Ability of Wearable Accelerometers-Based Measures to Assess the Stability of Working Postures
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Experimental Design
2.2.1. Independent Variables
2.2.2. Dependent Variables
2.2.3. Experimental Apparatus
2.2.4. Experimental Tasks
2.3. Data Analysis
2.3.1. Data Preprocessing
2.3.2. Factors’ Effects Detection Based on Statistical Analysis
2.3.3. Postural Stability Classification Based on Machine Learning
3. Results
3.1. Ability to Detect the Effects of Work-Related Factors
3.2. Ability to Classify Stable and Unstable Working Postures
4. Discussion
4.1. Ability in Factor Effects Detection
4.2. Ability in the Classification of Stable and Unstable Postures Based on Machine Learning
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
ACC-Based Measures | Pelvis | Sternum (T8) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Main Effects | Interaction Effects | Main Effects | Interaction Effects | |||||||||||
SS | LC | WP | SS × LC | SS × WP | LC × WP | SS × LC × WP | SS | LC | WP | SS × LC | SS × WP | LC × WP | SS × LC × WP | |
AVG_AP | * | * | * | * | + | * | * | + | * | * | + | * | * | + |
AVG_ML | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
AVG_IS | * | * | * | + | * | * | + | + | * | * | + | + | * | + |
AVG_2DR | * | * | * | + | * | * | * | + | * | * | + | * | * | + |
AVG_3DR | * | * | * | + | * | * | * | + | * | * | + | + | * | + |
RNG_AP | + | * | * | + | * | * | * | + | * | * | + | + | * | + |
RNG_ML | + | * | * | + | * | * | + | + | * | * | + | + | * | + |
RNG_IS | * | * | * | + | + | * | + | + | * | * | * | + | * | + |
RNG_2DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RNG_3DR | * | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMS_AP | * | * | * | * | * | * | * | + | * | * | + | * | * | + |
RMS_ML | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMS_IS | * | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMS_2DR | * | * | * | + | + | * | + | + | * | * | + | * | * | + |
RMS_3DR | * | * | * | + | + | * | + | + | * | * | + | + | * | + |
ARE_SW | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
ARE_CC | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
ARE_CE | * | * | * | + | * | * | + | + | * | * | + | + | * | + |
FD_CC | * | * | * | + | * | * | * | + | * | * | + | * | * | + |
FD_CE | + | * | * | + | * | * | + | + | * | * | + | + | * | + |
LEN_AP | + | * | * | + | * | * | + | + | * | * | + | * | * | + |
LEN_ML | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
LEN_2DR | + | * | * | + | * | * | + | + | * | * | + | + | * | + |
LEN_3DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
MD_AP | * | * | * | + | * | * | * | + | * | * | + | * | * | + |
MD_ML | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
MD_2DR | + | * | * | + | * | * | * | + | * | * | + | * | * | + |
MD_3DR | + | * | * | + | + | * | * | + | * | * | + | + | * | + |
MF_AP | * | * | * | + | * | * | * | * | * | * | + | * | * | + |
MF_ML | * | * | * | + | * | * | + | + | * | * | + | + | * | + |
MF_2DR | * | * | * | + | * | * | * | + | * | * | + | * | * | + |
MF_3DR | * | * | * | + | * | * | * | + | * | * | + | * | * | + |
MV_AP | * | * | * | + | + | * | + | * | * | * | + | * | * | + |
MV_ML | * | + | * | + | + | + | + | + | + | * | + | + | + | + |
MV_2DR | * | + | * | + | + | + | + | + | + | * | + | + | + | + |
MV_3DR | * | + | * | + | + | + | + | * | * | * | + | + | * | + |
PD_P | * | * | * | + | + | * | + | + | * | * | + | + | * | + |
PD_V | * | + | * | + | * | + | + | * | + | * | + | + | * | + |
PP | * | * | * | + | * | * | + | * | * | * | + | + | * | + |
RMSD_AP | * | * | * | + | * | * | * | + | * | * | + | * | * | + |
RMSD_ML | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMSD_2DR | * | * | * | + | + | * | + | + | * | * | + | * | * | + |
RMSD_3DR | * | * | * | + | + | * | + | + | * | * | + | + | * | + |
ACC-Based Measures | Left Shoulder | Right Shoulder | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Main Effects | Interaction Effects | Main Effects | Interaction Effects | |||||||||||
SS | LC | WP | SS × LC | SS × WP | LC × WP | SS × LC × WP | SS | LC | WP | SS × LC | SS × WP | LC × WP | SS × LC × WP | |
AVG_AP | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
AVG_ML | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
AVG_IS | + | * | * | + | * | * | + | + | * | * | + | + | * | + |
AVG_2DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
AVG_3DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RNG_AP | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RNG_ML | + | * | * | + | * | * | + | + | * | * | + | + | * | + |
RNG_IS | + | * | * | + | * | * | + | + | * | * | + | + | * | + |
RNG_2DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RNG_3DR | + | * | * | + | + | * | * | + | * | * | + | + | * | + |
RMS_AP | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMS_ML | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMS_IS | + | * | * | + | * | * | + | + | * | * | + | + | * | + |
RMS_2DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMS_3DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
ARE_SW | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
ARE_CC | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
ARE_CE | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
FD_CC | + | * | * | + | * | * | * | + | * | * | + | * | * | * |
FD_CE | + | + | * | * | + | * | + | + | + | * | + | * | * | + |
LEN_AP | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
LEN_ML | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
LEN_2DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
LEN_3DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
MD_AP | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
MD_ML | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
MD_2DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
MD_3DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
MF_AP | * | * | * | + | + | * | + | * | * | * | + | * | * | + |
MF_ML | + | * | * | + | * | * | + | + | * | * | + | * | * | + |
MF_2DR | + | * | * | + | * | * | + | + | * | * | + | * | * | + |
MF_3DR | + | * | * | + | * | * | + | + | * | * | + | * | * | + |
MV_AP | + | * | * | + | * | * | + | + | * | * | + | + | + | + |
MV_ML | * | + | * | + | * | * | + | * | + | * | + | * | * | + |
MV_2DR | * | + | * | + | * | * | + | * | + | * | + | * | * | + |
MV_3DR | * | + | * | + | + | * | + | * | + | * | + | + | * | + |
PD_P | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
PD_V | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
PP | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMSD_AP | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMSD_ML | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMSD_2DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMSD_3DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
ACC-Based Measures | Left Upper Leg | Right Upper Leg | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Main Effects | Interaction Effects | Main Effects | Interaction Effects | |||||||||||
SS | LC | WP | SS × LC | SS × WP | LC × WP | SS × LC × WP | SS | LC | WP | SS × LC | SS × WP | LC × WP | SS × LC × WP | |
AVG_AP | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
AVG_ML | + | * | * | + | * | * | * | * | * | * | + | * | * | * |
AVG_IS | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
AVG_2DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
AVG_3DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RNG_AP | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RNG_ML | + | * | * | + | + | * | + | + | * | * | + | * | * | * |
RNG_IS | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RNG_2DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RNG_3DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMS_AP | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMS_ML | + | * | * | + | * | * | * | * | * | * | + | * | * | * |
RMS_IS | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMS_2DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMS_3DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
ARE_SW | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
ARE_CC | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
ARE_CE | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
FD_CC | + | * | * | + | * | * | * | + | * | * | + | * | * | * |
FD_CE | + | * | * | + | * | * | + | + | * | * | + | + | * | + |
LEN_AP | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
LEN_ML | + | * | * | + | + | * | + | + | * | * | + | * | * | * |
LEN_2DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
LEN_3DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
MD_AP | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
MD_ML | + | * | * | + | * | * | * | + | * | * | + | * | * | * |
MD_2DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
MD_3DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
MF_AP | + | * | * | + | * | * | * | + | * | * | + | * | * | * |
MF_ML | * | * | * | + | * | * | * | * | * | * | + | * | * | * |
MF_2DR | + | * | * | + | * | * | * | * | * | * | + | * | * | * |
MF_3DR | + | * | * | + | * | * | * | + | * | * | + | * | * | * |
MV_AP | + | * | * | + | * | + | + | + | + | * | + | + | + | + |
MV_ML | * | * | * | + | + | * | + | * | * | * | + | + | * | + |
MV_2DR | + | + | * | + | * | + | + | + | + | * | + | + | + | + |
MV_3DR | * | + | * | + | + | * | + | + | + | * | + | + | + | + |
PD_P | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
PD_V | + | * | * | + | + | * | + | + | * | * | + | * | * | + |
PP | + | * | * | + | + | * | + | + | * | * | + | * | * | + |
RMSD_AP | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMSD_ML | + | * | * | + | * | * | * | + | * | * | + | * | * | * |
RMSD_2DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMSD_3DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
ACC-Based Measures | Left Lower Leg | Right Lower Leg | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Main Effects | Interaction Effects | Main Effects | Interaction Effects | |||||||||||
SS | LC | WP | SS × LC | SS × WP | LC × WP | SS × LC × WP | SS | LC | WP | SS × LC | SS × WP | LC × WP | SS × LC × WP | |
AVG_AP | + | * | * | * | * | * | + | + | * | * | + | + | * | + |
AVG_ML | + | * | * | * | * | * | + | + | * | * | + | + | * | + |
AVG_IS | * | * | * | + | + | * | + | * | * | * | * | + | * | + |
AVG_2DR | + | * | * | * | * | * | + | + | * | * | + | + | * | + |
AVG_3DR | * | * | * | * | + | * | + | + | * | * | * | + | * | + |
RNG_AP | + | * | * | + | * | * | + | + | * | * | + | + | * | + |
RNG_ML | + | * | * | + | + | * | + | + | * | * | + | + | * | * |
RNG_IS | * | * | * | + | + | * | + | * | * | * | + | + | * | + |
RNG_2DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RNG_3DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMS_AP | + | * | * | * | * | * | + | + | * | * | + | + | * | + |
RMS_ML | + | * | * | * | * | * | + | + | * | * | + | + | * | + |
RMS_IS | * | * | * | + | + | * | + | * | * | * | + | + | * | + |
RMS_2DR | + | * | * | * | * | * | + | + | * | * | + | + | * | + |
RMS_3DR | * | * | * | * | + | * | + | + | * | * | * | + | * | + |
ARE_SW | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
ARE_CC | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
ARE_CE | + | * | * | * | + | * | + | + | * | * | + | + | * | + |
FD_CC | * | * | * | * | * | * | * | + | * | * | + | * | * | * |
FD_CE | * | * | * | + | + | * | + | + | * | * | * | + | * | + |
LEN_AP | * | * | * | + | * | * | + | + | * | * | + | * | * | + |
LEN_ML | + | * | * | + | + | * | + | + | * | * | + | * | * | + |
LEN_2DR | * | * | * | + | * | * | + | + | * | * | + | * | * | + |
LEN_3DR | * | * | * | + | + | * | + | * | * | * | + | + | * | + |
MD_AP | + | * | * | * | * | * | + | + | * | * | + | + | * | + |
MD_ML | + | * | * | + | + | * | + | + | * | * | + | + | * | * |
MD_2DR | + | * | * | + | * | * | + | + | * | * | + | + | * | * |
MD_3DR | * | * | * | + | + | * | + | * | * | * | + | + | * | + |
MF_AP | * | * | * | * | * | * | * | * | * | * | + | * | * | * |
MF_ML | * | * | * | + | * | * | * | * | * | * | + | * | * | * |
MF_2DR | * | * | * | * | * | * | * | * | * | * | + | * | * | * |
MF_3DR | * | * | * | * | * | * | * | * | * | * | + | * | * | * |
MV_AP | * | + | * | + | + | + | + | + | + | * | + | * | + | + |
MV_ML | * | + | * | + | + | + | + | + | + | * | + | * | + | + |
MV_2DR | * | + | * | + | + | + | + | + | + | * | + | * | + | + |
MV_3DR | + | + | * | + | + | + | + | + | + | * | + | * | + | + |
PD_P | + | * | * | * | * | * | + | + | * | * | + | + | * | + |
PD_V | + | * | * | + | * | * | + | + | * | * | + | * | * | * |
PP | + | * | * | + | * | * | + | + | * | * | + | * | * | * |
RMSD_AP | + | * | * | * | * | * | + | + | * | * | + | + | * | + |
RMSD_ML | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMSD_2DR | + | * | * | + | + | * | + | + | * | * | + | + | * | + |
RMSD_3DR | * | * | * | * | + | * | + | * | * | * | + | + | * | + |
References
- Huang, C.W.; Der Sue, P.; Abbod, M.F.; Jiang, B.C.; Shieh, J.S. Measuring center of pressure signals to quantify human balance using multivariate multiscale entropy by designing a force platform. Sensors 2013, 13, 10151–10166. [Google Scholar] [CrossRef] [PubMed]
- Duarte, M.; Freitas, S.M.S.F. Revision of posturography based on force plate for balance evaluation. Rev. Bras. Fisioter. 2010, 14, 183–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, H.; Simeonov, P. Preventing falls from roofs: A critical review. Ergonomics 2001, 44, 537–561. [Google Scholar] [CrossRef]
- Son, S.M. Influence of Obesity on Postural Stability in Young Adults. Osong Public Health Res. Perspect. 2016, 7, 378–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jebelli, H.; Ahn, C.R.; Stentz, T.L. Fall risk analysis of construction workers using inertial measurement units: Validating the usefulness of the postural stability metrics in construction. Saf. Sci. 2016, 84, 161–170. [Google Scholar] [CrossRef]
- Lord, S.R.; Sherrington, C.; Menz, H.B. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing 2001, 35 (Suppl. 2), 3–107. [Google Scholar] [CrossRef] [Green Version]
- Chi, C.F.; Chang, T.C.; Ting, H.I. Accident patterns and prevention measures for fatal occupational falls in the construction industry. Appl. Ergon. 2005, 36, 391–400. [Google Scholar] [CrossRef] [PubMed]
- Passmore, D.; Chae, C.; Borkovskaya, V.; Baker, R.; Yim, J.H. Severity of U.S. Construction Worker Injuries, 2015–2017. E3S Web Conf. 2019, 97, 2015–2017. [Google Scholar] [CrossRef]
- Schneider, S.P. Musculoskeletal Injuries in Construction: A Review of the Literature. Appl. Occup. Environ. Hyg. 2001, 16, 1056–1064. [Google Scholar] [CrossRef]
- Gauchard, G.; Chau, N.; Mur, J.M.; Perrin, P. Falls and working individuals: Role of extrinsic and intrinsic factors. Ergonomics 2001, 44, 1330–1339. [Google Scholar] [CrossRef]
- Guo, L.; Kou, J.; Xiong, S. Subjective and Objective Measures to Assess Postural Instability: Their Linear Correlations and Abilities to Detect Effects of Work-Related Factors. In Proceedings of the International Conference on Applied Human Factors and Ergonomics, San Diego, CA, USA, 16–20 July 2020; Springer: Cham, Switzerland, 2020; pp. 159–167. [Google Scholar]
- DiDomenico, A.; Nussbaum, M.A. Interactive effects of mental and postural demands on subjective assessment of mental workload and postural stability. Saf. Sci. 2005, 43, 485–495. [Google Scholar] [CrossRef]
- Guo, L.; Xiong, S. Effects of working posture, lifting load, and standing surface on postural instability during simulated lifting tasks in construction. Ergonomics 2020, 63, 1571–1583. [Google Scholar] [CrossRef]
- Schieppati, M.; Tacchini, E.; Nardone, A.; Tarantola, J.; Corna, S. Subjective perception of body sway. J. Neurol. Neurosurg. Psychiatry 1999, 66, 313–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tversky, A.; Kahneman, D. Judgment under Uncertainty: Heuristics and Biases. Uncertain. Econ. 1978, 5, 17–34. [Google Scholar] [CrossRef]
- Lin, D.; Seol, H.; Nussbaum, M.A.; Madigan, M.L. Reliability of COP-based postural sway measures and age-related differences. Gait Posture 2008, 28, 337–342. [Google Scholar] [CrossRef]
- Qiu, H.; Xiong, S. Center-of-pressure based postural sway measures: Reliability and ability to distinguish between age, fear of falling and fall history. Int. J. Ind. Ergon. 2015, 47, 37–44. [Google Scholar] [CrossRef]
- Horak, F.B.; Shupert, C.L.; Mirka, A. Components of postural dyscontrol in the elderly: A review. Neurobiol. Aging 1989, 10, 727–738. [Google Scholar] [CrossRef]
- Maki, B.E.; Holliday, P.J.; Fernie, G.R. Aging and Postural Control. J. Am. Geriatr. Soc. 1990, 38, 1–9. [Google Scholar] [CrossRef]
- Prieto, T.E.; Myklebust, J.B.; Hoffmann, R.G.; Lovett, E.G.; Myklebust, B.M. Measures of postural steadiness: Differences between healthy young and elderly adults. IEEE Trans. Biomed. Eng. 1996, 43, 956–966. [Google Scholar] [CrossRef]
- Clark, R.A.; Bryant, A.L.; Pua, Y.; McCrory, P.; Bennell, K.; Hunt, M. Validity and reliability of the Nintendo Wii Balance Board for assessment of standing balance. Gait Posture 2010, 31, 307–310. [Google Scholar] [CrossRef]
- Karatsidis, A.; Bellusci, G.; Schepers, H.; de Zee, M.; Andersen, M.; Veltink, P. Estimation of Ground Reaction Forces and Moments During Gait Using Only Inertial Motion Capture. Sensors 2016, 17, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faber, G.S.; Chang, C.C.; Kingma, I.; Dennerlein, J.T.; van Dieën, J.H. Estimating 3D L5/S1 moments and ground reaction forces during trunk bending using a full-body ambulatory inertial motion capture system. J. Biomech. 2016, 49, 904–912. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamacher, D.; Bertram, D.; Fölsch, C.; Schega, L. Evaluation of a visual feedback system in gait retraining: A pilot study. Gait Posture 2012, 36, 182–186. [Google Scholar] [CrossRef] [PubMed]
- Cloete, T.; Scheffer, C. Repeatability of an off-the-shelf, full body inertial motion capture system during clinical gait analysis. In Proceedings of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, Buenos Aires, Argentina, 31 August–4 September 2010; pp. 5125–5128. [Google Scholar]
- Shippen, J.; May, B. Constitutive kinematic modes and shapes during vehicle ingress/egress. Appl. Ergon. 2016, 56, 127–135. [Google Scholar] [CrossRef]
- Kim, S.; Nussbaum, M.A. Performance evaluation of a wearable inertial motion capture system for capturing physical exposures during manual material handling tasks. Ergonomics 2013, 56, 314–326. [Google Scholar] [CrossRef]
- Baydal-Bertomeu, J.M.; Durá-Gil, J.V.; Piérola-Orcero, A.; Parrilla Bernabé, E.; Ballester, A.; Alemany-Munt, S. A PCA-based bio-motion generator to synthesize new patterns of human running. PeerJ Comput. Sci. 2016, 2, e102. [Google Scholar] [CrossRef] [Green Version]
- Carson, H.J.; Collins, D.; Richards, J. Initiating technical refinements in high-level golfers: Evidence for contradictory procedures. Eur. J. Sport Sci. 2016, 16, 473–482. [Google Scholar] [CrossRef]
- de Magalhaes, F.A.; Vannozzi, G.; Gatta, G.; Fantozzi, S. Wearable inertial sensors in swimming motion analysis: A systematic review. J. Sports Sci. 2015, 33, 732–745. [Google Scholar] [CrossRef]
- Carson, H.J.; Collins, D.; Richards, J. Intra-individual movement variability during skill transitions: A useful marker? Eur. J. Sport Sci. 2014, 14, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Eckardt, F.; Münz, A.; Witte, K. Application of a Full Body Inertial Measurement System in Dressage Riding. J. Equine Vet. Sci. 2014, 34, 1294–1299. [Google Scholar] [CrossRef]
- Starrs, P.; Chohan, A.; Fewtrell, D.; Richards, J.; Selfe, J. Biomechanical differences between experienced and inexperienced wheelchair users during sport. Prosthet. Orthot. Int. 2012, 36, 324–331. [Google Scholar] [CrossRef] [PubMed]
- Supej, M. 3D measurements of alpine skiing with an inertial sensor motion capture suit and GNSS RTK system. J. Sports Sci. 2010, 28, 759–769. [Google Scholar] [CrossRef] [PubMed]
- Doric, I.; Frison, A.-K.; Wintersberger, P.; Riener, A.; Wittmann, S.; Zimmermann, M.; Brandmeier, T. A Novel Approach for Researching Crossing Behavior and Risk Acceptance. In Proceedings of the 8th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct—Automotive’UI 16, Ann Arbor, MI, USA, 24–26 October 2016; ACM Press: New York, NY, USA, 2016; pp. 39–44. [Google Scholar]
- Ruch, W.F.; Platt, T.; Hofmann, J.; Niewiadomski, R.; Urbain, J.; Mancini, M.; Dupont, S. Gelotophobia and the Challenges of Implementing Laughter into Virtual Agents Interactions. Front. Hum. Neurosci. 2014, 8, 928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damian, I.; Kistler, F.; Obaid, M.; Buhling, R.; Billinghurst, M.; Andre, E. Motion capturing empowered interaction with a virtual agent in an Augmented Reality environment. In Proceedings of the 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Adelaide, Australia, 1–4 October 2013; pp. 1–6. [Google Scholar]
- Giggins, O.M.; Sweeney, K.T.; Caulfield, B. Rehabilitation exercise assessment using inertial sensors: A cross-sectional analytical study. J. Neuroeng. Rehabil. 2014, 11, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neville, C.; Ludlow, C.; Rieger, B. Measuring postural stability with an inertial sensor: Validity and sensitivity. Med. Devices Evid. Res. 2015, 8, 447–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimm, B.; Bolink, S. Evaluating physical function and activity in the elderly patient using wearable motion sensors. EFORT Open Rev. 2016, 1, 112–120. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, X.; Lockhart, T.E. Fall risk assessments based on postural and dynamic stability using inertial measurement unit. Saf. Health Work 2012, 3, 192–198. [Google Scholar] [CrossRef]
- Handelzalts, S.; Alexander, N.B.; Mastruserio, N.; Nyquist, L.V.; Strasburg, D.M.; Ojeda, L.V. Detection of Real-World Trips in At-Fall Risk Community Dwelling Older Adults Using Wearable Sensors. Front. Med. 2020, 7, 514. [Google Scholar] [CrossRef]
- Kutílek, P.; Socha, V.; Čakrt, O.; Svoboda, Z. Assessment of postural stability in patients with cerebellar disease using gyroscope data. J. Bodyw. Mov. Ther. 2015, 19, 421–428. [Google Scholar] [CrossRef]
- Abe, Y.; Sugaya, T.; Sakamoto, M. Postural control characteristics during single leg standing of individuals with a history of ankle sprain: Measurements obtained using a gravicorder and head and foot accelerometry. J. Phys. Ther. Sci. 2014, 26, 447–450. [Google Scholar] [CrossRef] [Green Version]
- Rouis, A.; Rezzoug, N.; Gorce, P. Validity of a low-cost wearable device for body sway parameter evaluation. Comput. Methods Biomech. Biomed. Engin. 2014, 17, 182–183. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Montecinos, C.; De la Fuente, C.; Rivera-Lillo, G.; Morales-Castillo, S.; Soto-Arellano, V.; Querol, F.; Pérez-Alenda, S. Sensory strategies of postural sway during quiet stance in patients with haemophilic arthropathy. Haemophilia 2017, 23, e419–e426. [Google Scholar] [CrossRef] [PubMed]
- Moe-Nilssen, R. Test-retest reliability of trunk accelerometry during standing and walking. Arch. Phys. Med. Rehabil. 1998, 79, 1377–1385. [Google Scholar] [CrossRef]
- Craig, J.J.; Bruetsch, A.P.; Lynch, S.G.; Horak, F.B.; Huisinga, J.M. Instrumented balance and walking assessments in persons with multiple sclerosis show strong test-retest reliability. J. Neuroeng. Rehabil. 2017, 14, 43. [Google Scholar] [CrossRef]
- Mayagoitia, R.E.; Lötters, J.C.; Veltink, P.H.; Hermens, H. Standing balance evaluation using a triaxial accelerometer. Gait Posture 2002, 16, 55–59. [Google Scholar] [CrossRef]
- Grewal, G.S.; Schwenk, M.; Lee-Eng, J.; Parvaneh, S.; Bharara, M.; Menzies, R.A.; Talal, T.K.; Armstrong, D.G.; Najafi, B. Sensor-Based Interactive Balance Training with Visual Joint Movement Feedback for Improving Postural Stability in Diabetics with Peripheral Neuropathy: A Randomized Controlled Trial. Gerontology 2015, 61, 567–574. [Google Scholar] [CrossRef]
- Greene, B.R.; McGrath, D.; Walsh, L.; Doheny, E.P.; McKeown, D.; Garattini, C.; Cunningham, C.; Crosby, L.; Caulfield, B.; Kenny, R.A. Quantitative falls risk estimation through multi-sensor assessment of standing balance. Physiol. Meas. 2012, 33, 2049–2063. [Google Scholar] [CrossRef]
- Moe-Nilssen, R.; Helbostad, J.L. Trunk accelerometry as a measure of balance control during quiet standing. Gait Posture 2002, 16, 60–68. [Google Scholar] [CrossRef]
- Gago, M.F.; Fernandes, V.; Ferreira, J.; Silva, H.; Rodrigues, M.L.; Rocha, L.; Bicho, E.; Sousa, N. The effect of levodopa on postural stability evaluated by wearable inertial measurement units for idiopathic and vascular Parkinson’s disease. Gait Posture 2015, 41, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Mancini, M.; Salarian, A.; Carlson-Kuhta, P.; Zampieri, C.; King, L.; Chiari, L.; Horak, F.B. ISway: A sensitive, valid and reliable measure of postural control. J. Neuroeng. Rehabil. 2012, 9, 59. [Google Scholar] [CrossRef] [Green Version]
- Park, J.-H.; Mancini, M.; Carlson-Kuhta, P.; Nutt, J.G.; Horak, F.B. Quantifying effects of age on balance and gait with inertial sensors in community-dwelling healthy adults. Exp. Gerontol. 2016, 85, 48–58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frames, C.; Soangra, R.; Lockhart, T.E. Assessment of postural stability using inertial measurement unit on inclined surfaces in healthy adults. Biomed. Sci. Instrum. 2013, 49, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Bzdúšková, D.; Valkovič, P.; Hirjaková, Z.; Kimijanová, J.; Hlavačka, F. Parkinson’s disease versus ageing: Different postural responses to soleus muscle vibration. Gait Posture 2018, 65, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Ehsani, H.; Mohler, J.; Marlinski, V.; Rashedi, E.; Toosizadeh, N. The influence of mechanical vibration on local and central balance control. J. Biomech. 2018, 71, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, N.; Shah, V.V.; Carlson-Kuhta, P.; Nutt, J.G.; Horak, F.B.; Mancini, M. How to Select Balance Measures Sensitive to Parkinson’s Disease from Body-Worn Inertial Sensors—Separating the Trees from the Forest. Sensors 2019, 19, 3320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baracks, J.; Casa, D.J.; Covassin, T.; Sacko, R.; Scarneo, S.E.; Schnyer, D.; Yeargin, S.W.; Neville, C. Acute sport-related concussion screening for collegiate athletes using an instrumented balance assessment. J. Athl. Train. 2018, 53, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Ghislieri, M.; Gastaldi, L.; Pastorelli, S.; Tadano, S.; Agostini, V. Wearable Inertial Sensors to Assess Standing Balance: A Systematic Review. Sensors 2019, 19, 4075. [Google Scholar] [CrossRef] [Green Version]
- Gordt, K.; Gerhardy, T.; Najafi, B.; Schwenk, M. Effects of Wearable Sensor-Based Balance and Gait Training on Balance, Gait, and Functional Performance in Healthy and Patient Populations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Gerontology 2018, 64, 74–89. [Google Scholar] [CrossRef]
- Hubble, R.P.; Naughton, G.A.; Silburn, P.A.; Cole, M.H. Wearable Sensor Use for Assessing Standing Balance and Walking Stability in People with Parkinson’s Disease: A Systematic Review. PLoS ONE 2015, 10, e0123705. [Google Scholar] [CrossRef] [Green Version]
- Chiou, S.; Bhattacharya, A.; Lai, C.-F.; Succop, P.A. Effect of environmental and task risk factors on workers ’ perceived sense of postural sway and instability. Occup. Ergon. 1998, 1, 81–93. [Google Scholar] [CrossRef]
- Min, S.-N.; Kim, J.-Y.; Parnianpour, M. The effects of safety handrails and the heights of scaffolds on the subjective and objective evaluation of postural stability and cardiovascular stress in novice and expert construction workers. Appl. Ergon. 2012, 43, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Chiu, Y.L.; Tsai, Y.J.; Lin, C.H.; Hou, Y.R.; Sung, W.H. Evaluation of a smartphone-based assessment system in subjects with chronic ankle instability. Comput. Methods Programs Biomed. 2017, 139, 191–195. [Google Scholar] [CrossRef] [PubMed]
- Raymakers, J.A.; Samson, M.M.; Verhaar, H.J.J. The assessment of body sway and the choice of the stability parameter(s). Gait Posture 2005, 21, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Mendez, R.; Sekine, M.; Tamura, T. Postural sway parameters using a triaxial accelerometer: Comparing elderly and young healthy adults. Comput. Methods Biomech. Biomed. Engin. 2012, 15, 899–910. [Google Scholar] [CrossRef]
- Xsens-Tutorials: Preparing hardware MVN Link. Available online: https://tutorial.xsens.com/video/preparing-hardware-mvn-link (accessed on 1 December 2020).
- Maxwell, S.E.; Delaney, H.D. Designing Experiments and Analyzing Data: A Model Comparison Perspective, Second Edition, 2nd ed.; Psychology Press: New York, NY, USA, 2003; ISBN 978-0-8058-3718-6. [Google Scholar]
- MathWorks Help Center—Classification Learner App: Choose Classifier Options. Available online: https://www.mathworks.com/help/stats/choose-a-classifier.html#bunt0rb-1 (accessed on 1 November 2020).
- Flach, P.A. The Geometry of ROC Space: Understanding Machine Learning Metrics through ROC Isometrics. Proceedings, Twent. Int. Conf. Mach. Learn. 2003, 1, 194–201. [Google Scholar]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Liu, Y.; Redmond, S.J.; Wang, N.; Blumenkron, F.; Narayanan, M.R.; Lovell, N.H. Spectral analysis of accelerometry signals from a directed-routine for falls-risk estimation. IEEE Trans. Biomed. Eng. 2011, 58, 2308–2315. [Google Scholar] [CrossRef]
- Narayanan, M.R.; Redmond, S.J.; Scalzi, M.E.; Lord, S.R.; Celler, B.G.; Lovell, N.H. Longitudinal falls-risk estimation using triaxial accelerometry. IEEE Trans. Biomed. Eng. 2010, 57, 534–541. [Google Scholar] [CrossRef]
- Saunders, N.W.; Koutakis, P.; Kloos, A.D.; Kegelmeyer, D.A.; Dicke, J.D.; Devor, S.T. Reliability and validity of a wireless accelerometer for the assessment of postural sway. J. Appl. Biomech. 2015, 31, 159–163. [Google Scholar] [CrossRef]
- Whitney, S.L.; Roche, J.L.; Marchetti, G.F.; Lin, C.C.; Steed, D.P.; Furman, G.R.; Musolino, M.C.; Redfern, M.S. A comparison of accelerometry and center of pressure measures during computerized dynamic posturography: A measure of balance. Gait Posture 2011, 33, 594–599. [Google Scholar] [CrossRef] [Green Version]
- BROWN, H.J.; SIEGMUND, G.P.; GUSKIEWICZ, K.M.; VAN DEN DOEL, K.; CRETU, E.; BLOUIN, J.-S. Development and Validation of an Objective Balance Error Scoring System. Med. Sci. Sport. Exerc. 2014, 46, 1610–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, L.; Xiong, S. Accuracy of Base of Support Using an Inertial Sensor Based Motion Capture System. Sensors 2017, 17, 2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toosizadeh, N.; Mohler, J.; Armstrong, D.G.; Talal, T.K.; Najafi, B. The influence of diabetic peripheral neuropathy on local postural muscle and central sensory feedback balance control. PLoS ONE 2015, 10, e0135255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonora, G.; Mancini, M.; Carpinella, I.; Chiari, L.; Ferrarin, M.; Nutt, J.G.; Horak, F.B. Investigation of anticipatory postural adjustments during One-Leg Stance using inertial sensors: Evidence from subjects with Parkinsonism. Front. Neurol. 2017, 8, 361. [Google Scholar] [CrossRef]
- Fransson, P.A.; Gomez, S.; Patel, M.; Johansson, L. Changes in multi-segmented body movements and EMG activity while standing on firm and foam support surfaces. Eur. J. Appl. Physiol. 2007, 101, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Honegger, F.; Hubertus, J.W.; Allum, J.H.J. Coordination of the head with respect to the trunk, pelvis, and lower leg during quiet stance after vestibular loss. Neuroscience 2013, 232, 204–215. [Google Scholar] [CrossRef]
- Quijoux, F.; Vienne-Jumeau, A.; Bertin-Hugault, F.; Zawieja, P.; Lefèvre, M.; Vidal, P.-P.; Ricard, D. Center of pressure displacement characteristics differentiate fall risk in older people: A systematic review with meta-analysis. Ageing Res. Rev. 2020, 62, 101117. [Google Scholar] [CrossRef]
- Huurnink, A.; Fransz, D.P.; Kingma, I.; van Dieën, J.H. Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks. J. Biomech. 2013, 46, 1392–1395. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.-D.; Chang, W.-Y.; Lee, C.-L.; Feng, C.-Y. Validity and Reliability of Wii Fit Balance Board for the Assessment of Balance of Healthy Young Adults and the Elderly. J. Phys. Ther. Sci. 2013, 25, 1251–1253. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.A.; McGough, R.; Paterson, K. Reliability of an inexpensive and portable dynamic weight bearing asymmetry assessment system incorporating dual Nintendo Wii Balance Boards. Gait Posture 2011, 34, 288–291. [Google Scholar] [CrossRef]
- Lajoie, Y.; Gallagher, S.P. Predicting falls within the elderly community: Comparison of postural sway, reaction time, the Berg balance scale and the Activities-specific Balance Confidence (ABC) scale for comparing fallers and non-fallers. Arch. Gerontol. Geriatr. 2004, 38, 11–26. [Google Scholar] [CrossRef]
- Salonen, L.; Kivelä, S.L. Eye diseases and impaired vision as possible risk factors for recurrent falls in the aged: A systematic review. Curr. Gerontol. Geriatr. Res. 2012, 2012, 271481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sturnieks, D.L.; George, R.S.; Lord, S.R. Balance disorders in the elderly. Neurophysiol. Clin. 2008, 38, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Muir, S.W.; Gopaul, K.; Montero Odasso, M.M. The role of cognitive impairment in fall risk among older adults: A systematic review and meta-analysis. Age Ageing 2012, 41, 299–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deandrea, S.; Lucenteforte, E.; Bravi, F.; Foschi, R.; La Vecchia, C.; Negri, E. Risk factors for falls in community-dwelling older people: A systematic review and meta-analysis. Epidemiology 2010, 21, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Jebelli, H.; Ahn, C.R.; Stentz, T.L. Comprehensive Fall-Risk Assessment of Construction Workers Using Inertial Measurement Units: Validation of the Gait-Stability Metric to Assess the Fall Risk of Iron Workers. J. Comput. Civ. Eng. 2016, 30, 04015034. [Google Scholar] [CrossRef]
- Simeonov, P.I.; Hsiao, H.; Dotson, B.W.; Ammons, D.E. Control and perception of balance at elevated and sloped surfaces. Hum. Factors 2003, 45, 136–147. [Google Scholar] [CrossRef]
- Ambrose, A.F.; Paul, G.; Hausdorff, J.M. Risk factors for falls among older adults: A review of the literature. Maturitas 2013, 75, 51–61. [Google Scholar] [CrossRef]
- DiDomenico, A.; McGorry, R.W.; Huang, Y.-H.; Blair, M.F. Perceptions of postural stability after transitioning to standing among construction workers. Saf. Sci. 2010, 48, 166–172. [Google Scholar] [CrossRef]
- DiDomenico, A.; McGorry, R.W.; Banks, J.J. Effects of common working postures on balance control during the stabilisation phase of transitioning to standing. Ergonomics 2011, 54, 1053–1059. [Google Scholar] [CrossRef] [PubMed]
Measures (Abbr.) | Explanations |
---|---|
Average (AVG) [66] | Average of ACC 1 in AP 2, ML 3, IS 4, 2DR 5, and 3DR 6 directions: AVG_AP, AVG_ML, AVG_IS, AVG_2DR, and AVG_3DR (m/s2). |
Range (RNG) [48,54] | Range of ACC in AP, ML, IS, 2DR, and 3DR directions: RNG_AP, RNG_ML, RNG_IS, RNG_2DR, and RNG_3DR (m/s2). |
Root mean squared (RMS) [47,48,52] | Root mean squared of ACC in AP, ML, IS, 2DR, and 3DR directions: RMS_AP, RMS_ML, RMS_IS, RMS_2DR, and RMS_3DR (m/s2). |
Sway area (ARE) [48,54,60] | Area of sway (ARE_SW), area spanned from the ACC signals per unit of time (mm2/s5). |
Area of 95% confidence circle (ARE_CC) and 95% confidence ellipse (ARE_CE), that encapsulates the sway path derived from ACC per unit of time (mm2/s5). | |
Fractal dimension (FD) [20] | Fractal dimension based on 95% confidence circle (FD_CC) and 95% confidence ellipse (FD_CE). |
Length (LEN) [48,54] | Total length of ACC trajectory in AP, ML, 2DR, and 3DR directions: LEN_AP, LEN_ML, LEN_2DR, and LEN_3DR (m/s2). |
Mean distance (MD) [48,54] | Mean distance from center of ACC trajectory in AP, ML, 2DR, and 3DR directions: MD_AP, MD_ML, MD_2DR, and MD_3DR (m/s2). |
Mean frequency (MF) [48,54] | Mean frequency of ACC power spectrum in AP, ML, 2DR, and 3DR directions: MF_AP, MF_ML, MF_2DR, and MF_3DR (HZ). |
Mean velocity (MV) [48,54] | First integral of ACC signals in AP, ML, 2DR, and 3DR directions: MV_AP, MV_ML, MV_2DR, and MV_3DR (m/s). |
Planar deviation (PD) [67] | Planar deviation in displacement (PD_P) and velocity (PD_V). |
Phase plane parameter (PP) [67] | Phase plane parameter (square root of the sum of variances of displacement and velocity). |
Root mean squared distance (RMSD) [20] | Root mean squared distance from center of ACC trajectory in AP, ML, 2DR, and 3DR directions: RMSD_AP, RMSD_ML, RMSD_2DR, and RMSD_3DR (m/s2). |
Feature Set (FS) | Feature | Sensor Configuration (SC) | Sensor Location |
---|---|---|---|
FS 1 | Mean | SC 1 | Pelvis |
Range | Sternum (T8) | ||
Variance | Shoulders (left & right) | ||
Standard deviation | Upper legs (left & right) | ||
Root mean squared | Lower legs (left & right) | ||
Skewness | SC 2 | Pelvis | |
Kurtosis | Sternum (T8) | ||
FS 2 | First five FFT 1 coefficients | Shoulders (left & right) | |
FS 3 | Feature set 1 and Feature set 2 | SC 3 | Pelvis |
Sternum (T8) |
Measure | Stable | Unstable |
---|---|---|
PPS | [0, 5.0) | [5.0, 10.0] |
COPV_AP | [minimum, median) | [median, maximum] |
Effect | Main Effect | Sum | Interaction Effect | Sum | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Segment | SS | LC | WP | SS × LC | SS × WP | LC × WP | SS × LC × WP | |||
Pelvis | 27 | 40 | 43 | 108 | 2 | 20 | 40 | 13 | 75 | |
Sternum (T8) | 3 | 41 | 43 | 87 | 1 | 15 | 41 | 0 | 57 | |
Left shoulder | 4 | 39 | 43 | 86 | 1 | 11 | 43 | 2 | 57 | |
Right shoulder | 4 | 39 | 43 | 86 | 0 | 8 | 42 | 1 | 51 | |
Left upper leg | 3 | 41 | 43 | 87 | 0 | 12 | 41 | 9 | 62 | |
Right upper leg | 5 | 40 | 43 | 88 | 0 | 13 | 40 | 11 | 64 | |
Left lower leg | 19 | 39 | 43 | 101 | 17 | 20 | 39 | 5 | 81 | |
Right lower leg | 10 | 39 | 43 | 92 | 4 | 14 | 39 | 10 | 67 |
SC & FS 1 | SC1 | SC2 | SC3 | Average | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Classifier | FS1 | FS2 | FS3 | FS1 | FS2 | FS3 | FS1 | FS2 | FS3 | ||
KNN-City Block | 90.5% | 69.0% | 90.7% | 90.3% | 70.3% | 90.4% | 90.6% | 70.8% | 90.1% | 83.6% | |
KNN-Euclidean | 90.5% | 70.3% | 89.8% | 88.3% | 69.4% | 89.0% | 88.7% | 70.5% | 88.7% | 82.8% | |
GNB | 87.8% | 77.8% | 88.3% | 87.2% | 77.5% | 87.6% | 87.2% | 72.3% | 87.5% | 83.7% | |
KNB | 86.7% | 78.2% | 87.0% | 86.9% | 79.3% | 87.6% | 86.7% | 73.2% | 86.2% | 83.5% | |
LR | 86.6% | 75.8% | 84.2% | 89.4% | 71.7% | 87.9% | 90.0% | 71.1% | 89.4% | 82.9% | |
DA | 90.3% | 86.4% | 90.0% | 89.4% | 84.1% | 89.8% | 90.3% | 78.4% | 90.1% | 87.6% | |
SVM-Linear | 89.7% | 72.2% | 90.6% | 90.0% | 71.9% | 90.2% | 89.9% | 70.4% | 89.3% | 83.8% | |
SVM-Cubic | 90.0% | 82.4% | 91.1% | 88.3% | 79.5% | 89.0% | 89.1% | 77.8% | 89.4% | 86.3% | |
DT | 87.4% | 74.9% | 86.0% | 86.8% | 71.8% | 86.2% | 85.3% | 69.3% | 85.6% | 81.5% | |
OBT | 90.3% | 84.7% | 90.1% | 91.1% | 82.1% | 90.8% | 89.9% | 81.0% | 90.3% | 87.8% | |
OE | 91.6% | 86.0% | 90.6% | 91.5% | 83.6% | 91.0% | 91.5% | 81.8% | 90.8% | 88.7% | |
Maximum | 91.6% | 86.4% | 91.1% | 91.5% | 84.1% | 91.0% | 91.5% | 81.8% | 90.8% | - | |
Average | 89.4% | 78.7% | 89.1% | 89.2% | 77.1% | 89.2% | 89.2% | 74.9% | 89.0% | - |
SC & FS 1 | SC1 | SC2 | SC3 | Average | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Classifier | FS1 | FS2 | FS3 | FS1 | FS2 | FS3 | FS1 | FS2 | FS3 | ||
KNN-City Block | 87.4% | 76.6% | 86.0% | 83.5% | 74.9% | 83.5% | 85.3% | 75.2% | 85.6% | 82.0% | |
KNN-Euclidean | 84.2% | 76.3% | 85.1% | 83.2% | 74.8% | 82.4% | 84.3% | 75.1% | 84.0% | 81.0% | |
GNB | 83.3% | 73.8% | 82.0% | 82.1% | 73.8% | 81.6% | 81.3% | 72.2% | 80.3% | 78.9% | |
KNB | 81.3% | 71.2% | 80.8% | 81.5% | 74.5% | 81.7% | 81.9% | 71.1% | 81.2% | 78.4% | |
LR | 83.1% | 77.5% | 80.3% | 83.8% | 75.4% | 82.4% | 82.3% | 76.0% | 82.3% | 80.3% | |
DA | 84.8% | 79.5% | 83.8% | 84.9% | 78.3% | 83.6% | 83.2% | 76.0% | 83.1% | 81.9% | |
SVM-Linear | 84.7% | 75.1% | 84.6% | 84.2% | 74.8% | 83.4% | 83.4% | 73.5% | 84.2% | 80.9% | |
SVM-Cubic | 84.7% | 79.7% | 84.7% | 82.6% | 78.1% | 82.2% | 84.0% | 75.0% | 82.6% | 81.5% | |
DT | 80.2% | 71.3% | 78.5% | 79.9% | 70.4% | 77.4% | 80.2% | 68.8% | 80.9% | 76.4% | |
OBT | 84.2% | 78.1% | 84.5% | 84.7% | 78.7% | 84.6% | 86.1% | 78.6% | 85.1% | 82.7% | |
OE | 83.9% | 79.3% | 86.0% | 85.3% | 80.9% | 84.4% | 85.4% | 78.5% | 85.6% | 83.3% | |
Maximum | 87.4% | 79.7% | 86.0% | 85.3% | 80.9% | 84.6% | 86.1% | 78.6% | 85.6% | - | |
Average | 84.1% | 76.5% | 83.5% | 83.4% | 76.3% | 82.7% | 83.6% | 74.9% | 83.4% | - |
Label & FS 1 | COPV_AP 2 | PPS 3 | |||||
---|---|---|---|---|---|---|---|
Classifier | FS1 | FS2 | FS3 | FS1 | FS2 | FS3 | |
KNN-City Block | 89.0% | 73.2% | 88.5% | 82.2% | 75.3% | 82.6% | |
KNN-Euclidean | 88.3% | 73.5% | 86.3% | 81.5% | 75.6% | 82.8% | |
GNB | 77.9% | 64.3% | 76.0% | 77.8% | 70.0% | 76.5% | |
KNB | 85.0% | 64.4% | 83.4% | 77.6% | 68.8% | 76.6% | |
LR | 88.0% | 67.9% | 88.5% | 80.9% | 74.0% | 81.9% | |
DA | 88.7% | 73.9% | 88.4% | 83.3% | 73.9% | 82.5% | |
SVM-Linear | 88.0% | 67.0% | 88.4% | 82.6% | 73.6% | 82.2% | |
SVM-Cubic | 89.4% | 73.5% | 88.2% | 81.5% | 74.3% | 79.9% | |
DT | 85.1% | 69.1% | 85.5% | 79.0% | 69.5% | 79.4% | |
OBT | 89.2% | 77.1% | 89.3% | 84.0% | 76.0% | 83.8% | |
OE | 90.5% | 79.2% | 90.2% | 84.1% | 76.3% | 84.0% | |
Maximum | 90.5% | 79.2% | 90.2% | 84.1% | 76.3% | 84.0% | |
Average | 87.2% | 71.2% | 86.6% | 81.3% | 73.4% | 81.1% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Kou, J.; Wu, M. Ability of Wearable Accelerometers-Based Measures to Assess the Stability of Working Postures. Int. J. Environ. Res. Public Health 2022, 19, 4695. https://doi.org/10.3390/ijerph19084695
Guo L, Kou J, Wu M. Ability of Wearable Accelerometers-Based Measures to Assess the Stability of Working Postures. International Journal of Environmental Research and Public Health. 2022; 19(8):4695. https://doi.org/10.3390/ijerph19084695
Chicago/Turabian StyleGuo, Liangjie, Junhui Kou, and Mingyu Wu. 2022. "Ability of Wearable Accelerometers-Based Measures to Assess the Stability of Working Postures" International Journal of Environmental Research and Public Health 19, no. 8: 4695. https://doi.org/10.3390/ijerph19084695
APA StyleGuo, L., Kou, J., & Wu, M. (2022). Ability of Wearable Accelerometers-Based Measures to Assess the Stability of Working Postures. International Journal of Environmental Research and Public Health, 19(8), 4695. https://doi.org/10.3390/ijerph19084695