Urinary Concentrations of Triclosan, Bisphenol A, and Brominated Flame Retardants and the Association of Triclosan with Demographic Characteristics and Body Fatness among Women with Newly Diagnosed Breast Cancer
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Anthropometric and Body Composition Measurements
2.3. Laboratory Analysis
2.4. Materials
2.5. Sample Preparation
2.6. LC-MS/MS Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABC | Women’s Health After Breast Cancer Study |
BPA | Bisphenol A |
BMI | Body mass index |
DBBR | Data Bank and BioRepository |
EDC | Endocrine-disrupting compound |
NHANES | National Health and Nutrition Examination Survey |
TBBA | Tetrabromobenzoic acid |
TBBPA | Tetrabromobisphenol A |
WC | Waist circumference |
References
- Siddique, S.; Kubwabo, C.; Harris, S.A. A review of the role of emerging environmental contaminants in the development of breast cancer in women. Emerg. Contam. 2016, 2, 204–219. [Google Scholar] [CrossRef]
- Diamanti-Kandarakis, E.; Bourguignon, J.P.; Giudice, L.C.; Hauser, R.; Prins, G.S.; Soto, A.M.; Zoeller, R.T.; Gore, A.C. Endocrine-disrupting chemicals: An Endocrine Society scientific statement. Endocr. Rev. 2009, 30, 293–342. [Google Scholar] [CrossRef]
- Yager, J.D. Endogenous estrogens as carcinogens through metabolic activation. J. Natl. Cancer Inst. Monogr. 2000, 27, 67–73. [Google Scholar] [CrossRef] [Green Version]
- Russo, J.; Russo, I. The role of estrogen in the initation of breast cancer. J. Steroid Biochem. Mol. Biol. 2007, 102, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention Triclosan Factsheet. 2017. Available online: https://www.cdc.gov/biomonitoring/Triclosan_FactSheet.html (accessed on 12 December 2019).
- Environmental Protection Agency. Reregistration Eligibility Decision for Triclosan; List B. EPA 739/RO/8009; Environmental Protection Agency: Washington, DC, USA, 2008.
- Geens, T.; Apelbaum, T.Z.; Goeyens, L.; Neels, H.; Covaci, A. Intake of bisphenol A from canned beverages and foods on the Belgian market. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess. 2010, 27, 1627–1637. [Google Scholar] [CrossRef]
- Welshons, W.V.; Nagel, S.C.; Vom Saal, F.S. Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 2006, 147, 56–69. [Google Scholar] [CrossRef]
- European Food Safety Authority. Brominated Flame Retardants. 2019. Available online: https://www.efsa.europa.eu/en/topics/topic/brominated-flame-retardants (accessed on 4 December 2020).
- Environmental Protection Agency. Brominated Flame Retardants. 2012. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHEERL&dirEntryId=226582 (accessed on 4 December 2020).
- Artacho-Cordón, F.; Fernández, M.F.; Frederiksen, H.; Iribarne-Durán, L.M.; Jiménez-Díaz, I.; Vela-Soria, F.; Andersson, A.M.; Martin-Olmedo, P.; Peinado, F.M.; Olea, N.; et al. Environmental phenols and parabens in adipose tissue from hospitalized adults in Southern Spain. Environ. Int. 2018, 119, 203–211. [Google Scholar] [CrossRef]
- Martín, J.; Santos, J.L.; Aparicio, I.; Alonso, E. Exposure assessment to parabens, bisphenol A and perfluoroalkyl compounds in children, women and men by hair analysis. Sci. Total Environ. 2019, 695, 133864. [Google Scholar] [CrossRef]
- Azzouz, A.; Rascón, A.J.; Ballesteros, E. Determination of free and conjugated forms of endocrine-disrupting chemicals in human biological fluids by GC-MS. Bioanalysis 2016, 8, 1145–1158. [Google Scholar] [CrossRef]
- Li, S.; Zhao, J.; Wang, G.; Zhu, Y.; Rabito, F.; Wood, M.K.-; Chen, W.; Whelton, P.K. Urinary triclosan concentrations are inversely associated with body mass index and waist circumference in the US general population: Experience in NHANES 2003-2010. Int. J. Hyg. Environ. Health 2015, 218, 401–406. [Google Scholar] [CrossRef] [Green Version]
- Picon-Ruiz, M.; Morata-Tarifa, C.; Valle-Goffin, J.J.; Friedman, E.R.; Slingerland, J.M. Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. CA Cancer J. Clin. 2017, 67, 378–397. [Google Scholar] [CrossRef]
- Lankester, J.; Patel, C.; Cullen, M.R.; Ley, C.; Parsonnet, J. Urinary triclosan is associated with elevated body mass index in NHANES. PLoS ONE 2013, 8, e80057. [Google Scholar] [CrossRef] [PubMed]
- Grindler, N.M.; Allsworth, J.E.; Macones, G.A.; Kannan, K.; Roehl, K.A.; Cooper, A.R. Persistent organic pollutants and early menopause in U.S. women. PLoS ONE 2015, 10, e116057. [Google Scholar] [CrossRef] [PubMed]
- Huang, R.; Liu, Z.; Yin, H.; Dang, Z.; Wu, P.; Zhu, N.; Lin, Z. Bisphenol A concentrations in human urine, human intakes across six continents, and annual trends of average intakes in adult and child populations worldwide: A thorough literature review. Sci. Total Environ. 2018, 626, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Darbre, P.D. Endocrine Disruptors and Obesity. Curr. Obes. Rep. 2017, 6, 18–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geens, T.; Neels, H.; Covaci, A. Distribution of bisphenol-A, triclosan and n-nonylphenol in human adipose tissue, liver and brain. Chemosphere 2012, 87, 796–802. [Google Scholar] [CrossRef]
- Bergman, Å.; Heindel, J.; Jobling, S.; Kidd, K.; Zoeller, R.T. State-of-the-Science of Endocrine Disrupting Chemicals-2012; World Health Organization: Geneva, Switzerland, 2012; Volume 211, ISBN 9789280732740. [Google Scholar]
- Fillol, C.; Oleko, A.; Saoudi, A.; Zeghnoun, A.; Balicco, A.; Gane, J.; Rambaud, L.; Leblanc, A.; Gaudreau, É.; Marchand, P.; et al. Exposure of the French population to bisphenols, phthalates, parabens, glycol ethers, brominated flame retardants, and perfluorinated compounds in 2014–2016: Results from the Esteban study. Environ. Int. 2021, 147, 106340. [Google Scholar] [CrossRef]
- Gys, C.; Ait Bamai, Y.; Araki, A.; Bastiaensen, M.; Caballero-Casero, N.; Kishi, R.; Covaci, A. Biomonitoring and temporal trends of bisphenols exposure in Japanese school children. Environ. Res. 2020, 191, 110172. [Google Scholar] [CrossRef]
- Karzi, V.; Tzatzarakis, M.N.; Vakonaki, E.; Alegakis, T.; Katsikantami, I.; Sifakis, S.; Rizos, A.; Tsatsakis, A.M. Biomonitoring of bisphenol A, triclosan and perfluorooctanoic acid in hair samples of children and adults. J. Appl. Toxicol. 2018, 38, 1144–1152. [Google Scholar] [CrossRef]
- Faure, S.; Noisel, N.; Werry, K.; Karthikeyan, S.; Aylward, L.L.; St-Amand, A. Evaluation of human biomonitoring data in a health risk based context: An updated analysis of population level data from the Canadian Health Measures Survey. Int. J. Hyg. Environ. Health 2020, 223, 267–280. [Google Scholar] [CrossRef]
- Juric, A.; Singh, K.; Hu, X.F.; Chan, H.M. Exposure to triclosan among the Canadian population: Results of the Canadian Health Measures Survey (2009–2013). Environ. Int. 2019, 123, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Tschersich, C.; Murawski, A.; Schwedler, G.; Rucic, E.; Moos, R.K.; Kasper-Sonnenberg, M.; Koch, H.M.; Brüning, T.; Kolossa-Gehring, M. Bisphenol A and six other environmental phenols in urine of children and adolescents in Germany–human biomonitoring results of the German Environmental Survey 2014–2017 (GerES V). Sci. Total Environ. 2021, 763, 144615. [Google Scholar] [CrossRef] [PubMed]
- Arbuckle, T.E.; Marro, L.; Davis, K.; Fisher, M.; Ayotte, P.; Bélanger, P.; Dumas, P.; LeBlanc, A.; Bérubé, R.; Gaudreau, É.; et al. Exposure to free and conjugated forms of bisphenol a and triclosan among pregnant women in the MIREC cohort. Environ. Health Perspect. 2015, 123, 277–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomza-Marciniak, A.; Stępkowska, P.; Kuba, J.; Pilarczyk, B. Effect of bisphenol A on reproductive processes: A review of in vitro, in vivo and epidemiological studies. J. Appl. Toxicol. 2018, 38, 51–80. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Rahman, W.M.; Moustafa, Y.M.; Ahmed, B.O.; Mostafa, R.M. Endocrine disruptors and breast cancer risk-time to consider the environment. Asian Pac. J. Cancer Prev. 2012, 13, 5937–5946. [Google Scholar] [CrossRef] [Green Version]
- Ambrosone, C.B.; Nesline, M.K.; Davis, W. Establishing a cancer center data bank and biorepository for multidisciplinary research. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1575–1577. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.-Y.D.; Shelver, W.L.; Hong, C.-C.; McCann, S.E.; Davis, W.; Zhang, Y.; Ambrosone, C.B.; Smith, D.J. Urinary excretion of the β-adrenergic feed additives ractopamine and zilpaterol in breast and lung cancer patients. J. Agric. Food Chem. 2017, 64, 7632–7639. [Google Scholar] [CrossRef] [Green Version]
- Bandera, E.V.; Chandran, U.; Zirpoli, G.; Gong, Z.; Mccann, S.E.; Hong, C.; Ciupak, G.; Pawlish, K.; Ambrosone, C.B. Body fatness and breast cancer risk in women of African ancestry. BMC Cancer 2013, 13, 475. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, K.M.; Upson, K.; Cook, N.R.; Weinberg, C.R. Environmental chemicals in urine and blood: Improving methods for creatinine and lipid adjustment. Environ. Health Perspect. 2016, 124, 220–227. [Google Scholar] [CrossRef]
- Ropero, A.B.; Alonso-Magdalena, P.; Quesada, I.; Nadal, A. The role of estrogen receptors in the control of energy and glucose homeostasis. Steroids 2008, 73, 874–879. [Google Scholar] [CrossRef]
- Sargis, R.M.; Johnson, D.N.; Choudhury, R.A.; Brady, M.J. Environmental endocrine disruptors promote adipogenesis in the 3T3-L1 cell line through glucocorticoid receptor activation. Obesity 2010, 18, 1283–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Artacho-cordón, F.; Arrebola, J.P.; Nielsen, O.; Hernández, P.; Skakkebaek, N.E. Assumed non-persistent environmental chemicals in human adipose tissue; matrix stability and correlation with levels measured in urine and serum. Environ. Res. 2017, 156, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Calafat, A.M.; Ye, X.; Wong, L.Y.; Reidy, J.A.; Needham, L.L. Exposure of the U.S. population to Bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ. Health Perspect. 2008, 116, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Centers for Disease Control and Prevention. Fourth National Report on Human Exposure to Environmental Chemicals. 2019. Available online: https://www.cdc.gov/exposurereport/pdf/FourthReport_UpdatedTables_Volume1_Jan2019-508.pdf (accessed on 3 December 2020).
- Parada, H.; Gammon, M.D.; Ettore, H.L.; Chen, J.; Calafat, A.M.; Neugut, A.I.; Santella, R.M.; Wolff, M.S.; Teitelbaum, S.L. Urinary concentrations of environmental phenols and their associations with breast cancer incidence and mortality following breast cancer. Environ. Int. 2019, 130, 104890. [Google Scholar] [CrossRef]
- Hoffman, K.; Fang, M.; Horman, B.; Patisaul, H.B.; Garantziotis, S.; Birnbaum, L.S.; Stapleton, H.M. Urinary Tetrabromobenzoic Acid (TBBA) as a Biomarker of Exposure to the Flame Retardant Mixture Firemaster® 550. Environ. Health Perspect. 2014, 122, 963–969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jr, J.L.P.; Wong, L.; Silva, M.J.; Needham, L.L.; Calafat, A.M. Variability over 1 Week in the Urinary Concentrations of Metabolites An Observational Study. Environ. Health Perspect. 2010, 118, 1748–1754. [Google Scholar] [CrossRef] [Green Version]
- Kim, U.J.; Oh, J.E. Tetrabromobisphenol A and hexabromocyclododecane flame retardants in infant-mother paired serum samples, and their relationships with thyroid hormones and environmental factors. Environ. Pollut. 2014, 184, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Darnerud, P.O.; Fried, K.; Consulting, I.; Lenoir, D.; Schmid, P. Terminal Elimination Half-Lives of the Brominated Flame Retardants TBBPA, HBCD, and Lower Brominated PBDEs in Humans; 2004; Volume 66. Available online: https://www.osti.gov/etdeweb/servlets/purl/20828431 (accessed on 4 December 2020).
- Seiler, A.; Chen, M.A.; Brown, R.L.; Fagundes, C.P. Obesity, dietary factors, nutrition, and breast cancer risk. Curr Breast Cancer Rep. 2019, 10, 14–27. [Google Scholar] [CrossRef] [PubMed]
- Niraula, S.; Ocana, A.; Ennis, M.; Goodwin, P.J. Body size and breast cancer prognosis in relation to hormone receptor and menopausal status: A meta-analysis. Breast Cancer Res. Treat. 2012, 134, 769–781. [Google Scholar] [CrossRef]
- Shin, H.; Bennett, D.H.; Barkoski, J.; Ye, X.; Calafat, A.M.; Tancredi, D.; Hertz-picciotto, I. Variability of urinary concentrations of phthalate metabolites during pregnancy in first morning voids and pooled samples. Environ. Int. 2019, 122, 222–230. [Google Scholar] [CrossRef]
- Shin, H.; Oh, J.; Kim, K.; Busgang, S.A.; Barr, D.B.; Panuwet, P.; Schmidt, R.J.; Hertz-picciotto, I.; Bennett, D.H. Variability of Urinary Concentrations of Phenols, Parabens, and Triclocarban during Pregnancy in First Morning Voids and Pooled Samples. Environ. Sci. Technol. 2021, 55, 16001–16010. [Google Scholar] [CrossRef] [PubMed]
Characteristic | No. | Col % |
---|---|---|
Age (years) | ||
<50 | 97 | 32.1 |
50–59 | 99 | 32.8 |
60–69 | 74 | 24.5 |
≥70 | 32 | 10.6 |
Menopause status | ||
Premenopausal | 106 | 36.2 |
Postmenopausal | 187 | 63.8 |
Missing | 9 | |
Race | ||
White | 272 | 92.8 |
All others | 21 | 7.2 |
Missing | 9 | |
Educational level | ||
Grade school/some high school/high school graduate/GED | 86 | 29.6 |
Some college | 96 | 33.0 |
College graduate (4 years) | 56 | 19.2 |
Advanced degree | 53 | 18.2 |
Missing | 11 | |
Tumor ER Status | ||
ER positive | 220 | 78.6 |
ER negative | 60 | 21.4 |
Body mass index, kg/m2 | ||
<25 | 89 | 29.5 |
25 to <30 | 95 | 31.5 |
≥30 | 118 | 39.1 |
Percentage body fat | ||
≤35.00 | 63 | 25.3 |
>35.00 to ≤41.10 | 63 | 25.3 |
>41.10 to ≤45.50 | 61 | 24.5 |
>45.50 | 62 | 24.9 |
Missing | 53 | |
Fat mass, kg | 25.3 | |
≤22.70 | 63 | 24.9 |
>22.70 to ≤30.80 | 62 | 24.9 |
>30.80 to ≤39.20 | 62 | 24.9 |
>39.20 | 62 | 25.3 |
Missing | 44 | |
Fat mass index, kg/m2 | ||
≤8.74 | 63 | 25.3 |
>8.74 to ≤11.64 | 61 | 24.5 |
>11.64 to ≤14.75 | 62 | 24.9 |
>14.75 | 63 | 25.3 |
Missing | 44 | |
Waist circumference, inches | ||
≤79.00 | 67 | 25.8 |
>79.00 to ≤89.00 | 69 | 26.5 |
>89.00 to ≤101.40 | 59 | 22.7 |
>101.40 | 65 | 25.0 |
Missing | 33 | |
Waist to hip ratio | ||
≤0.78 | 69 | 26.6 |
>0.78 to ≤0.83 | 65 | 25.1 |
>0.83 to ≤0.87 | 58 | 22.4 |
>0.87 | 67 | 25.9 |
Missing | 34 | |
Percentage trunk fat | ||
≤32.60 | 63 | 25.3 |
>32.60 to ≤39.10 | 62 | 24.9 |
>39.10 to ≤44.40 | 62 | 24.9 |
>44.40 | 62 | 24.9 |
Missing | 44 | |
Trunk fat mass, kg | ||
≤12.00 | 63 | 25.3 |
>12.00 to ≤16.40 | 65 | 26.1 |
>16.40 to ≤21.00 | 59 | 23.7 |
>21.00 | 62 | 24.9 |
Missing | 44 |
Endocrine-Disrupting Compound | No. of Samples with Detected Concentrations (% of total) | Concentration, μg/L | Concentration, μg/g Urine Creatinine | ||||
---|---|---|---|---|---|---|---|
Mean ± SD | Geometric Mean | Range (Minimum–Maximum) | Mean ± SD | Geometric Mean | Range (Minimum–Maximum) | ||
Triclosan | 297 (98.3) | 68.31 ± 134.81 | 20.74 | 0.11–974.86 | 88.74 ± 178.98 | 27.04 | 0.19–1346.91 |
Bisphenol A | 18 (6.0) | 1.79 ± 3.91 | 0.82 | 0.13–17.27 | 2.80 ± 6.22 | 1.08 | 0.17–27.17 |
Tetrabromobisphenol A | 0 (0) | NA | NA | NA | NA | NA | NA |
Tetrabromobenzoic acid | 1 (0.3) | 0.31 ± (−) | 0.31 | 0.31–0.31 | 0.79 ± (−) | 0.79 | 0.79–0.79 |
Variable | Unadjusted | Adjusted a | ||||
---|---|---|---|---|---|---|
n | Beta Estimate (95% CI) | p-Value | n | Beta Estimate (95% CI) | p-Value | |
Age (years) | 291 | 291 | ||||
<50 | Ref. | Ref. | ||||
50–59 | −44.19 (−80.40, −7.97) | 0.0170 | −24.75 (−71.87, 22.36) | 0.3019 | ||
60–69 | −18.47 (−57.76, 20.81) | 0.3554 | 6.67 (−49.98, 63.32) | 0.8169 | ||
≥70 | −6.30 (−57.33, 44.73) | 0.8083 | 11.84 (−54.06, 77.73) | 0.7239 | ||
Menopausal Status | 291 | 291 | ||||
Premenopausal | Ref. | Ref. | ||||
Postmenopausal | −24.41 (−54.62, 5.79) | 0.1127 | −12.41 (−59.02, 34.21) | 0.6007 | ||
Race | 291 | 291 | ||||
White | Ref. | Ref. | ||||
All others | −49.03 (−106.45, 8.39) | 0.0939 | −43.93 (−101.19, 13.32) | 0.1321 | ||
Educational level | 291 | 291 | ||||
Grade school/some high school/high school graduate/GED | Ref. | Ref. | ||||
Some college | −2.10 (−38.83, 34.62) | 0.9103 | −9.56 (−46.92, 27.79) | 0.6147 | ||
College graduate (4 years) | 36.12 (−6.35, 78.60) | 0.0953 | 25.67 (−17.53, 68.87) | 0.2431 | ||
Advanced degree | 35.41 (−7.79, 78.60) | 0.1078 | 23.19 (−20.54, 66.91) | 0.2974 | ||
Tumor ER Status | 278 | 278 | ||||
Positive | Ref. | Ref. | ||||
Negative | −12.37 (−47.85, 23.10) | 0.4929 | −12.01 (−47.55, 23.54) | 0.5066 |
Variable | Unadjusted | Adjusted a | ||||
---|---|---|---|---|---|---|
n | Beta Estimate (95% CI) | p-Value | n | Beta Estimate (95% CI) | p-Value | |
BMI, kg/m2 | 291 | 291 | ||||
<25 | Ref. | Ref. | ||||
25 to <30 | −21.00 (−58.27, 16.27) | 0.2683 | −13.48 (−51.12, 24.16) | 0.4814 | ||
≥30 | −53.33 (−89.03, −17.64) | 0.0035 | −40.00 (−77.19, −2.81) | 0.0351 | ||
Waist circumference, inches | 258 | 247 | ||||
≤79.00 | Ref. | Ref. | ||||
>79.00 to ≤89.00 | 15.59 (−25.66, 56.83) | 0.4575 | 26.61 (−15.10, 68.32) | 0.2101 | ||
>89.00 to ≤101.40 | −48.05 (−91.18, −4.92) | 0.0291 | −40.67 (−84.78, 3.44) | 0.0706 | ||
>101.40 | −42.47 (−84.50, −0.43) | 0.0477 | −22.54 (−66.62, 21.54) | 0.3149 | ||
Waist-to-hip ratio | 257 | 246 | ||||
≤0.78 | Ref. | Ref. | ||||
>0.78 to ≤0.83 | −27.24 (−68.64, 14.16) | 0.1963 | −21.08 (−63.44, 21.28) | 0.3279 | ||
>0.83 to ≤0.87 | −20.54 (−63.20, 22.13) | 0.3441 | −12.48 (−55.64, 30.68) | 0.5695 | ||
>0.87 | −24.19 (−65.59, 17.21) | 0.2509 | −12.85 (−55.89, 30.18) | 0.5568 | ||
Percentage body fat | 247 | 247 | ||||
≤35.00 | Ref. | Ref. | ||||
>35.00 to ≤41.10 | 10.52 (−33.67, 54.72) | 0.6394 | 25.24 (−19.64, 70.13) | 0.2690 | ||
>41.10 to ≤45.5 | −35.02 (−79.76–9.72) | 0.1244 | −18.00 (−64.95, 28.96) | 0.4510 | ||
>45.50 | −31.23 (−75.78, 13.33) | 0.1687 | −7.43 (−55.32, 40.46) | 0.7602 | ||
Fat mass, kg | 247 | 236 | ||||
≤22.70 | Ref. | Ref. | ||||
>22.70 to ≤30.80 | −0.69 (−44.98, 43.60) | 0.9754 | 9.78 (−34.90, 54.46) | 0.6667 | ||
>30.80 to ≤39.20 | −39.79 (−84.27, 4.68) | 0.0792 | −25.42 (−71.33, 20.49) | 0.2764 | ||
>39.20 | −44.41 (−88.88, 0.07) | 0.0503 | −25.30 (−71.82, 21.23) | 0.2851 | ||
Fat mass index, kg/m2 | 247 | 236 | ||||
≤8.74 | Ref. | Ref. | ||||
>8.74 to ≤11.64 | 13.68 (−30.49, 57.84) | 0.5425 | 26.85 (−17.74, 71.43) | 0.2367 | ||
>11.64 to ≤14.75 | −50.06 (−94.22, −5.89) | 0.0265 | −36.99 (−82.30, 8.31) | 0.1090 | ||
>14.75 | −34.47 (−78.45, 9.52) | 0.1240 | −13.37 (−59.52, 32.78) | 0.5686 | ||
Percentage trunk fat | 247 | 236 | ||||
≤32.60 | Ref. | Ref. | ||||
>32.60 to ≤39.10 | −19.00 (−63.82, 25.82) | 0.4046 | −7.11 (−52.70, 38.47) | 0.7588 | ||
>39.10 to ≤44.40 | 2.80 (−42.02, 47.62) | 0.9022 | 18.30 (−27.81, 64.41) | 0.4350 | ||
>44.40 | −31.24 (−75.87, 13.40) | 0.1693 | −9.96 (−58.02, 38.09) | 0.6832 | ||
Trunk fat mass, kg | 247 | 236 | ||||
≤12.00 | Ref. | Ref. | ||||
>12.00 to ≤16.40 | −13.10 (−57.31, 31.10) | 0.5599 | 2.96 (−42.34, 48.26) | 0.8977 | ||
>16.40 to ≤21.00 | −17.27 (−62.39, 27.86) | 0.4518 | −2.30 (−49.14, 44.53) | 0.9229 | ||
>21.00 | −43.45 (−88.19, 1.30) | 0.0570 | −24.20 (−71.44, 23.05) | 0.3140 |
Variable | Premenopausal a | Postmenopausal a | ||||
---|---|---|---|---|---|---|
n | Beta Estimate (95% CI) | p-Value | n | Beta Estimate (95% CI) | p-Value | |
BMI, kg/m2 | 106 | 185 | ||||
<25 | Ref. | Ref. | ||||
25 to <30 | 19.06 (−49.58, 87.70) | 0.5829 | −43.85 (−89.25, 1.56) | 0.0583 | ||
≥30 | −10.55 (−85.06, 63.97) | 0.7794 | −66.57 (−109.18, −23.96) | 0.0024 | ||
P-interaction = 0.2197 | ||||||
Waist circumference, inches | 95 | 163 | ||||
≤79.00 | Ref. | Ref. | ||||
>79.00 to ≤89.00 | 60.69 (−12.25, 133.64) | 0.1017 | −10.24 (−63.82, 43.34) | 0.7063 | ||
>89.00 to ≤101.40 | −74.72 (−170.71, 21.26) | 0.1254 | −40.48 (−90.36, 9.39) | 0.1109 | ||
>101.40 | −13.56 (−110.47, 83.34) | 0.7815 | −35.83 (−85.65, 13.99) | 0.1573 | ||
P-interaction = 0.1615 | ||||||
Waist-to-hip ratio | 95 | 162 | ||||
≤0.78 | Ref. | Ref. | ||||
>0.78 to ≤0.83 | −76.03 (−165.37, 13.32) | 0.0943 | 11.38 (−34.81, 57.58) | 0.6271 | ||
>0.83 to ≤0.87 | −72.60 (−154.91, 9.71) | 0.0831 | 31.10 (−17.82, 80.03) | 0.2110 | ||
>0.87 | 11.87 (−81.58, 105.33) | 0.8012 | −4.68 (−50.38, 41.03) | 0.8401 | ||
P-interaction = 0.0348 | ||||||
Percentage body fat | 91 | 156 | ||||
≤35.00 | Ref. | Ref. | ||||
>35.00 to ≤41.10 | 108.94 (32.17, 185.71) | 0.0060 | −62.88 (−119.14, −6.61) | 0.0288 | ||
>41.10 to ≤45.50 | 10.44 (−88.03, 108.91) | 0.8335 | −66.78 (−119.44, −14.12) | 0.0133 | ||
>45.50 | 19.69 (−81.46, 120.83) | 0.6995 | −58.40 (−111.89, −4.91) | 0.0326 | ||
P-interaction = 0.0050 | ||||||
Fat mass, kg | 91 | 156 | ||||
≤22.70 | Ref. | Ref. | ||||
>22.70 to ≤30.80 | 73.33 (−9.72, 156.39) | 0.0827 | −53.93 (−106.85, −1.01) | 0.0458 | ||
>30.80 to ≤39.20 | 47.03 (−51.42, 145.48) | 0.3447 | −78.33 (−128.11, −28.55) | 0.0023 | ||
>39.20 | −13.96 (−110.44, 82.52) | 0.7741 | −59.96 (−110.62, −9.30) | 0.0207 | ||
P-interaction = 0.0175 | ||||||
Fat mass index, kg/m2 | 91 | 156 | ||||
≤8.74 | Ref. | Ref. | ||||
>8.74 to ≤11.64 | 103.97 (21.17, 186.78) | 0.0145 | −38.48 (−92.09, 15.13) | 0.1582 | ||
>11.64 to ≤14.75 | −11.32 (−102.52, 79.87) | 0.8055 | −73.34 (−123.94, −22.74) | 0.0048 | ||
>14.75 | 16.76 (−83.21, 116.73) | 0.7395 | −49.63 (−100.07, 0.80) | 0.0537 | ||
P-interaction = 0.0464 | ||||||
Percentage trunk fat | 91 | 156 | ||||
≤32.60 | Ref. | Ref. | ||||
>32.60 to ≤39.10 | 41.91 (−38.20, 122.02) | 0.3010 | −72.86 (−127.71, −18.00) | 0.0096 | ||
>39.10 to ≤44.40 | 123.17 (37.52, 208.82) | 0.0054 | −70.73 (−125.08, −16.39) | 0.0111 | ||
>44.40 | −6.46 (−118.06, 105.15) | 0.9087 | −60.22 (−112.24, −8.20) | 0.0236 | ||
P-interaction = 0.0011 | ||||||
Trunk fat mass, kg | 91 | 156 | ||||
≤12.00 | Ref. | Ref. | ||||
>12.00 to ≤16.40 | 65.89 (−14.54, 146.32) | 0.1070 | −73.21 (−127.65, −18.77) | 0.0087 | ||
>16.40 to ≤21.00 | 105.43 (2.46, 208.40) | 0.0449 | −74.91 (−126.84, −22.98) | 0.0050 | ||
>21.00 | −5.38 (−102.26, 91.49) | 0.9122 | −75.52 (−127.91, −23.12) | 0.0050 | ||
P-interaction = 0.0037 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilozumba, M.N.; Shelver, W.L.; Hong, C.-C.; Ambrosone, C.B.; Cheng, T.-Y.D. Urinary Concentrations of Triclosan, Bisphenol A, and Brominated Flame Retardants and the Association of Triclosan with Demographic Characteristics and Body Fatness among Women with Newly Diagnosed Breast Cancer. Int. J. Environ. Res. Public Health 2022, 19, 4681. https://doi.org/10.3390/ijerph19084681
Ilozumba MN, Shelver WL, Hong C-C, Ambrosone CB, Cheng T-YD. Urinary Concentrations of Triclosan, Bisphenol A, and Brominated Flame Retardants and the Association of Triclosan with Demographic Characteristics and Body Fatness among Women with Newly Diagnosed Breast Cancer. International Journal of Environmental Research and Public Health. 2022; 19(8):4681. https://doi.org/10.3390/ijerph19084681
Chicago/Turabian StyleIlozumba, Mmadili N., Weilin L. Shelver, Chi-Chen Hong, Christine B. Ambrosone, and Ting-Yuan David Cheng. 2022. "Urinary Concentrations of Triclosan, Bisphenol A, and Brominated Flame Retardants and the Association of Triclosan with Demographic Characteristics and Body Fatness among Women with Newly Diagnosed Breast Cancer" International Journal of Environmental Research and Public Health 19, no. 8: 4681. https://doi.org/10.3390/ijerph19084681
APA StyleIlozumba, M. N., Shelver, W. L., Hong, C.-C., Ambrosone, C. B., & Cheng, T.-Y. D. (2022). Urinary Concentrations of Triclosan, Bisphenol A, and Brominated Flame Retardants and the Association of Triclosan with Demographic Characteristics and Body Fatness among Women with Newly Diagnosed Breast Cancer. International Journal of Environmental Research and Public Health, 19(8), 4681. https://doi.org/10.3390/ijerph19084681