(oids) in soil, vegetation and water around a Pb-Sb recycling factory (Barcelona, Spain). Environ. Pollut. 2018, 237, 569–580. [Google Scholar] [CrossRef]
- Casado, M.; Anawar, H.M.; Garcia-Sanchez, A.; Regina, I.S. Antimony and Arsenic Uptake by Plants in an Abandoned Mining Area. Commun. Soil Sci. Plant Anal. 2007, 38, 1255–1275. [Google Scholar] [CrossRef]
- Periferakis, A. The Keramos Antimonite Mines in Chios Island, Greece: Mining History and Current Situation. News Miner. 2020, 35, 5–21. [Google Scholar]
- Karczewska, A.; Bogda, A.; Krysiak, A. Arsenic in soils in the areas of former mining and mineral processing in Lower Silesia, southwestern Poland. In Trace Metals and Other Contaminants in the Environment; Elsevier: Amsterdam, The Netherlands, 2007; Volume 9, pp. 411–440. [Google Scholar]
- Karczewska, A.; Krysiak, A.; Mokrzycka, D.; Jezierski, P.; Szopka, K. Arsenic Distribution in Soils of a Former As Mining Area and Processing. Pol. J. Environ. Stud. 2013, 22, 175–181. Available online: http://www.pjoes.com/Arsenic-Distribution-in-Soils-of-a-Former-As-r-nMining-Area-and-Processing,88966,0,2.html (accessed on 13 January 2022).
- Lewińska, K.; Karczewska, A. Antimony in soils of SW Poland—An overview of potentially enriched sites. Environ. Monit. Assess. 2019, 191, 70. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatzidiakos, E.; Fanouraki, M.; Kelepertsis, A.; Argyraki, A.; Alexakis, D. Speciation and mobility of Arsenic and Antimony in groundwater at Melivoia, East Thessaly and Keramos area NW Chios, Greece. In Proceedings of the 8th International Hydrogeological Congress of Greece, Athens, Greece, 8–10 October 2008; Volume 1, pp. 219–228. [Google Scholar]
- McCallum, R.I. Occupational exposure to antimony compounds. J. Environ. Monit. 2005, 7, 1245–1250. [Google Scholar] [CrossRef] [PubMed]
- Elmaaboud, R.M.A.; Mohamed, Z.T.; George, S.M.; El-Dine, A.M.E.; El Shehaby, D.M. Lead and Cadmium Toxicity in Tile Manufacturing Workers in Assiut, Egypt. Arab J. Forensic Sci. Forensic Med. 2016, 1, 299–311. [Google Scholar] [CrossRef] [Green Version]
- Bienert, G.P.; Thorsen, M.; Schüssler, M.D.; Nilsson, H.R.; Wagner, A.; Tamás, M.J.; Jahn, T.P. A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol. 2008, 6, 26. [Google Scholar] [CrossRef] [Green Version]
- Kamiya, T.; Fujiwara, T. Arabidopsis NIP1;1 Transports Antimonite and Determines Antimonite Sensitivity. Plant Cell Physiol. 2009, 50, 1977–1981. [Google Scholar] [CrossRef]
- Baes, C.F.; Mesmer, R.S. The Hydrolysis of Cations; Berichte der Bunsengesellschaft für physikalische Chemie, No. 2; John Wiley & Sons: New York, NY, USA, 1977; p. 489. [Google Scholar]
- Filella, M.; Belzile, N.; Lett, M.-C. Antimony in the environment: A review focused on natural waters. III. Microbiota relevant interactions. Earth-Sci. Rev. 2007, 80, 195–217. [Google Scholar] [CrossRef]
- Pokrovski, G.S.; Borisova, A.Y.; Roux, J.; Hazemann, J.-L.; Petdang, A.; Tella, M.; Testemale, D. Antimony speciation in saline hydrothermal fluids: A combined X-ray absorption fine structure spectroscopy and solubility study. Geochim. Cosmochim. Acta 2006, 70, 4196–4214. [Google Scholar] [CrossRef]
- Mitsunobu, S.; Harada, T.; Takahashi, Y. Comparison of Antimony Behavior with that of Arsenic under Various Soil Redox Conditions. Environ. Sci. Technol. 2006, 40, 7270–7276. (In English) [Google Scholar] [CrossRef]
- Scheinost, A.C.; Rossberg, A.; Vantelon, D.; Xifra, I.; Kretzschmar, R.; Leuz, A.-K.; Funke, H.; Johnson, C.A. Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochim. Cosmochim. Acta 2006, 70, 3299–3312. [Google Scholar] [CrossRef]
- Oorts, K.; Smolders, E.; Degryse, F.; Buekers, J.; Gascó, G.; Cornelis, G.; Mertens, J. Solubility and Toxicity of Antimony Trioxide (Sb2O3) in Soil. Environ. Sci. Technol. 2008, 42, 4378–4383. (In English) [Google Scholar] [CrossRef] [PubMed]
- Deng, T.; Chen, Y.-W.; Belzile, N. Antimony speciation at ultra trace levels using hydride generation atomic fluorescence spectrometry and 8-hydroxyquinoline as an efficient masking agent. Anal. Chim. Acta 2001, 432, 293–302. [Google Scholar] [CrossRef]
- Chen, Y.W.; Deng, T.L.; Filella, M.; Belzile, N. Distribution and Early Diagenesis of Antimony Species in Sediments and Porewaters of Freshwater Lakes. Environ. Sci. Technol. 2003, 37, 1163–1168. (In English) [Google Scholar] [CrossRef] [PubMed]
- Brooks, R.R. Geobotany and Biogeochemestry in Mineral Exploration; Harper & Row: New York, NY, USA, 1972. [Google Scholar]
- Bowen, H.J.M. Environmental Chemistry of the Elements; Academic Press: London, UK, 1979. [Google Scholar]
- Jung, M.C.; Thornton, I.; Chon, H.-T. Arsenic, Sb and Bi contamination of soils, plants, waters and sediments in the vicinity of the Dalsung Cu–W mine in Korea. Sci. Total Environ. 2002, 295, 81–89. [Google Scholar] [CrossRef]
- De Gregori, I.; Fuentes, E.; Rojas, M.; Pinochet, H.; Potin-Gautier, M. Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile. J. Environ. Monit. 2003, 5, 287–295. (In English) [Google Scholar] [CrossRef] [PubMed]
- Miravet, R.; Bonilla, E.; López-Sánchez, J.F.; Rubio, R. Antimony speciation in terrestrial plants. Comparative studies on extraction methods. J. Environ. Monit. 2005, 7, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Tschan, M.; Robinson, B.; Schulin, R. Antimony uptake by Zea mays (L.) and Helianthus annuus (L.) from nutrient solution. Environ. Geochem. Health 2008, 30, 187–191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Z.; Wu, F.; Mo, C.; Liu, B.; Zhu, J.; Deng, Q.; Liao, H.; Zhang, Y. Bioaccumulation of antimony, arsenic, and mercury in the vicinities of a large antimony mine, China. Microchem. J. 2011, 97, 12–19. [Google Scholar] [CrossRef]
- Hammel, W.; Debus, R.; Steubing, L. Mobility of antimony in soil and its availability to plants. Chemosphere 2000, 41, 1791–1798. (In English) [Google Scholar] [CrossRef]
- Argyraki, A.; Kelepertzis, E. Urban soil geochemistry in Athens, Greece: The importance of local geology in controlling the distribution of potentially harmful trace elements. Sci. Total Environ. 2014, 482–483, 366–377. [Google Scholar] [CrossRef]
- Slooff, W.; Bont, P.F.H.; Hesse, J.M.; Loos, B. Exploratory report Antimony and antimony compounds. In Scopingsrapport Antimoon En Antimoonverbindingen; National Institute of Public Health and Environmental Protection: Bilthoven, The Netherlands, 1992. [Google Scholar]
- Salma, I.; Maenhaut, W. Changes in elemental composition and mass of atmospheric aerosol pollution between 1996 and 2002 in a Central European city. Environ. Pollut. 2006, 143, 479–488. [Google Scholar] [CrossRef] [PubMed]
- Gaman, L.; Delia, C.E.; Luzardo, O.P.; Zumbado, M.; Badea, M.; Stoian, I.; Gilca, M.; Boada, L.D.; Henríquez-Hernández, L.A. Serum concentration of toxic metals and rare earth elements in children and adolescent. Int. J. Environ. Health Res. 2020, 30, 696–712. [Google Scholar] [CrossRef] [PubMed]
- Belzile, N.; Chen, Y.-W.; Filella, M. Human Exposure to Antimony: I. Sources and Intake. Crit. Rev. Environ. Sci. Technol. 2011, 41, 1309–1373. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. (In English) [Google Scholar] [CrossRef]
- Kang, M.; Kamei, T.; Magara, Y. Comparing polyaluminum chloride and ferric chloride for antimony removal. Water Res. 2003, 37, 4171–4179. (In English) [Google Scholar] [CrossRef]
- Guo, X.; Wu, Z.; He, M. Removal of antimony(V) and antimony(III) from drinking water by coagulation–flocculation–sedimentation (CFS). Water Res. 2009, 43, 4327–4335. (In English) [Google Scholar] [CrossRef]
- Daneshvar, E.; Vazirzadeh, A.; Niazi, A.; Kousha, M.; Naushad, M.; Bhatnagar, A. Desorption of Methylene blue dye from brown macroalga: Effects of operating parameters, isotherm study and kinetic modeling. J. Clean. Prod. 2017, 152, 443–453. [Google Scholar] [CrossRef]
- Albadarin, A.B.; Collins, M.N.; Naushad, M.; Shirazian, S.; Walker, G.; Mangwandi, C. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue. Chem. Eng. J. 2017, 307, 264–272. [Google Scholar] [CrossRef] [Green Version]
- Inam, M.A.; Khan, R.; Park, D.R.; Khan, S.; Uddin, A.; Yeom, I.T. Complexation of Antimony with Natural Organic Matter: Performance Evaluation during Coagulation-Flocculation Process. Int. J. Environ. Res. Public Health 2019, 16, 1092. (In English) [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; He, M.; Guo, X.; Zhou, R. Removal of antimony (III) and antimony (V) from drinking water by ferric chloride coagulation: Competing ion effect and the mechanism analysis. Sep. Purif. Technol. 2010, 76, 184–190. [Google Scholar] [CrossRef]
- Tang, X.; Zheng, H.; Teng, H.; Sun, Y.; Guo, J.; Xie, W.; Yang, Q.; Chen, W. Chemical coagulation process for the removal of heavy metals from water: A review. Desalination Water Treat. 2016, 57, 1733–1748. [Google Scholar] [CrossRef]
- Buschmann, J.; Sigg, L. Antimony(III) Binding to Humic Substances: Influence of pH and Type of Humic Acid. Environ. Sci. Technol. 2004, 38, 4535–4541. (In English) [Google Scholar] [CrossRef] [PubMed]
- Filella, M.; Williams, P.A.; Belzile, N. Antimony in the environment: Knowns and unknowns. Environ. Chem. 2009, 6, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Shotyk, W.; Krachler, M.; Chen, B. Contamination of Canadian and European bottled waters with antimony from PET containers. J. Environ. Monit. 2006, 8, 288–292. (In English) [Google Scholar] [CrossRef]
- A Ward, L.; Cain, O.L.; A Mullally, R.; Holliday, K.S.; Wernham, A.G.; Baillie, P.D.; Greenfield, S.M. Health beliefs about bottled water: A qualitative study. BMC Public Health 2009, 9, 196. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Morton, L.W.; Mahler, R.L. Bottled Water: United States Consumers and Their Perceptions of Water Quality. Int. J. Environ. Res. Public Health 2011, 8, 565–578. (In English) [Google Scholar] [CrossRef]
- Sevigny, C. The Success of Bottled Water: The Hidden Costs Hurt Us and the Environment. Bachelor’s Thesis, University of Montana, Missoula, MT, USA, 2017. [Google Scholar]
- Qian, N. Bottled Water or Tap Water? A Comparative Study of Drinking Water Choices on University Campuses. Water 2018, 10, 59. Available online: https://www.mdpi.com/2073-4441/10/1/59 (accessed on 13 January 2022). [CrossRef] [Green Version]
- Vieux, F.; Maillot, M.; Rehm, C.D.; Barrios, P.L.; Drewnowski, A. Trends in tap and bottled water consumption among children and adults in the United States: Analyses of NHANES 2011-16 data. Nutr. J. 2020, 19, 10. [Google Scholar] [CrossRef]
- Shotyk, W.; Krachler, M. Contamination of Bottled Waters with Antimony Leaching from Polyethylene Terephthalate (PET) Increases upon Storage. Environ. Sci. Technol. 2007, 41, 1560–1563. [Google Scholar] [CrossRef]
- Westerhoff, P.; Prapaipong, P.; Shock, E.; Hillaireau, A. Antimony leaching from polyethylene terephthalate (PET) plastic used for bottled drinking water. Water Res. 2008, 42, 551–556. [Google Scholar] [CrossRef]
- Keresztes, S.; Tatár, E.; Mihucz, V.; Virág, I.; Majdik, C.; Záray, G. Leaching of antimony from polyethylene terephthalate (PET) bottles into mineral water. Sci. Total Environ. 2009, 407, 4731–4735. [Google Scholar] [CrossRef] [PubMed]
- Kalač, P.; Svoboda, L.R. A review of trace element concentrations in edible mushrooms. Food Chem. 2000, 69, 273–281. [Google Scholar] [CrossRef]
- Borovička, J.; Řanda, Z.; Jelínek, E. Antimony content of macrofungi from clean and polluted areas. Chemosphere 2006, 64, 1837–1844. [Google Scholar] [CrossRef] [PubMed]
- He, M. Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China. Environ. Geochem. Health 2007, 29, 209–219. (In English) [Google Scholar] [CrossRef] [PubMed]
- Cava-Montesinos, P.; de la Guardia, A.; Teutsch, C.; Cervera, M.L.; de la Guardia, M. Non-chromatographic speciation analysis of arsenic and antimony in milk hydride generation atomic fluorescence spectrometry. Anal. Chim. Acta 2003, 493, 195–203. [Google Scholar] [CrossRef]
- Cava-Montesinos, P. Determination of arsenic and antimony in milk by hydride generation atomic fluorescence spectrometry. Talanta 2003, 60, 787–799. [Google Scholar] [CrossRef]
- Waheed, S.; Zaidi, J.H.; Ahmad, S. Instrumental neutron activation analysis of 23 individual food articles from a high altitude region. J. Radioanal. Nucl. Chem. Artic. 2003, 258, 73–81. [Google Scholar] [CrossRef]
- Lund, W. Determination of arsenic and antimony in wine by electrothermal atomic absorption spectrometry. Anal. Bioanal. Chem. 1996, 354, 93–96. [Google Scholar] [CrossRef]
- Garg, A.N.; Ramakrishna, V.V.S. Fish as an indicator of aquatic environment: Multielemental neutron activation analysis of nutrient and pollutant elements in fish from Indian coastal areas. Toxicol. Environ. Chem. 2006, 88, 125–140. [Google Scholar] [CrossRef]
- Hansen, H.R.; Pergantis, S.A. Detection of antimony species in citrus juices and drinking water stored in PET containers. J. Anal. At. Spectrom. 2006, 21, 731–733. [Google Scholar] [CrossRef]
- Zheng, J.; Iijima, A.; Furuta, N. Complexation effect of antimony compounds with citric acid and its application to the speciation of antimony(iii) and antimony(v) using HPLC-ICP-MS. J. Anal. At. Spectrom. 2001, 16, 812–818. [Google Scholar] [CrossRef]
- Khlifi, R.; Hamza-Chaffai, A. Head and neck cancer due to heavy metal exposure via tobacco smoking and professional exposure: A review. Toxicol. Appl. Pharmacol. 2010, 248, 71–88. [Google Scholar] [CrossRef] [PubMed]
- Ibanez, Y.; Le Bot, B.; Glorennec, P. House-dust metal content and bioaccessibility: A review. Eur. J. Miner. 2010, 22, 629–637. [Google Scholar] [CrossRef]
- Wiseman, C.L. Analytical methods for assessing metal bioaccessibility in airborne particulate matter: A scoping review. Anal. Chim. Acta 2015, 877, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Pelfrêne, A.; Cave, M.r.; Wragg, J.; Douay, F. In Vitro Investigations of Human Bioaccessibility from Reference Materials Using Simulated Lung Fluids. Int. J. Environ. Res. Public Health 2017, 14, 112. Available online: https://www.mdpi.com/1660-4601/14/2/112 (accessed on 13 January 2022). [CrossRef] [Green Version]
- Kelepertzis, E.; Chrastný, V.; Botsou, F.; Sigala, E.; Kypritidou, Z.; Komárek, M.; Skordas, K.; Argyraki, A. Tracing the sources of bioaccessible metal(loid)s in urban environments: A multidisciplinary approach. Sci. Total Environ. 2021, 771, 144827. [Google Scholar] [CrossRef]
- Allen, J.P.; Carey, J.J.; Walsh, A.; Scanlon, D.O.; Watson, G.W. Electronic Structures of Antimony Oxides. J. Phys. Chem. C 2013, 117, 14759–14769. [Google Scholar] [CrossRef]
- Smichowski, P.; Madrid, Y.; Guntiñas, M.B.D.L.C.; Cámara, C. Separation and determination of antimony(III) and antimony(V) species by high-performance liquid chromatography with hydride generation atomic absorption spectrometric and inductively coupled plasma mass spectrometric detection. J. Anal. At. Spectrom. 1995, 10, 815–821. [Google Scholar] [CrossRef]
- Delnomdedieu, M.; Basti, M.M.; Otvos, J.D.; Thomas, D.J. Reduction and binding of arsenate and dimethylarsinate by glutathione: A magnetic resonance study. Chem. Biol. Interact. 1994, 90, 139–155. (In English) [Google Scholar] [CrossRef]
- Tirmenstein, M.; Mathias, P.; Snawder, J.; Wey, H.; Toraason, M. Antimony-induced alterations in thiol homeostasis and adenine nucleotide status in cultured cardiac myocytes. Toxicology 1997, 119, 203–211. [Google Scholar] [CrossRef]
- Gebel, T. Arsenic and antimony: Comparative approach on mechanistic toxicology. Chem. Interact. 1997, 107, 131–144. [Google Scholar] [CrossRef]
- Grover, P.; Rekhadevi, P.; Danadevi, K.; Vuyyuri, S.; Mahboob, M.; Rahman, M. Genotoxicity evaluation in workers occupationally exposed to lead. Int. J. Hyg. Environ. Health 2010, 213, 99–106. (In English) [Google Scholar] [CrossRef] [PubMed]
- García-Lestón, J.; Roma-Torres, J.; Vilares, A.M.; Pinto, R.M.; Prista, J.; Teixeira, J.P.; Mayan, O.; Conde, J.; Pingarilho, M.; Gaspar, J.; et al. Genotoxic effects of occupational exposure to lead and influence of polymorphisms in genes involved in lead toxicokinetics and in DNA repair. Environ. Int. 2012, 43, 29–36. (In English) [Google Scholar] [CrossRef] [Green Version]
- Bocca, B.; Pino, A.; Alimonti, A.; Forte, G. Toxic metals contained in cosmetics: A status report. Regul. Toxicol. Pharmacol. 2014, 68, 447–467. (In English) [Google Scholar] [CrossRef] [PubMed]
- El Shanawany, S.; Foda, N.; Hashad, D.I.; Salama, N.; Sobh, Z. The potential DNA toxic changes among workers exposed to antimony trioxide. Environ. Sci. Pollut. Res. 2017, 24, 12455–12461. (In English) [Google Scholar] [CrossRef] [PubMed]
- Hayat, F.; Shah, S.N.A.; Rehman, Z.U.; Bélanger-Gariepy, F. Antimony(III) dithiocarbamates: Crystal structures, supramolecular aggregations, DNA binding, antioxidant and antileishmanial activities. Polyhedron 2021, 194, 114909. [Google Scholar] [CrossRef]
- Asghar, F.; Badshah, A.; Shah, A.; Rauf, M.K.; Ali, M.I.; Tahir, M.N.; Nosheen, E.; Rehman, Z.U.; Qureshi, R. Synthesis, characterization and DNA binding studies of organoantimony(V) ferrocenyl benzoates. J. Organomet. Chem. 2012, 717, 1–8. [Google Scholar] [CrossRef]
- Cavallo, D.; Iavicoli, I.; Setini, A.; Marinaccio, A.; Perniconi, B.; Carelli, G.; Iavicoli, S. Genotoxic risk and oxidative DNA damage in workers exposed to antimony trioxide. Environ. Mol. Mutagen. 2002, 40, 184–189. (In English) [Google Scholar] [CrossRef]
- Kirkland, D.; Whitwell, J.; Deyo, J.; Serex, T. Failure of antimony trioxide to induce micronuclei or chromosomal aberrations in rat bone-marrow after sub-chronic oral dosing. Mutat. Res. 2007, 627, 119–128. (In English) [Google Scholar] [CrossRef]
- Hashemzaei, M.; Pourahmad, J.; Safaeinejad, F.; Tabrizian, K.; Akbari, F.; Bagheri, G.; Hosseini, M.-J.; Shahraki, J. Antimony induces oxidative stress and cell death in normal hepatocytes. Toxicol. Environ. Chem. 2015, 97, 256–265. [Google Scholar] [CrossRef]
- Seiple, L.A.; Cardellina, J.H., 2nd; Akee, R.; Stivers, J.T. Potent Inhibition of Human Apurinic/Apyrimidinic Endonuclease 1 by Arylstibonic Acids. Mol. Pharmacol. 2007, 73, 669–677. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, M.A.; Cánovas, A.; Wu, P.-W.; Islas-Trejo, A.; Medrano, J.F.; Rice, R.H. Parallel responses of human epidermal keratinocytes to inorganic SbIII and AsIII. Environ. Chem. 2016, 13, 963–970. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales, M.E.; Derbes, R.S.; Ade, C.M.; Ortego, J.C.; Stark, J.; Deininger, P.L.; Roy-Engel, A.M. Heavy Metal Exposure Influences Double Strand Break DNA Repair Outcomes. PLoS ONE 2016, 11, e0151367. (In English) [Google Scholar] [CrossRef]
- Jiang, X.; An, Z.; Lu, C.; Chen, Y.; Du, E.; Qi, S.; Yang, K.; Zhang, Z.; Xu, Y. The protective role of Nrf2-Gadd45b against antimony-induced oxidative stress and apoptosis in HEK293 cells. Toxicol. Lett. 2016, 256, 11–18. (In English) [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Lee, D.-J.; Pan, X. Desorption of Hg(II) and Sb(V) on extracellular polymeric substances: Effects of pH, EDTA, Ca(II) and temperature shocks. Bioresour. Technol. 2013, 128, 711–715. [Google Scholar] [CrossRef] [PubMed]
- Xiaojian, L.; Xingkang, J.; Ming, G.; Yousheng, K.; Dongliang, P.; Ningchen, L.; Sijin, L. Non-toxic Dose of Antimony Exposure Could Enhance the Intracellular Energy Metabolism and Promote Prostate Cancer Progression. Asian J. Ecotoxicol. 2015, 10, 129–135. [Google Scholar]
- Wu, C.; Li, F.; Xu, H.; Zeng, W.; Yu, R.; Wu, X.; Shen, L.; Liu, Y.; Li, J. The potential role of brassinosteroids (BRs) in alleviating antimony (Sb) stress in Arabidopsis thaliana. Plant Physiol. Biochem. 2019, 141, 51–59. [Google Scholar] [CrossRef]
- Xia, S.; Zhu, X.; Yan, Y.; Zhang, T.; Chen, G.; Lei, D.; Wang, G. Developmental neurotoxicity of antimony (Sb) in the early life stages of zebrafish. Ecotoxicol. Environ. Saf. 2021, 218, 112308. [Google Scholar] [CrossRef]
- Park, G.; Brock, D.J.; Pellois, J.-P.; Gabbaï, F.P. Heavy Pnictogenium Cations as Transmembrane Anion Transporters in Vesicles and Erythrocytes. Chem 2019, 5, 2215–2227. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, B.; Wu, L.; Zhou, Y.; Li, Y.; Mao, X.; Chen, Y.; Wang, J.; Luo, P.; Ma, J.; et al. Association of Exposure to Ambient Fine Particulate Matter Constituents with Semen Quality among Men Attending a Fertility Center in China. Environ. Sci. Technol. 2019, 53, 5957–5965. [Google Scholar] [CrossRef]
- Zafar, A.; Eqani, S.A.M.A.S.; Bostan, N.; Cincinelli, A.; Tahir, F.; Shah, S.T.A.; Hussain, A.; Alamdar, A.; Huang, Q.; Peng, S.; et al. Toxic metals signature in the human seminal plasma of Pakistani population and their potential role in male infertility. Environ. Geochem. Health 2015, 37, 515–527. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Wang, X.; Zhang, X.; Li, Q.; Xu, S.; Huang, L.; Zhang, Y.; Lin, L.; Gao, D.; Wu, M.; et al. Antimony in urine during early pregnancy correlates with increased risk of gestational diabetes mellitus: A prospective cohort study. Environ. Int. 2019, 123, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Li, X.; Liu, X.; Dong, M.; Xiao, J.; Wang, J.; Zhou, M.; Wang, Y.; Ning, D.; Ma, W.; et al. Association between maternal antimony exposure and risk of gestational diabetes mellitus: A birth cohort study. Chemosphere 2020, 246, 125732. [Google Scholar] [CrossRef]
- Vigeh, M.; Yunesian, M.; Matsukawa, T.; Shamsipour, M.; Jeddi, M.Z.; Rastkari, N.; Hassanvand, M.S.; Shariat, M.; Kashani, H.; Pirjani, R.; et al. Prenatal blood levels of some toxic metals and the risk of spontaneous abortion. J. Environ. Health Sci. Eng. 2021, 19, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Bienert, G.P.; Schüssler, M.D.; Jahn, T.P. Metalloids: Essential, beneficial or toxic? Major intrinsic proteins sort it out. Trends Biochem. Sci. 2008, 33, 20–26. (In English) [Google Scholar] [CrossRef] [PubMed]
- Rosen, B.P.; Tamás, M.J. Arsenic Transport in Prokaryotes and Eukaryotic Microbes. Adv. Exp. Med. Biol. 2010, 679, 47–55. (In English) [Google Scholar]
- Mukhopadhyay, R.; Bhattacharjee, H.; Rosen, B.P. Aquaglyceroporins: Generalized metalloid channels. Biochim. Biophys. Acta BBA Gen. Subj. 2014, 1840, 1583–1591. (In English) [Google Scholar] [CrossRef] [Green Version]
- Sanders, O.I.; Rensing, C.; Kuroda, M.; Mitra, B.; Rosen, B.P. Antimonite is accumulated by the glycerol facilitator GlpF in Escherichia coli. J. Bacteriol. 1997, 179, 3365–3367. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.L.; Liu, Z.; Rosen, B.P. As(III) and Sb(III) Uptake by GlpF and Efflux by ArsB in Escherichia coli. J. Biol. Chem. 2004, 279, 18334–18341. (In English) [Google Scholar] [CrossRef] [Green Version]
- Hachez, C.; Chaumont, F. Aquaporins: A Family of Highly Regulated Multifunctional Channels. In MIPs and Their Role in the Exchange of Metalloids; Advances in Experimental Medicine and Biology, No. 679; Jahn, T.P., Bienert, G.P., Eds.; Springer: New York, NY, USA, 2010; pp. 1–17. [Google Scholar]
- Wysocki, R.; Chery, C.C.; Wawrzycka, D.; Van Hulle, M.; Cornelis, R.; Thevelein, J.; Tamas, M.J. The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol. Microbiol. 2001, 40, 1391–1401. (In English) [Google Scholar] [CrossRef]
- Liu, Z.; Shen, J.; Carbrey, J.M.; Mukhopadhyay, R.; Agre, P.; Rosen, B.P. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc. Natl. Acad. Sci. USA 2002, 99, 6053–6058. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Carbrey, J.M.; Agre, P.; Rosen, B.P. Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochem. Biophys. Res. Commun. 2004, 316, 1178–1185. (In English) [Google Scholar] [CrossRef] [PubMed]
- Yang, H.-C.; Cheng, J.; Finan, T.M.; Rosen, B.P.; Bhattacharjee, H. Novel Pathway for Arsenic Detoxification in the Legume Symbiont Sinorhizobium meliloti. J. Bacteriol. 2005, 187, 6991–6997. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maciaszczyk-Dziubinska, E.; Migdal, I.; Migocka, M.; Bocer, T.; Wysocki, R. The yeast aquaglyceroporin Fps1p is a bidirectional arsenite channel. FEBS Lett. 2009, 584, 726–732. (In English) [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Sanchez, M.A.; Jiang, X.; Boles, E.; Landfear, S.; Rosen, B.P. Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem. Biophys. Res. Commun. 2006, 351, 424–430. (In English) [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Boles, E.; Rosen, B.P. Arsenic Trioxide Uptake by Hexose Permeases in Saccharomyces cerevisiae. J. Biol. Chem. 2004, 279, 17312–17318. (In English) [Google Scholar] [CrossRef] [Green Version]
- Maciaszczyk-Dziubinska, E.; Wawrzycka, D.; Wysocki, R. Arsenic and Antimony Transporters in Eukaryotes. Int. J. Mol. Sci. 2012, 13, 3527–3548. (In English) [Google Scholar] [CrossRef] [Green Version]
- Zangi, R.; Filella, M. Transport routes of metalloids into and out of the cell: A review of the current knowledge. Chem. Interact. 2012, 197, 47–57. (In English) [Google Scholar] [CrossRef]
- Frézard, F.; Demicheli, C.; Ferreira, C.S.; Costa, M.A.P. Glutathione-Induced Conversion of Pentavalent Antimony to Trivalent Antimony in Meglumine Antimoniate. Antimicrob. Agents Chemother. 2001, 45, 913–916. (In English) [Google Scholar] [CrossRef] [Green Version]
- Yan, S.; Wong, I.L.K.; Chow, L.M.C.; Sun, H. Rapid reduction of pentavalent antimony by trypanothione: Potential relevance to antimonial activation. Chem. Commun. 2003, 266–267. [Google Scholar] [CrossRef]
- Yan, S.; Li, F.; Ding, K.; Sun, H. Reduction of pentavalent antimony by trypanothione and formation of a binary and ternary complex of antimony(III) and trypanothione. JBIC J. Biol. Inorg. Chem. 2003, 8, 689–697. (In English) [Google Scholar] [CrossRef]
- Denton, H.; McGregor, J.C.; Coombs, G.H. Reduction of anti-leishmanial pentavalent antimonial drugs by a parasite-specific thiol-dependent reductase, TDR1. Biochem. J. 2004, 381, 405–412. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobbett, C.; Goldsbrough, P. Phytochelatins and Metallothioneins: Roles in heavy Metal Detoxification and Homeostasis. Annu. Rev. Plant Biol. 2002, 53, 159–182. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verbruggen, N.; Hermans, C.; Schat, H. Mechanisms to cope with arsenic or cadmium excess in plants. Curr. Opin. Plant Biol. 2009, 12, 364–372. (In English) [Google Scholar] [CrossRef] [PubMed]
- Wysocki, R.; Tamás, M.J. How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol. Rev. 2010, 34, 925–951. (In English) [Google Scholar] [CrossRef] [Green Version]
- Lemire, J.A.; Harrison, J.J.; Turner, R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications. Nat. Rev. Microbiol. 2013, 11, 371–384. [Google Scholar] [CrossRef]
- Ge, R.; Sun, H. Bioinorganic Chemistry of Bismuth and Antimony: Target Sites of Metallodrugs. Acc. Chem. Res. 2007, 40, 267–274. (In English) [Google Scholar] [CrossRef]
- Adeyemi, J.O.; Onwudiwe, D.C. Chemistry and Some Biological Potential of Bismuth and Antimony Dithiocarbamate Complexes. Molecules 2020, 25, 305. (In English) [Google Scholar] [CrossRef] [Green Version]
- Scott, N.; Hatlelid, K.M.; MacKenzie, N.E.; Carter, D.E. Reactions of arsenic(III) and arsenic(V) species with glutathione. Chem. Res. Toxicol. 1993, 6, 102–106. (In English) [Google Scholar] [CrossRef]
- Sun, H.; Yan, S.C.; Cheng, W.S. Interaction of antimony tartrate with the tripeptide glutathione. JBIC J. Biol. Inorg. Chem. 2000, 267, 5450–5457. (In English) [Google Scholar] [CrossRef]
- Pitman, A.L.; Pourbaix, M.; De Zoubov, N. Potential-pH Diagram of the Antimony-Water System: Its Applications to Properties of the Metal, Its Compounds, Its Corrosion, and Antimony Electrodes. J. Electrochem. Soc. 1957, 104, 594. [Google Scholar] [CrossRef]
- Kip, A.E.; Schellens, J.H.M.; Beijnen, J.H.; Dorlo, T.P.C. Clinical Pharmacokinetics of Systemically Administered Antileishmanial Drugs. Clin. Pharmacokinet. 2017, 57, 151–176. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.-X.; Pan, A.; Feng, W.; Liu, C.; Huang, L.-L.; Ai, S.-H.; Zeng, Q.; Lu, W.-Q. Variability and exposure classification of urinary levels of non-essential metals aluminum, antimony, barium, thallium, tungsten and uranium in healthy adult men. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 424–434. (In English) [Google Scholar] [CrossRef] [PubMed]
- Barregard, L.; Ellingsen, D.G.; Berlinger, B.; Weinbruch, S.; Harari, F.; Sallsten, G. Normal variability of 22 elements in 24-h urine samples—Results from a biobank from healthy non-smoking adults. Int. J. Hyg. Environ. Health 2021, 233, 113693. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Qiu, S.; Li, X.; Jiang, Y.; Jing, C. Antimony exposure and speciation in human biomarkers near an active mining area in Hunan, China. Sci. Total Environ. 2018, 640–641, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Diaz-Bone, R.A.; Van de Wiele, T. Biotransformation of metal(loid)s by intestinal microorganisms. Pure Appl. Chem. 2010, 82, 409–427. [Google Scholar] [CrossRef] [Green Version]
- Patriarca, M.; Menditto, A.; Rossi, B.; Lyon, T.; Fell, G. Environmental exposure to metals of newborns, infants and young children. Microchem. J. 2000, 67, 351–361. [Google Scholar] [CrossRef]
- Brieger, H.; Semisch, C.W., 3rd; Stasney, J.; Piatnek, D.A. Industrial antimony poisoning. Ind. Med. Surg. 1954, 23, 521–523. (In English) [Google Scholar]
- Klucik, I.; Kemka, L.R. The excretion of antimony in workers in antimony metallurgical works (Czech.). Prac. Lek. 1960, 12, 133–138. [Google Scholar]
- McCallum, R.I. The Work of an Occupational Hygiene Service in Environmental Control. Ann. Occup. Hyg. 1963, 6, 55–64. [Google Scholar] [CrossRef]
- Cooper, D.A.; Pendergrass, E.P.; Vorwald, A.J.; Mayock, R.L.; Brieger, H. Pneumoconiosis among workers in an Antimony Industry. Am. J. Roentgenol. 1968, 103, 495–508. [Google Scholar] [CrossRef]
- Lüdersdorf, R.; Fuchs, A.; Mayer, P.; Skulsuksai, G.; Schäcke, G. Biological assessment of exposure to antimony and lead in the glass-producing industry. Int. Arch. Occup. Environ. Health 1987, 59, 469–474. (In English) [Google Scholar] [CrossRef]
- Bailly, R.; Lauwerys, R.; Buchet, J.P.; Mahieu, P.; Konings, J. Experimental and human studies on antimony metabolism: Their relevance for the biological monitoring of workers exposed to inorganic antimony. Occup. Environ. Med. 1991, 48, 93–97. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belyaeva, A.P. The effect of antimony on reproduction. Gig. Tr. Prof Zabol. 1967, 11, 32–37. [Google Scholar]
- McCallum, R. Detection of Antimony in Process Workers’ Lungs by X-Radiation. Occup. Med. 1967, 17, 134–138. (In English) [Google Scholar] [CrossRef] [PubMed]
- McCallum, R.I.; Day, M.J.; Underhill, J.; Aird, E.G. Measurement of antimony oxide dust in human lungs in vivo by X-ray spectrophotometry. Inhaled Part. 1970, 2, 611–619. (In English) [Google Scholar]
- Gerhardsson, L.; Brune, D.; Nordberg, G.F.; Wester, P.O. Antimony in lung, liver and kidney tissue from deceased smelter workers. Scand. J. Work. Environ. Health 1982, 8, 201–208. (In English) [Google Scholar] [CrossRef] [Green Version]
- Vanoeteren, C.; Cornelis, R.; Versieck, J. Evaluation of trace elements in human lung tissue I. Concentration and distribution. Sci. Total Environ. 1986, 54, 217–230. [Google Scholar] [CrossRef]
- Dernehl, C.U.; Nau, C.A.; Sweets, H.H. Animal studies on the toxicity of inhaled antimony trioxide. J. Ind. Hyg. Toxicol. 1945, 27, 256–262. (In English) [Google Scholar]
- Bulmer, F.M.R.; Johnston, J.H. Antimony trisulfide. J. Ind. Hyg. Toxicol. 1948, 30, 26–28. (In English) [Google Scholar]
- Gross, P.; Westrick, M.L.; Brown, J.H.; Srsic, R.P.; Schrenk, H.H.; Hatch, T.F. Toxicologic study of calcium halophosphate phosphors and antimony trioxide. II. Pulmonary studies. AMA Arch. Ind. Health 1955, 11, 479–486. (In English) [Google Scholar] [PubMed]
- Felicetti, S.A.; Thomas, R.G.; McClellan, R.O. Metabolism of Two Valence States of Inhaled Antimony in Hamsters. AIHAJ 1974, 35, 292–300. [Google Scholar] [CrossRef] [PubMed]
- Leffler, P.; Gerhardsson, L.; Brune, D.; Nordberg, G.F. Lung retention of antimony and arsenic in hamsters after the intratracheal instillation of industrial dust. Scand. J. Work. Environ. Health 1984, 10, 245–251. (In English) [Google Scholar] [CrossRef] [PubMed]
- Groth, D.H.; Stettler, L.E.; Burg, J.R.; Busey, W.M.; Grant, G.C.; Wong, L. Carcinogenic effects of antimony trioxide and antimony ore concentrate in rats. J. Toxicol. Environ. Health Part A 1986, 18, 607–626. [Google Scholar] [CrossRef] [PubMed]
- Newton, P.E.; Bolte, H.F.; Daly, I.W.; Pillsbury, B.D.; Terrill, J.B.; Drew, R.T.; Ben-Dyke, R.; Sheldon, A.W.; Rubin, L.F. Subchronic and Chronic Inhalation Toxicity of Antimony Trioxide in the Rat. Fundam. Appl. Toxicol. 1994, 22, 561–576. (In English) [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.J. Acute Intoxication from Antimony Trichloride. Occup. Environ. Med. 1966, 23, 318–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renes, L.E. Antimony poisoning in industry. AMA Arch. Ind. Hyg. Occup. Med. 1953, 7, 99–108. (In English) [Google Scholar]
- Klucik, I.; Juck, A.; Gruberova, J. Respiratory and pulmonary lesions caused by antimony trioxide dust. Prac. Lek. 1962, 14, 363–368. [Google Scholar]
- McCallum, R.I. The industrial toxicology of antimony. The Ernestine Henry lecture 1987. J. R. Coll. Physicians Lond. 1989, 23, 28–32. (In English) [Google Scholar]
- Bradley, W.R.; Fredrick, W.G. The Toxicity of Antimony:—Animal Studies—. Am. Ind. Hyg. Assoc. Q. 1941, 2, 15–22. [Google Scholar] [CrossRef]
- Honey, M. The effects of sodium antimony tartrate on the myocardium. Br. Heart J. 1960, 22, 601–616. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winship, K.A. Toxicity of antimony and its compounds. Advers. Drug React. Acute Poisoning Rev. 1987, 6, 67–90. (In English) [Google Scholar]
- Hepburn, N.C.; Nolan, J.; Fenn, L.; Herd, R.M.; Neilson, J.M.; Sutherland, G.R.; Fox, K.A. Cardiac effects of sodium stibogluconate: Myocardial, electrophysiological and biochemical studies. QJM Int. J. Med. 1994, 87, 465–472. (In English) [Google Scholar]
- Tirmenstein, M.; Plews, P.; Walker, C.; Woolery, M.; Wey, H.; Toraason, M. Antimony-Induced Oxidative Stress and Toxicity in Cultured Cardiac Myocytes. Toxicol. Appl. Pharmacol. 1995, 130, 41–47. (In English) [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Hidaka, S. Studies on calcium phosphate precipitation: Effects of metal ions used in dental materials. J. Biomed. Mater. Res. 1994, 28, 1403–1410. (In English) [Google Scholar] [CrossRef]
- Eke, C.; Er, K.; Segebade, C.; Boztosun, I. Study of filling material of dental composites: An analytical approach using radio-activation. Radiochim. Acta 2018, 106, 69–77. [Google Scholar] [CrossRef]
- Imai, K.; Nakamura, M. In vitro embryotoxicity testing of metals for dental use by differentiation of embryonic stem cell test. Congenit. Anom. 2006, 46, 34–38. (In English) [Google Scholar] [CrossRef]
- Léonard, A.; Gerber, G. Mutagenicity, carcinogenicity and teratogenicity of antimony compounds. Mutat. Res. Genet. Toxicol. 1996, 366, 1–8. (In English) [Google Scholar] [CrossRef]
- Gebel, T. Suppression of arsenic-induced chromosome mutagenicity by antimony. Mutat. Res. Toxicol. Environ. Mutagen. 1998, 412, 213–218. (In English) [Google Scholar] [CrossRef]
- Davis, E.; Bakulski, K.M.; Goodrich, J.M.; Peterson, K.E.; Marazita, M.L.; Foxman, B. Low levels of salivary metals, oral microbiome composition and dental decay. Sci. Rep. 2020, 10, 14640. (In English) [Google Scholar] [CrossRef]
- Holgerson, P.L.; Öhman, C.; Rönnlund, A.; Johansson, I. Maturation of Oral Microbiota in Children with or without Dental Caries. PLoS ONE 2015, 10, e0128534. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caufield, P.; Schön, C.; Saraithong, P.; Li, Y.; Argimón, S. Oral Lactobacilli and Dental Caries: A Model for Niche Adaptation in Humans. J. Dent. Res. 2015, 94, 110S–118S. (In English) [Google Scholar] [CrossRef] [PubMed]
- Wiener, R.C.; Bhandari, R. Association of electronic cigarette use with lead, cadmium, barium, and antimony body burden: NHANES 2015–2016. J. Trace Elem. Med. Biol. 2020, 62, 126602. (In English) [Google Scholar] [CrossRef] [PubMed]
- Andrewes, P.; Cullen, W.R. Organoantimony Compounds in the Environment. In Organometallic Compounds in the Environment, 2nd ed.; Craig, P.G., Ed.; Wilry: Chichester, UK, 2003; pp. 277–303. [Google Scholar]
- Falta, T.; Limbeck, A.; Koellensperger, G.; Hann, S. Bioaccessibility of selected trace metals in urban PM2.5 and PM10 samples: A model study. Anal. Bioanal. Chem. 2008, 390, 1149–1157. (In English) [Google Scholar] [CrossRef]
- Dunn, J.T. A curious case of antimony poisoning. Analyst 1928, 53, 532–533. [Google Scholar]
- Lauwers, L.F.; Roelants, A.; Rosseel, P.M.; Heyndrickx, B.; Baute, L. Oral antimony intoxications in man. Crit. Care Med. 1990, 18, 324–326. (In English) [Google Scholar] [CrossRef]
- Moskalev, Y.I. Materials on the distribution of radioactive antimony. Med. Radiol. 1959, 4, 6–13. [Google Scholar]
- Waitz, J.A.; Ober, R.E.; Meisenhelder, J.E.; Thompson, P.E. Physiological disposition of antimony after administration of 124Sb-labelled tartar emetic to rats, mice and monkeys, and the effects of tris (p-aminophenyl) Carbonium pamoate on this distribution. Bull. World Health Organ. 1965, 33, 537–546. (In English) [Google Scholar]
- Van Bruwaene, R.; Gerber, G.B.; Kirchmann, R.; Colard, J. Metabolism of antimony-124 in lactating dairy cows. Health Phys. 1982, 43, 733–738. (In English) [Google Scholar]
- Gerber, G.B.; Maes, J.; Eykens, B. Transfer of antimony and arsenic to the developing organism. Arch. Toxicol. 1982, 49, 159–168. (In English) [Google Scholar] [CrossRef]
- Dieter, M.P.; Jameson, C.W.; Elwell, M.R.; Lodge, J.W.; Hejtmancik, M.; Grumbein, S.L.; Ryan, M.; Peters, A.C. Comparative toxicity and tissue distribution of antimony potassium tartrate in rats and mice dosed by drinking water or intraperitoneal injection. J. Toxicol. Environ. Health Part A 1991, 34, 51–82. (In English) [Google Scholar] [CrossRef] [PubMed]
- Subramanian, K.S.; Poon, R.; Chu, I.; Connor, J.W. Antimony in Drinking Water, Red Blood Cells, and Serum: Development of Analytical Methodology Using Transversely Heated Graphite Furnace Atomization-Atomic Absorption Spectrometry. Arch. Environ. Contam. Toxicol. 1997, 32, 431–435. (In English) [Google Scholar] [CrossRef] [PubMed]
- Gross, P.; Brown, J.H.; Westrick, M.L.; Srsic, R.P.; Butler, N.L.; Hatch, T.F. Toxicologic study of calcium halophosphate phosphors and antimony trioxide. I. Acute and chronic toxicity and some pharmacologic aspects. AMA Arch. Ind. Health 1955, 11, 473–478. (In English) [Google Scholar] [PubMed]
- Schroeder, H.A.; Mitchener, M.; Nason, A.P. Zirconium, Niobium, Antimony, Vanadium and Lead in Rats: Life term studies. J. Nutr. 1970, 100, 59–68. [Google Scholar] [CrossRef] [PubMed]
- Sunagawa, S. Experimental studies on antimony poisoning (author’s transl). Igaku Kenkyu. 1981, 51, 129–142. (In Japanese) [Google Scholar] [PubMed]
- Hiraoka, N. The toxicity and organ-distribution of antimony after chronic administration to rats. Kyoto Fenitsu Ika Daigaku Gasshi 1986, 95, 997–1017. [Google Scholar]
- Rossi, F.; Acampora, R.; Vacca, C.; Maione, S.; Matera, M.G.; Servodio, R.; Marmo, E. Prenatal and postnatal antimony exposure in rats: Effect on vasomotor reactivity development of pups. Teratog. Carcinog. Mutagen. 1987, 7, 491–496. (In English) [Google Scholar] [CrossRef]
- Poon, R.; Chu, I.; Lecavalier, P.; Valli, V.; Foster, W.; Gupta, S.; Thomas, B. Effects of antimony on rats following 90-day exposure via drinking water. Food Chem. Toxicol. 1998, 36, 21–35. (In English) [Google Scholar] [CrossRef]
- Oliver, T. The health of antimony oxide workers. BMJ 1933, 1, 1094–1095. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, C.J. Antimony spots. Trans. St. John’s Hosp. Dermatol. Soc. 1965, 51, 40–48. (In English) [Google Scholar]
- Thivolet, J.; Melinat, M.; Pellerat, J.; Perrot, H.; Francou, M. Occupational dermatitis attributed to antimony. Arch. Mal. Prof. 1971, 32, 571–573. (In French) [Google Scholar] [PubMed]
- White Jr, G.P.; Mathias, C.G.; Davin, J.S. Dermatitis in workers exposed to antimony in a melting process. J. Occup. Med. 1993, 35, 392–395. (In English) [Google Scholar]
- Volis, M.J. Dermatology Technique: Mohs Micrographic Surgery. Mako NSU Undergrad. Stud. J. 2021, 2021, 3. [Google Scholar]
- Fukuyama, Y.; Kawarai, S.; Tezuka, T.; Kawabata, A.; Maruo, T. The palliative efficacy of modified Mohs paste for controlling canine and feline malignant skin wounds. Veter-Q. 2016, 36, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Mors, F.E.; Sevringhaus, E.L.; Schmidt, E.R. Conservative amputation of gangrenous parts by chemosurgery. Ann. Surg. 1941, 114, 274–282. (In English) [Google Scholar] [CrossRef]
- Phelan, J.T. Mohs’ Chemosurgery Technique for Basal Cell Carcinoma of the Chin and Cheek Areas of the Face. Arch. Surg. 1963, 87, 212–214. [Google Scholar] [CrossRef]
- Lo, J.S.; Snow, S.N.; Mohs, F.E. Cylindroma Treated by Mohs Micrographic Surgery. J. Dermatol. Surg. Oncol. 1991, 17, 871–874. [Google Scholar] [CrossRef]
- Mohs, F.E. Mohs Micrographic Surgery: A Historical Perspective. Dermatol. Clin. 1989, 7, 609–612. [Google Scholar] [CrossRef]
- Trost, L.B.; Bailin, P.L. History of Mohs Surgery. Dermatol. Clin. 2011, 29, 135–139. (In English) [Google Scholar] [CrossRef]
- Wang, M.Z.; Warshaw, E.M. Bloodroot. Derm. Clin. 2012, 23, 281–283. [Google Scholar] [CrossRef]
- Mohs, F.E. Chemosurgery: A Microscopically Controlled Method of Cancer Excision. Arch. Surg. 1941, 42, 279–295. [Google Scholar] [CrossRef]
- Mohs, F.E.; Guyer, M.F. Pre-excisional fixation of tissues in the treatment of cancer in rats. Cancer Res. 1941, 1, 49–51. [Google Scholar]
- Mohs, F.E. Chemosurgical treatment of cancer of the Lip: A Microscopically Controlled Method of Excision. Arch. Surg. 1944, 48, 478–488. [Google Scholar] [CrossRef]
- Mohs, F.E. Chemosurgical treatment of cancer of the nose: A microscopically controlled method. Arch. Surg. 1946, 53, 327–344. (In English) [Google Scholar] [CrossRef]
- Mohs, F.E. Chemosurgery for Melanoma. Arch. Dermatol. 1977, 113, 285. [Google Scholar] [CrossRef]
- Mohs, F.E.; Snow, S.N.; Messing, E.M.; Kuglitsch, M.E. Microscopically Controlled Surgery in the Treatment of Carcinoma of the Penis. J. Urol. 1985, 133, 961–966. (In English) [Google Scholar] [CrossRef]
- Mohs, F.E. Micrographic surgery for the microscopically controlled excision of eyelid cancer: History and development. In Advances in Opthalmic Plastic and Reconstructive Surgery; Bosniak, S.L., Smith, B.C., Eds.; Pergamon Press: New York, NY, USA, 1986; pp. 381–408. [Google Scholar]
- Mohs, F.; Larson, P.; Iriondo, M. Micrographic surgery for the microscopically controlled excision of carcinoma of the external ear. J. Am. Acad. Dermatol. 1988, 19, 729–737. (In English) [Google Scholar] [CrossRef]
- Croaker, A.; King, G.J.; Pyne, J.H.; Anoopkumar-Dukie, S.; Liu, L. Sanguinaria canadensis: Traditional Medicine, Phytochemical Composition, Biological Activities and Current Uses. Int. J. Mol. Sci. 2016, 17, 1414. Available online: https://www.mdpi.com/1422-0067/17/9/1414 (accessed on 13 January 2022). [CrossRef] [Green Version]
- Mohs, F.E. Chemosurgery for skin cancer: Fixed tissue and fresh tissue techniques. Arch. Dermatol. 1976, 112, 211–215. (In English) [Google Scholar] [CrossRef]
- Finley, E.M. The principles of mohs micrographic surgery for cutaneous neoplasia. Ochsner J. 2003, 5, 22–33. [Google Scholar]
- Hobbs, E.R.; Wheeland, R.G.; Bailin, P.L.; Ratz, J.L.; Yetman, R.J.; Zins, J.E. Treatment of Dermatofibrosarcoma Protuberans with Mohs Micrographic Surgery. Ann. Surg. 1988, 207, 102–107. (In English) [Google Scholar] [CrossRef] [PubMed]
- Komine, N.; Narita, S.; Kigure, T.; Tsuruta, H.; Numakura, K.; Akihama, S.; Saito, M.; Inoue, T.; Tsuchiya, N.; Satoh, S.; et al. Successful Local Control of Recurrent Penile Cancer Treated with a Combination of Systemic Chemotherapy, Irradiation, and Mohs’ Paste: A Case Report. Case Rep. Oncol. 2014, 7, 522–527. (In English) [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, M.; Katsuki, T.; Yoshida, K.; Onoda, M.; Iwamura, M.; Inokuchi, T.; Furutani, A.; Katoh, T.; Kawano, K.; Hirata, K. Successful Pre-Operative Local Control of Skin Invasion of Breast Cancer Using a Combination of Systemic Chemotherapy and Mohs Paste. J. Breast Cancer 2021, 24, 481–490. (In English) [Google Scholar] [CrossRef] [PubMed]
- Firmino, F.; Villela-Castro, D.L.; dos Santos, J.; Santos, V.L.C.D.G. Topical Management of Bleeding from Malignant Wounds Caused by Breast Cancer: A Systematic Review. J. Pain Symptom Manag. 2021, 61, 1278–1286. [Google Scholar] [CrossRef]
- Yanazume, S.; Douzono, H.; Yanazume, Y.; Iio, K.; Douchi, T. New hemostatic method using Mohs’ paste for fatal genital bleeding in advanced cervical cancer. Gynecol. Oncol. Case Rep. 2013, 4, 47–49. (In English) [Google Scholar] [CrossRef] [Green Version]
- Haldar, A.K.; Sen, P.; Roy, S. Use of Antimony in the Treatment of Leishmaniasis: Current Status and Future Directions. Mol. Biol. Int. 2011, 2011, 571242. [Google Scholar] [CrossRef] [Green Version]
- Fakhry, A. Asphyxia following injection of tartar emetic. Lancet 1931, 218, 1325. [Google Scholar] [CrossRef]
- Fry, W.B. Antimony in the treatment of syphilis. J. R. Army Med. Corps 1914, 22, 514–520. [Google Scholar]
- Large, D.T.M.; Bonavia, V.J. Arsenic and Antimony in Malaria. J. R. Army Med. Corps 1926, 47, 430–438. [Google Scholar] [CrossRef]
- Patrick, A. Experiences with Intravenous Injections of Quinine and Antimony in the Treatment of Malaria. J. R. Army Med. Corps 1919, 32, 407–429. [Google Scholar] [CrossRef]
- Dye, W.H. Comparative Results in the Treatment of Frambœsia Tropica in Northern Nyasaland. J. R. Army Med. Corps 1924, 42, 280–286. [Google Scholar] [CrossRef]
- Ariza-Roldán, A.O.; López-Cardoso, E.M.; Rosas-Valdez, M.E.; Roman-Bravo, P.P.; Vargas-Pineda, D.G.; Cea-Olivares, R.; Acevedo-Quiroz, M.; Razo-Hernández, R.S.; Alvarez-Fitz, P.; Jancik, V. Synthesis, characterization, antimicrobial and theoretical studies of the first main group tris (ephedrinedithiocarbamate) complexes of As (III), Sb (III), Bi (III), Ga (III) and In (III). Polyhedron 2017, 134, 221–229. [Google Scholar] [CrossRef]
- Sharma, D.K.; Singh, Y.; Sharma, J. Monophenylantimony (III) Derivatives of Cyclic Dithiocarbamates; Synthesis, Spectroscopic Characterization, and Antimicrobial Study. Phosphorus Sulfur Silicon Relat. Elem. 2013, 188, 1194–1204. [Google Scholar] [CrossRef]
- Urgut, O.; Ozturk, I.; Banti, C.; Kourkoumelis, N.; Manoli, M.; Tasiopoulos, A.; Hadjikakou, S. New antimony(III) halide complexes with dithiocarbamate ligands derived from thiuram degradation: The effect of the molecule’s close contacts on in vitro cytotoxic activity. Mater. Sci. Eng. C 2016, 58, 396–408. (In English) [Google Scholar] [CrossRef]
- Duffin, J.; Campling, B.G. Therapy and disease concepts: The history (and future?) of antimony in cancer. J. Hist. Med. Allied Sci. 2002, 57, 61–78. (In English) [Google Scholar] [CrossRef] [PubMed]
- Hunt, R.; McCANN, W.S.; Rowntree, L.G.; Voegtlin, C.; Eggleston, C.; Maxcy, K.F. The Status of Intravenous Therapy: V. Limitations to the use of quinine intravenously in the treatment of malaria. J. Am. Med Assoc. 1928, 91, 1372–1375. [Google Scholar] [CrossRef]
- Mitjà, O.; Hays, R.; Rinaldi, A.; McDermott, R.; Bassat, Q. New Treatment Schemes for Yaws: The Path toward Eradication. Clin. Infect. Dis. 2012, 55, 406–412. [Google Scholar] [CrossRef] [Green Version]
- Thakur, C.P.; Kumar, M.; Singh, S.K.; Sharma, D.; Prasad, U.S.; Singh, R.S.; Dhawan, P.S.; Achari, V. Comparison of regimens of treatment with sodium stibogluconate in kala-azar. BMJ 1984, 288, 895–897. (In English) [Google Scholar] [CrossRef] [Green Version]
- Thakur, C.P.; Kumar, M.; Kumar, P.; Mishra, B.N.; Pandey, A.K. Rationalisation of regimens of treatment of kala-azar with sodium stibogluconate in India: A randomised study. BMJ 1988, 296, 1557–1561. (In English) [Google Scholar] [CrossRef] [Green Version]
- Chulay, J.D.; Mugambi, M.; Spencer, H.C. Electrocardiographic changes during Treatment of Leishmaniasis with Pentavalent Antimony (Sodium Stibogluconate). Am. J. Trop. Med. Hyg. 1985, 34, 702–709. (In English) [Google Scholar] [CrossRef]
- Kouvoutsakis, G.; Mitsi, C.; Tarantilis, P.A.; Polissiou, M.G.; Pappas, C.S. Antimony compounds in the treatment of trypanosomiasis. Lancet 1910, 175, 938–939. [Google Scholar] [CrossRef]
- Jennings, F.W. Chemotherapy of trypanosomiasis: The potentiation of antimonial compounds by difluoromethylornithine (DFMO). Trop. Med. Parasitol. 1991, 42, 135–138. (In English) [Google Scholar]
- Ercoli, N.; Minelli, E.B.; Olivo, N. Antitrypanosomal Activity of Trivalent Antimonials in vitro and Its Significance. Chemother. 1980, 26, 254–262. (In English) [Google Scholar] [CrossRef] [PubMed]
- Ercoli, N.; Minelli, E.B.; Villarroel, G. Chemotherapy of Trypanosoma venezuelense (T. evansi), I. Activity of trivalent antimonials in mice by long and short term tests. Ann. Trop. Med. Parasitol. 1980, 74, 485–493. (In English) [Google Scholar] [CrossRef] [PubMed]
- Christopherson, J. The Successful Use of Antimony in Bilharziosis: Administered as Intravenous Injections of Antimonium Tartaratum (Tartar Emetic). Lancet 1918, 192, 325–327. [Google Scholar] [CrossRef] [Green Version]
- Christopherson, J.B. Intravenous Injections of Antimony Tartrate in Bilharziasis. Lancet 1919, 194, 299. [Google Scholar] [CrossRef]
- Taylor, F.E. Intravenous Injections of Antimonium Tartaratum (Tartar Emetic) in Bilharziasis. J. R. Army Med. Corps 1919, 33, 181–190. [Google Scholar] [CrossRef]
- Cawston, F.G. The Use of Emetine in Treating Bilharzia Disease in the Child. J. R. Army Med. Corps 1926, 46, 57–60. [Google Scholar] [CrossRef]
- Alves, W.; Gelfand, M. Treatment of schistosomiasis with sodium antimony tri-gluconate by mouth. Trans. R. Soc. Trop. Med. Hyg. 1952, 46, 543–546. [Google Scholar] [CrossRef]
- Davis, A. Comparative trials of antimonial drugs in urinary schistosomiasis. Bull. World Health Organ. 1968, 38, 197–227. [Google Scholar]
- Pedrique, M.R.; Ercoli, N. Experimental and clinical studies with a new antimonial preparation for the treatment of schistosomiasis. Bull. World Health Organ. 1971, 45, 411–417. [Google Scholar] [PubMed]
- Farid, Z.; Bassily, S.; Kent, D.C.; Hassan, A.; Abdel-Wahab, M.F.; Wissa, J. Urinary Schistosomiasis Treated with Sodium Antimony Tartrate—A Quantitative Evaluation. BMJ 1968, 3, 713–714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gopalratnam, P.C.; Mason, N.S.; Sparks, R.E. Microencapsulation of astiban acid for the treatment of Schistosomiasis mansoni. Appl. Biochem. Biotechnol. 1984, 10, 213–220. (In English) [Google Scholar] [CrossRef] [PubMed]
- de Melo, A.L.; Silva-Barcellos, N.M.; Demicheli, C.; Frézard, F. Enhanced schistosomicidal efficacy of tartar emetic encapsulated in pegylated liposomes. Int. J. Pharm. 2003, 255, 227–230. (In English) [Google Scholar] [CrossRef]
- Meyerhoff, A.U.S. Food and Drug Administration Approval of AmBisome (Liposomal Amphotericin B) for Treatment of Visceral Leishmaniasis. Clin. Infect. Dis. 1999, 28, 42–48. (In English) [Google Scholar] [CrossRef] [PubMed]
- Croft, S.L.; Coombs, G.H. Leishmaniasis—Current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol. 2003, 19, 502–508. (In English) [Google Scholar] [CrossRef]
- Alvar, J.; Cañavate, C.; Gutiérrez-Solar, B.; Jiménez, M.; Laguna, F.; López-Vélez, R.; Molina, R.; Moreno, J. Leishmania and human immunodeficiency virus coinfection: The first 10 years. Clin. Microbiol. Rev. 1997, 10, 298–319. (In English) [Google Scholar] [CrossRef]
- Rosenthal, E.; Marty, P.; Poizot-Martin, I.; Reynes, J.; Pratlong, F.; Lafeuillade, A.; Jaubert, D.; Boulat, O.; Dereure, J.; Gambarelli, F.; et al. Visceral leishmaniasis and HIV-1 co-infection in southern France. Trans. R. Soc. Trop. Med. Hyg. 1995, 89, 159–162. (In English) [Google Scholar] [CrossRef]
- Bryceson, A.; Chulay, J.; Ho, M.; Mugambii, M.; Were, J.; Muigai, R.; Chunge, C.; Gachihi, G.; Meme, J.; Anabwani, G.; et al. Visceral leishmaniasis unresponsive to antimonial drugs I. Clinical and immunological studies. Trans. R. Soc. Trop. Med. Hyg. 1985, 79, 700–704. (In English) [Google Scholar] [CrossRef]
- Davidson, R.N.; Russo, R. Relapse of Visceral Leishmaniasis in Patients Who Were Coinfected with Human Immunodeficiency Virus and Who Received Treatment with Liposomal Amphotericin B. Clin. Infect. Dis. 1994, 19, 560. (In English) [Google Scholar] [CrossRef]
- Lopez-Velez, R.; Perez-Molina, J.A.; Bellas, C.; Perez-Corral, F.; Villarrubia, J.; Guerrero, A.; Escribano, L.; Baquero, F.; Alvar, J. Clinicoepidemiologic characteristics, prognostic factors, and survival analysis of patients coinfected with human immunodeficiency virus and Leishmania in an area of Madrid, Spain. Am. J. Trop. Med. Hyg. 1998, 58, 436–443. (In English) [Google Scholar] [CrossRef] [PubMed]
- Vianna, G. Tratamento da leishmaniose tegumentar por injecoes intravenosas de tartaro emetic. Arq. Bras. Med. 1912, 4, 426–428. [Google Scholar]
- Di Cristina, G.; Caronia, G. Sulla terapia della leishmaniosi interna. Pathologica 1915, 7, 82–83. [Google Scholar]
- Cook, G. Leonard Rogers KCSI FRCP FRS (1868–1962) and the founding of the Calcutta School of Tropical Medicine. Notes Rec. R. Soc. J. Hist. Sci. 2006, 60, 171–181. [Google Scholar] [CrossRef]
- Brahmachari, U.N. Chemotherapy of antimonial compounds in kala-azar infection. Part IV. Further observations on the therapeutic values of urea stibamine. By U.N. Brahmachari, 1922. Indian J. Med. Res. 1989, 89, 393–404. (In English) [Google Scholar]
- Shortt, H.E. Recent research on kala-azar in India. Trans. R. Soc. Trop. Med. Hyg. 1945, 39, 13–31. [Google Scholar] [CrossRef]
- Berman, J.D. Chemotherapy for Leishmaniasis: Biochemical Mechanisms, Clinical Efficacy, and Future Strategies. Clin. Infect. Dis. 1988, 10, 560–586. (In English) [Google Scholar] [CrossRef]
- Holmes, F. Mass Treatment of Oriental Sores. J. R. Army Med. Corps 1937, 69, 258–260. [Google Scholar] [CrossRef]
- Andrews, L.A. Three Cases of Tropical Sore. J. R. Army Med. Corps 1923, 40, 371–372. [Google Scholar] [CrossRef]
- Roberts, W.L.; Berman, J.D.; Rainey, P.M. In vitro antileishmanial properties of tri- and pentavalent antimonial preparations. Antimicrob. Agents Chemother. 1995, 39, 1234–1239. (In English) [Google Scholar] [CrossRef] [Green Version]
- Sereno, D.; Lemesre, J.L. Axenically cultured amastigote forms as an in vitro model for investigation of antileishmanial agents. Antimicrob. Agents Chemother. 1997, 41, 972–976. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sereno, D.; Cavaleyra, M.; Zemzoumi, K.; Maquaire, S.; Ouaissi, A.; Lemesre, J.L. Axenically Grown Amastigotes of Leishmania infantum Used as an In Vitro Model To Investigate the Pentavalent Antimony Mode of Action. Antimicrob. Agents Chemother. 1998, 42, 3097–3102. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, W.L.; Rainey, P.M. Antileishmanial activity of sodium stibogluconate fractions. Antimicrob. Agents Chemother. 1993, 37, 1842–1846. (In English) [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callahan, H.L.; Portal, A.C.; Devereaux, R.; Grogl, M. An axenic amastigote system for drug screening. Antimicrob. Agents Chemother. 1997, 41, 818–822. (In English) [Google Scholar] [CrossRef] [Green Version]
- Ephros, M.; Bitnun, A.; Shaked, P.; Waldman, E.; Zilberstein, D. Stage-Specific Activity of Pentavalent Antimony against Leishmania donovani Axenic Amastigotes. Antimicrob. Agents Chemother. 1999, 43, 278–282. (In English) [Google Scholar] [CrossRef] [Green Version]
- Service, M.W. Tsetse flies (Order Diptera: Family Glossinidae). In A Guide to Medical Entomology; Macmillan Education: London, UK, 1980; pp. 95–101. [Google Scholar]
- Vanhamme, L.; Pays, E. The trypanosome lytic factor of human serum and the molecular basis of sleeping sickness. Int. J. Parasitol. 2004, 34, 887–898. (In English) [Google Scholar] [CrossRef]
- Bronner, U.; Doua, F.; Ericsson, Ö.; Gustafsson, L.L.; Miézan, T.; Rais, M.; Rombo, L. Pentamidine concentrations in plasma, whole blood and cerebrospinal fluid during treatment of Trypanosoma gambiense infection in Côte d’Ivoire. Trans. R. Soc. Trop. Med. Hyg. 1991, 85, 608–611. (In English) [Google Scholar] [CrossRef]
- Wenzler, T.; Yang, S.; Braissant, O.; Boykin, D.W.; Brun, R.; Wang, M.Z. Pharmacokinetics, Trypanosoma brucei gambiense Efficacy, and Time of Drug Action of DB829, a Preclinical Candidate for Treatment of Second-Stage Human African Trypanosomiasis. Antimicrob. Agents Chemother. 2013, 57, 5330–5343. (In English) [Google Scholar] [CrossRef] [Green Version]
- Sharma, S.; Anand, N. Chapter 4—Organometaliics. In Pharmacochemistry Library; Sharma, S., Anand, N., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 25, pp. 124–147. [Google Scholar]
- Thétiot-Laurent, S.A.-L.; Boissier, J.; Robert, A.; Meunier, B. Schistosomiasis Chemotherapy. Angew. Chem. Int. Ed. 2013, 52, 7936–7956. [Google Scholar] [CrossRef]
- Chitsulo, L.; Engels, D.; Montresor, A.; Savioli, L. The global status of schistosomiasis and its control. Acta Trop. 2000, 77, 41–51. (In English) [Google Scholar] [CrossRef] [Green Version]
- Fenwick, A.; Rollinson, D.; Southgate, V. Implementation of Human Schistosomiasis Control: Challenges and Prospects. Adv. Parasitol. 2006, 61, 567–622. (In English) [Google Scholar] [CrossRef]
- Gryseels, B.; Polman, K.; Clerinx, J.; Kestens, L. Human schistosomiasis. Lancet 2006, 368, 1106–1118. (In English) [Google Scholar] [CrossRef]
- Manson-Bahr, P. Manson’s Tropical Diseases. A Manual of the Diseases of Warm Climates, 14th ed.; Williams & Wilkins: Baltimore, MD, USA, 1954; p. 1144. [Google Scholar]
- Goodman, L.S.; Gilman, A. The Pharmacological Basis of Therapeutics, 2nd ed.; Macmillan: New York, NY, USA, 1956. [Google Scholar]
- Newham, Trypanosomiasis in the East African Campaign. J. R. Army Med. Corps 1919, 33, 299–311. [CrossRef]
- Jopling, W.H. The eradication of schistosomiasis; a plea for a rational approach to the problem. J. Trop. Med. Hyg. 1949, 52, 121–126. (In English) [Google Scholar] [PubMed]
- Mainzer, F.; Krause, M. Changes of the electrocardiogram appearing during antimony treatment. Trans. R. Soc. Trop. Med. Hyg. 1940, 33, 405–418. [Google Scholar] [CrossRef]
- Mishra, M.; Biswas, U.; Jha, A.; Khan, A. Amphotericin versus sodium stibogluconate in first-line treatment of Indian kala-azar. Lancet 1994, 344, 1599–1600. (In English) [Google Scholar] [CrossRef]
- Thakur, C.P.; Sinha, G.P.; Pandey, A.K. Comparison of regimens of amphotericin B deoxycholate in kala-azar. Indian J. Med. Res. 1996, 103, 259–263. (In English) [Google Scholar]
- Bryceson, A. A policy for leishmaniasis with respect to the prevention and control of drug resistance. Trop. Med. Int. Health 2001, 6, 928–934. [Google Scholar] [CrossRef] [Green Version]
- Peraza, M.A.; Ayala-Fierro, F.; Barber, D.S.; Casarez, E.; Rael, L.T. Effects of micronutrients on metal toxicity. Environ. Health Perspect. 1998, 106, 203–216. (In English) [Google Scholar] [CrossRef]
- Kabata-Pendias, A.; Mukherjee, A.B. Trace Elements from Soil to Human; Springer: New York, NY, USA, 2007. [Google Scholar]
- Christopoulou, A.; Dimitriou, E. Impacts of climate chance scenarios on Spercheios River hydrology. Presented at the 11th International Hydrogeological Congress of Greece, Athens, Greece, 4–6 October 2017. [Google Scholar]
- Stefanidis, K.; Christopoulou, A.; Poulos, S.; Dassenakis, E.; Dimitriou, E. Nitrogen and Phosphorus Loads in Greek Rivers: Implications for Management in Compliance with the Water Framework Directive. Water 2020, 12, 1531. Available online: https://www.mdpi.com/2073-4441/12/6/1531 (accessed on 13 January 2022). [CrossRef]
- Matschullat, J.; Ottenstein, R.; Reimann, C. Geochemical background—Can we calculate it? Environ. Geol. 2000, 39, 990–1000. [Google Scholar] [CrossRef]
- Reimann, C.; Garrett, R.G. Geochemical background—Concept and reality. Sci. Total Environ. 2005, 350, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Nastos, P.T.; Paliatsos, A.G.; Anthracopoulos, M.B.; Roma, E.S.; Priftis, K.N. Outdoor particulate matter and childhood asthma admissions in Athens, Greece: A time-series study. Environ. Health 2010, 9, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samoli, E.; Nastos, P.T.; Paliatsos, A.G.; Katsouyanni, K.; Priftis, K.N. Acute effects of air pollution on pediatric asthma exacerbation: Evidence of association and effect modification. Environ. Res. 2011, 111, 418–424. [Google Scholar] [CrossRef]
- Kelepertzis, E.; Argyraki, A.; Botsou, F.; Aidona, E.; Szabó, Á.; Szabó, C. Tracking the occurrence of anthropogenic magnetic particles and potentially toxic elements (PTEs) in house dust using magnetic and geochemical analyses. Environ. Pollut. 2019, 245, 909–920. [Google Scholar] [CrossRef]
Antimony Compound | Chemical Formula | Uses |
---|---|---|
Antimony trioxide | Sb2O3 | Flame retardant in plastics, textiles and rubber; catalyst for PET production |
Antimony pentoxide | Sb2O5 | Flame retardant |
Sodium antimonate | NaSbO3 | Flame retardant; decolorizing and refining agent for optical glass |
Antimony trisulfide | Sb2S3 | Photoconductors, brake linings, fireworks |
Antimony pentasulfide | Sb2S5 | Vulcanizing agent |
Antimony triacetate | Sb(CH3COOH)3 | Catalyst in the production of polyesters |
Mineral | Chemical Formula | Crystal System | Mineral Group | Color | References |
---|---|---|---|---|---|
Stibnite | Sb2O3 | Orthorhombic | Sulfides | Gray with luster | [39,40] |
Jamesonite | Pb4FeSb6S14 | Monoclinic | Sulfosalts | Gray to black | [41,42] |
Valentinite | Sb2O3 | Orthorhombic | Oxides | White to light grey to yellow | [43,44] |
Senarmonite | Sb2O3 | Cubic (Isometric) | Oxides | Colorless to grey | [45,46] |
Stibiconite | (Sb3+Sb5+)2O6(OH) | Cubic (Isometric) | Oxides | White, yellow, orange to light brown | [47,48] |
Bindheimite | Pb2Sb2O6O | Cubic (Isometric) | Oxides | Yellow to brown to greenish brown | [49,50] |
Kermesite | Sb2S2O | Triclinic | Sulfides | Red | [51,52,53] |
Tetrahedrite | Cu6(Cu4C22+)Sb4S12S | Cubic (Isometric) | Sulfosalts | Various shades of grey | [54,55] |
Location | Region, Country | Sb Water Content (μg/lt) | Sb Soil Content (mg/kg) | References |
---|---|---|---|---|
Ouche | Massif Central, France | 200–350 | n/a | [108] |
Pernek | Malacky, Slovakia | 1–31 | 121–894 | [109] |
Dúbrava | Žilina, Slovakia | 4–9300 | 4.8–9619 | |
Medzibrod | Banská Bystrica, Slovakia | 11–1290 | 2–793 | |
Poproč | Košice, Slovakia | 5–1000 | 13–6786 | |
Čučma | Košice, Slovakia | 1–3540 | 6.2–782 | |
Su Sergiu | Sardinia, Italy | 23–1700 | 19–4400 | [110] |
Glendinning | Dumfries & Galloway, Scotland | 0.10–783 | 6.77–261 | [111] |
Endeavour Inlet | New Zealand | 14.1–30.4 | 18–243 | [112] |
Llorenç d’Hortons (industrial site) | Barcelona, Spain | 1.93–2.06 | 0.1–112 | [113] |
Losacio-Las Cogollas | Zamora, Spain | n/a | 60–230 | [114] |
Bardo | Lower Silesia, Poland | 0.14–0.76 | n/a | [118] |
Bystrzyca Górna | 0.13–123 | n/a | ||
Czarnów | 0.01–16.6 | n/a | ||
Dębowina | 0.33–437 | n/a | ||
Dziećmorowice | 0.05–151 | n/a | ||
Srebrna Góra | 0.02–170 | n/a | ||
Puqing mining area | Guizhou, China | n/a | 0.49–1431 | [106] |
Huangshi | Hubei, China | n/a | 0.62–4.65 | |
Xikuangshan | Hunan, China | n/a | 100–5045 | |
Keramos | Chios Island, Greece | 115.94–478.63 | n/a | [119] |
Pathology | Compound and Administration | Dosage | Pathogenic Factors Targeted | Application | References |
---|---|---|---|---|---|
Cancer | Trivalent antimony potassium tartrate | 4.2–322 µg/mL | small cell lung cancer cell lines | in vitro (currently under research) | [330] |
Syphilis | Antimony powder in saline solution—intravenous injections | 50–200 mg | Treponema pallidum | in vivo (historical use) | [323] |
Malaria | Various | Various | Plasmodium spp. | in vivo (historical use) | [324,325,331] |
Framboesia tropica | Antimonium tartarum—intramuscular | Various | Treponema pallidum pertenue | in vivo (historical use) | [326,332] |
Various bacterial infections | Sb(ephedtc)3 and monophenylantimony(III) compounds—microtiter plates & salt application | 21.4–125.6 µM | P. aeruginosa; E. coli; K. pneumoniae; Salmonella dublin; E. cloacae; S. aureus; E. caseofluvialis; S. sciuri; plus multiresistant clinic isolated strains | in vitro (currently under research) | [327,328] |
Aspergillosis | Monophenylantimony(III) compounds—Salt application | 27.9–65.08 µM | A. niger; A. flavus | in vitro (currently under research) | [328] |
Leishmaniasis | Sodium antimony gluconate; meglumine antimoniate—intramuscular | 10–100 mg/kg | Leishmania spp. | in vivo | [321,333,334,335] |
Trypanosomiasis | Various combinations of antimonials and other compounds | Various | Trypanosoma spp. | in vitro (experiments in murine trypanosomiasis); in vivo | [336,337,338,339] |
Schistosomiasis | Various antimonials—intravenously, intramuscular | 3.5–530 mg | Schistosoma spp. | in vivo (historical use) | [340,341,342,343,344,345,346,347,348,349] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Periferakis, A.; Caruntu, A.; Periferakis, A.-T.; Scheau, A.-E.; Badarau, I.A.; Caruntu, C.; Scheau, C. Availability, Toxicology and Medical Significance of Antimony. Int. J. Environ. Res. Public Health 2022, 19, 4669. https://doi.org/10.3390/ijerph19084669
Periferakis A, Caruntu A, Periferakis A-T, Scheau A-E, Badarau IA, Caruntu C, Scheau C. Availability, Toxicology and Medical Significance of Antimony. International Journal of Environmental Research and Public Health. 2022; 19(8):4669. https://doi.org/10.3390/ijerph19084669
Chicago/Turabian StylePeriferakis, Argyrios, Ana Caruntu, Aristodemos-Theodoros Periferakis, Andreea-Elena Scheau, Ioana Anca Badarau, Constantin Caruntu, and Cristian Scheau. 2022. "Availability, Toxicology and Medical Significance of Antimony" International Journal of Environmental Research and Public Health 19, no. 8: 4669. https://doi.org/10.3390/ijerph19084669
APA StylePeriferakis, A., Caruntu, A., Periferakis, A.-T., Scheau, A.-E., Badarau, I. A., Caruntu, C., & Scheau, C. (2022). Availability, Toxicology and Medical Significance of Antimony. International Journal of Environmental Research and Public Health, 19(8), 4669. https://doi.org/10.3390/ijerph19084669