Removal of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli, ST98, in Water for Human Consumption by Black Ceramic Water Filters in Low-Income Ecuadorian Highlands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Water Sampling
2.2. Physicochemical and Microbiologic Analysis of BCWF Efficacy
2.3. Molecular Genetic Determination of Resistance Genes in E. coli
2.4. Multilocus Sequence Typing (MLST)
3. Results
3.1. Sampling Sites
3.2. Physicochemical Analysis of BCFW Efficacy
3.3. Microbiological and Molecular Genetic Determination
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations Children’s Fund. The State of the World’s Children 2021: On My Mind: Promoting, Protecting and Caring for Children’s Mental Health; UNICEF: New York, NY, USA, 2021. [Google Scholar]
- World Health Organization. Water, Sanitation, Hygiene and Health. A Primer for Health Professionals; Department of Environment, Climate Change and Health: Geneva, Switzerland, 2019; pp. 1–31. [Google Scholar]
- UNICEF/WHO. Diarrhoea: Why Children Are Still Dying and What Can Be Done; World Health Organization, UNICEF: Geneva, Switzerland, 2009; ISBN 978-92-4-159841-5. [Google Scholar]
- Kotloff, K.L.; Nataro, J.P.; Blackwelder, W.C.; Nasrin, D.; Farag, T.H.; Panchalingam, S.; Wu, Y.; Sow, S.O.; Sur, D.; Breiman, R.F.; et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): A prospective, case-control study. Lancet 2013, 382, 209–222. [Google Scholar] [CrossRef]
- Vasco, G.; Trueba, G.; Atherton, R.; Calvopiña, M.; Cevallos, W.; Andrade, T.; Eguiguren, M.; Eisenberg, J.N.S. Identifying Etiological Agents Causing Diarrhea in Low Income Ecuadorian Communities. Am. J. Trop. Med. Hyg. 2014, 91, 563–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lugmaña, G. Anuario de Estadísticas Hospitalarias: Egresos y Camas. Inst. Nac. Estadística Y Censos. 2014, 1, 522. [Google Scholar]
- Pozo, M.; Serrano, J.C.; Castillo, R.; Moreno, L. Diagnóstico de Los Indicadores ODS de Agua, Saneamiento e Higiene En Ecuador. Estud. Temáticos INEC 2016, 1, 1–27. [Google Scholar]
- Collignon, P.; Beggs, J.J.; Walsh, T.R.; Gandra, S.; Laxminarayan, R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: A univariate and multivariable analysis. Lancet Planet. Health 2018, 2, e398–e405. [Google Scholar] [CrossRef]
- Lee, G.O.; Whitney, H.J.; Blum, A.G.; Lybik, N.; Cevallos, W.; Trueba, G.; Levy, K.; Eisenberg, J.N. Household coping strategies associated with unreliable water supplies and diarrhea in Ecuador, an upper-middle-income country. Water Res. 2021, 1, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Andrade, F.F.; Silva, D.; Rodrigues, A.; Pina-Vaz, C. Colistin Update on Its Mechanism of Action and Resistance, Present and Future Challenges. Microorganisms 2020, 8, 1716. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, C.; Zhang, R.; Chen, Y.; Shen, Y.; Hu, F.; Liu, D.; Lu, J.; Guo, Y.; Xia, X.; et al. Changes in colistin resistance and mcr-1 abundance in Escherichia coli of animal and human origins following the ban of colistin-positive additives in China: An epidemiological comparative study. Lancet Infect. Dis. 2020, 20, 1161–1171. [Google Scholar] [CrossRef]
- Mora, F.X.; Avilés-Reyes, R.X.; Guerrero-Latorre, L.; Fernández-Moreira, E. Atypical enteropathogenic Escherichia coli (aEPEC) in children under five years old with diarrhea in Quito (Ecuador). Int. Microbiol. 2017, 19, 157–160. [Google Scholar] [CrossRef]
- Drali, R.; Berrazeg, M.; Zidouni, L.L.; Hamitouche, F.; Abbas, A.A.; Deriet, A.; Mouffok, F. Emergence of mcr-1 plasmid-mediated colistin-resistant Escherichia coli isolates from seawater. Sci. Total Environ. 2018, 642, 90–94. [Google Scholar] [CrossRef]
- Hembach, N.; Schmid, F.; Alexander, J.; Hiller, C.; Rogall, E.T.; Schwartz, T. Occurrence of the mcr-1 Colistin Resistance Gene and other Clinically Relevant Antibiotic Resistance Genes in Microbial Populations at Different Municipal Wastewater Treatment Plants in Germany. Front. Microbiol. 2017, 8, 1282. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xie, M.; Zhang, J.; Yang, Z.; Liu, L.; Liu, X.; Zheng, Z.; Chan, E.W.-C.; Chen, S. Genetic characterization of mcr-1 -bearing plasmids to depict molecular mechanisms underlying dissemination of the colistin resistance determinant. J. Antimicrob. Chemother. 2016, 72, 393–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, M.R.; Cerdeira, L.; Silva, M.M.; Sellera, F.; Muñoz, M.; Junior, F.G.; Azevedo, S.S.; Power, P.; Gutkind, G.; Lincopan, N. Novel mcr-5.3 variant in a CTX-M-8-producing Escherichia coli ST711 isolated from an infected horse. J. Antimicrob. Chemother. 2018, 73, 3520–3522. [Google Scholar] [CrossRef] [PubMed]
- Loayza-Villa, F.; Salinas, L.; Tijet, N.; Villavicencio, F.; Tamayo, R.; Salas, S.; Rivera, R.; Villacis, J.; Satan, C.; Ushiña, L.; et al. Diverse Escherichia coli lineages from domestic animals carrying colistin resistance gene mcr-1 in an Ecuadorian household. J. Glob. Antimicrob. Resist. 2019, 22, 63–67. [Google Scholar] [CrossRef]
- Zurita, J.; Yánez, F.; Sevillano, G.; Ortega-Paredes, D.; Miño, A.P.Y. Ready-to-eat street food: A potential source for dissemination of multidrug-resistant Escherichia coli epidemic clones in Quito, Ecuador. Lett. Appl. Microbiol. 2019, 70, 203–209. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Kawahara, R.; Harada, K.; Teruya, S.; Nakayama, T.; Motooka, D.; Nakamura, S.; Nguyen, P.D.; Kumeda, Y.; Van Dang, C.; et al. The presence of colistin resistance gene mcr-1 and -3 in ESBL producing Escherichia coli isolated from food in Ho Chi Minh City, Vietnam. FEMS Microbiol. Lett. 2018, 365, fny100. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Calvopina, M.; Izurieta, R.; Villacres, I.; Kawahara, R.; Sasaki, M.; Yamamoto, M. Colistin-resistant Escherichia coli with mcr genes in the livestock of rural small-scale farms in Ecuador. BMC Res. Notes 2019, 12, 121. [Google Scholar] [CrossRef]
- Mwabi, J.; Adeyemo, F.; Mahlangu, T.; Mamba, B.; Brouckaert, B.; Swartz, C.; Offringa, G.; Mpenyana-Monyatsi, L.; Momba, M. Household water treatment systems: A solution to the production of safe drinking water by the low-income communities of Southern Africa. Phys. Chem. Earth Parts A/B/C 2011, 36, 1120–1128. [Google Scholar] [CrossRef]
- Guerrero-Latorre, L.; Rusiñol, M.; Hundesa, A.; Garcia-Valles, M.; Martinez, S.; Joseph, O.; Bofill-Mas, S.; Girones, R. Development of improved low-cost ceramic water filters for viral removal in the Haitian context. J. Water Sanit. Hyg. Dev. 2015, 5, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Latorre, L.; Balseca-Enriquez, P.; Moyota-Tello, C.; Bravo-Camino, R.; Davila-Chavez, S.; Bonifaz-Arcos, E.; Romero-Carpio, B.; Chico-Terán, M. Performance of black ceramic water filters and their implementation in rural Ecuador. J. Water Sanit. Hyg. Dev. 2019, 9, 694–702. [Google Scholar] [CrossRef]
- Ministerio de Ambiente del Ecuador. Revisión y Actiualización de La Norma de Calidad Ambiental y de Deacraga de Efluentes: Recurso Agua. Regist. Of. No. 387 2015, No. 97, 1–40. Available online: https://www.ambiente.gob.ec/wp-content/uploads/downloads/2018/05/Acuerdo-097.pdf (accessed on 5 April 2022).
- ISO International Standard 9308-1:2014; Water Quality. Enumeration of Escherichia Coli and Coliform Bacteria—Part 1: Membrane Filtration Method for Waters with Low Bacterial Background Flora; ISO/TC 147/SC 4 Microbiological Methods. International Organization for Standardization (ISO): Geneva, Switzerland, 2014; p. 10.
- Nakayama, T.; Ueda, S.; Huong, B.T.M.; Tuyen, L.D.; Komalamisra, C.; Kusolsuk, T.; Hirai, I.; Yamamoto, Y. Wide dissemination of extended-spectrum β-lactamase-producing Escherichia coli in community residents in the Indochinese peninsula. Infect. Drug Resist. 2015, 8, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herschy, R.W. Water Quality for Drinking: WHO Guidelines. Encycl. Earth Sci. Ser. 2012, 8, 876–883. [Google Scholar] [CrossRef]
- Blaak, H.; de Kruijf, P.; Hamidjaja, R.A.; van Hoek, A.H.A.M.; de Roda Husman, A.M.; Schets, F.M. Prevalence and characteristics of ESBL-producing E. coli in Dutch recreational waters influenced by wastewater treatment plants. Vet. Microbiol. 2014, 171, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Lenart-Boroń, A.M.; Kulik, K.; Jelonkiewicz, E. Antimicrobial resistance and ESBL genes in E. coli isolated in proximity to a sewage treatment plant. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2020, 55, 1571–1580. [Google Scholar] [CrossRef] [PubMed]
- Diab, M.; Hamze, M.; Bonnet, R.; Saras, E.; Madec, J.-Y.; Haenni, M. Extended-spectrum beta-lactamase (ESBL)- and carbapenemase-producing Enterobacteriaceae in water sources in Lebanon. Vet.-Microbiol. 2018, 217, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Paredes, D.; Barba, P.; Mena-López, S.; Espinel, N.; Crespo-Pérez, V.; Zurita, J. High quantities of multidrug-resistant Escherichia coli are present in the Machángara urban river in Quito, Ecuador. J. Water Health 2020, 18, 67–76. [Google Scholar] [CrossRef]
- Hernández, J.; Stedt, J.; Bonnedahl, J.; Molin, Y.; Drobni, M.; Calisto-Ulloa, N.; Gomez-Fuentes, C.; España, M.S.A.; González-Acuña, D.; Waldenström, J.; et al. Human-Associated Extended-Spectrum β-Lactamase in the Antarctic. Appl. Environ. Microbiol. 2012, 78, 2056–2058. [Google Scholar] [CrossRef] [Green Version]
- Vingino, A.; Roberts, M.C.; Wainstein, M.; West, J.; Norman, S.A.; Lambourn, D.; Lahti, J.; Ruiz, R.; D’Angeli, M.; Weissman, S.J.; et al. Surveillance for Antibiotic-Resistant E. coli in the Salish Sea Ecosystem. Antibiotics 2021, 10, 1201. [Google Scholar] [CrossRef]
- Silverman, A.I.; Boehm, A.B. Systematic Review and Meta-Analysis of the Persistence and Disinfection of Human Coronaviruses and Their Viral Surrogates in Water and Wastewater. Environ. Sci. Technol. Lett. 2020, 7, 544–553. [Google Scholar] [CrossRef]
- Doi, Y.; Iovleva, A.; Bonomo, R.A. The ecology of extended-spectrum β-lactamases (ESBLs) in the developed world. J. Travel Med. 2017, 24, S44–S51. [Google Scholar] [CrossRef]
- Schierack, P.; Heiden, S.; Khan, M.M.; Nikolaus, L.; Kolenda, R.; Stubbe, M.; Lkhagvasuren, D.; Rödiger, S.; Guenther, S.; Schaufler, K. Genomic and Phenotypic Analysis of an ESBL-Producing E. coli ST1159 Clonal Lineage From Wild Birds in Mongolia. Front. Microbiol. 2020, 11, 1699. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Qiu, Z.; Shen, Z.; Zhao, H.; Jin, M.; Li, H.; Liu, W.; Li, J.-W. The Occurrence of the Colistin Resistance Gene mcr-1 in the Haihe River (China). Int. J. Environ. Res. Public Health 2017, 14, 576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitag, C.; Michael, G.; Li, J.; Kadlec, K.; Wang, Y.; Hassel, M.; Schwarz, S. Occurrence and characterisation of ESBL-encoding plasmids among Escherichia coli isolates from fresh vegetables. Vet.-Microbiol. 2018, 219, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Jørgensen, S.B.; Søraas, A.V.; Arnesen, L.S.; Leegaard, T.M.; Sundsfjord, A.; Jenum, P.A. A comparison of extended spectrum β-lactamase producing Escherichia coli from clinical, recreational water and wastewater samples associated in time and location. PLoS ONE 2017, 12, e186576. [Google Scholar] [CrossRef] [Green Version]
- Ortega-Paredes, D.; De Janon, S.; Villavicencio, F.; Ruales, K.J.; De La Torre, K.; Villacís, J.E.; Wagenaar, J.A.; Matheu, J.; Bravo-Vallejo, C.; Fernández-Moreira, E.; et al. Broiler Farms and Carcasses Are an Important Reservoir of Multi-Drug Resistant Escherichia coli in Ecuador. Front. Vet.-Sci. 2020, 7, 979. [Google Scholar] [CrossRef]
- Kamal, S.M.; Cimdins-Ahne, A.; Lee, C.; Li, F.; Martín-Rodríguez, A.J.; Seferbekova, Z.; Afasizhev, R.; Wami, H.T.; Katikaridis, P.; Meins, L.; et al. A recently isolated human commensal Escherichia coli ST10 clone member mediates enhanced thermotolerance and tetrathionate respiration on a P1 phage-derived IncY plasmid. Mol. Microbiol. 2021, 115, 255–271. [Google Scholar] [CrossRef]
- Meniño, I.G.; García, V.; Mora, A.; Jiménez, D.D.; Simon, S.C.F.; Alonso, M.P.; Blanco, J.E.; Blanco, M.; Blanco, J. Swine Enteric Colibacillosis in Spain: Pathogenic Potential of mcr-1 ST10 and ST131 E. coli. Isolates. Front. Microbiol. 2018, 9, 2659. [Google Scholar] [CrossRef]
- Matamoros, S.; van Hattem, J.M.; Arcilla, M.S.; Willemse, N.; Melles, D.C.; Penders, J.; Vinh, T.N.; Hoa, N.T.; Bootsma, M.C.J.; van Genderen, P.J.; et al. Global phylogenetic analysis of Escherichia coli and plasmids carrying the mcr-1 gene indicates bacterial diversity but plasmid restriction. Sci. Rep. 2017, 7, 15364. [Google Scholar] [CrossRef] [Green Version]
- Shepard, S.M.; Danzeisen, J.L.; Isaacson, R.E.; Seemann, T.; Achtman, M.; Johnson, T.J. Genome Sequences and Phylogenetic Analysis of K88- and F18-Positive Porcine Enterotoxigenic Escherichia coli. J. Bacteriol. 2012, 194, 395–405. [Google Scholar] [CrossRef] [Green Version]
- Kawamura, K.; Nagano, N.; Suzuki, M.; Wachino, J.-I.; Kimura, K.; Arakawa, Y. ESBL-producing Escherichia coli and Its Rapid Rise among Healthy People. Food Saf. 2017, 5, 122–150. [Google Scholar] [CrossRef] [Green Version]
- Chong, Y.; Shimoda, S.; Shimono, N. Current epidemiology, genetic evolution and clinical impact of extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae. Infect. Genet. Evol. 2018, 61, 185–188. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, B.J.; Bartram, J. Surveillance Solutions to Microbiological Problems in Water Quality Control in Developing Countries. Water Sci. Technol. 1991, 24, 61–75. [Google Scholar] [CrossRef]
- Bottoni, P.; Caroli, S.; Caracciolo, A. Pharmaceuticals as priority water contaminants. Toxicol. Environ. Chem. 2010, 92, 549–565. [Google Scholar] [CrossRef]
- Abebe, L.S.; Chen, X.; Sobsey, M.D. Chitosan Coagulation to Improve Microbial and Turbidity Removal by Ceramic Water Filtration for Household Drinking Water Treatment. Int. J. Environ. Res. Public Health 2016, 13, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hihara, L. Environmental Degradation of Advanced and Traditional Engineering Materials; CRC: Boca Raton, FL, USA, 2014. [Google Scholar]
- Bloem, S.C.; van Halem, D.; Sampson, M.L.; Huoy, L.S.; Heijman, B. Silver Impregnated Ceramic Pot Filter: Flow Rate Versus the Removal Efficiency of Pathogens; International Ceramic Pot Filter Workshop: Atlanta, GA, USA, 2009. [Google Scholar]
- Brown, J.M.; Sobsey, M.D. Effectiveness of Ceramic Filtration for Drinking Watertreatment in Cambodia. Ph.D. Thesis, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 2007; p. 275. [Google Scholar] [CrossRef]
- Brown, J.; Sobsey, M.D.; Loomis, D. Local drinking water filters reduce diarrheal disease in Cambodia: A randomized, controlled trial of the ceramic water purifier. Am. J. Trop. Med. Hygiene 2008, 79, 394–400. [Google Scholar] [CrossRef]
- Ceramic, B.; Based, P.; Slag, O.N.O. Black Ceramic Pigments Based on Open-Hearth Slag. Glass Ceram. 2012, 69, 99–103. [Google Scholar] [CrossRef]
- Cheng, K. Evaluating Access to Drinking Water in Northern Ghana 2013 Group Report; Massachusetts Institute of Technology Civil and Environmental Engineering Department: Cambridge, MA, USA, 2013. [Google Scholar]
- Clasen, T.F.; Alexander, K.T.; Sinclair, D.; Boisson, S.; Peletz, R.; Chang, H.H.; Cairncross, S. Interventions to improve water quality for preventing diarrhoea. Cochrane Database Syst. Rev. 2015, 10, 1–201. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Antonietti, M.; Yu, S.H. Structural Effects of Iron Oxide Nanoparticles and Iron Ions on the Hydrothermal Carbonization of Starch and Rice Carbohydrates. Small 2006, 2, 756–759. [Google Scholar] [CrossRef]
- Denis, M.; Jeanneau, L.; Pierson-Wickman, A.C.; Humbert, G.; Petitjean, P.; Jaffrézic, A.; Gruau, G. A comparative study on the pore-size and filter type effect on the molecular composition of soil and stream dissolved organic matter. Organic Geochem. 2017, 110, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Ehdaie, B.; Rento, C.T.; Son, V.; Turner, S.S.; Samie, A.; Dillingham, R.A.; Smith, J.A. Evaluation of a Silver-Embedded Ceramic Tablet as a Primary and Secondary Point-of-Use Water Purification Technology in Limpopo Province, S. Africa. PLoS ONE 2017, 12, e0169502. [Google Scholar] [CrossRef]
- Fahlin, C.J. Hydraulic Properties Investigation of the Potters for Peace Colloidal Silver Impregnated, Ceramic Filter; University of Colorado at Boulder College of Engineering: Boulder, CO, USA, 2003. [Google Scholar]
- Hutten, I.M.; Hutten, I.M. Chapter 4–Raw Materials for Nonwoven Filter Media. Handbook of Nonwoven Filter Media; Butterworth-Heinemann: Oxford, UK, 2016. [Google Scholar] [CrossRef]
- Johnson, A.C.; Jürgens, M.D.; Lawlor, A.J.; Cisowska, I.; Williams, R.J. Particulate and 25 colloidal silver in sewage effluent and sludge discharged from British wastewater treatment plants. Chemosphere 2014, 112, 49–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanata, C.F.; Fischer-Walker, C.L.; Olascoaga, A.C.; Torres, C.X.; Aryee, M.J.; Black, R.E. Global Causes of Diarrheal Disease Mortality in Children <5 Years of Age: A Systematic Review. PLoS ONE 2013, 8, e72788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lantagne, D.; Klarman, M.; Mayer, A.; Preston, K.; Napotnik, J.; Jellison, K. Effect of production variables on microbiological removal in locally-produced ceramic filters for household water treatment. Int. J. Environ. Health Res. 2010, 20, 171–187. [Google Scholar] [CrossRef] [PubMed]
- Lantagne, D.S.; Environmental, A. Investigation of the Potters for Peace Colloidal Silver Impregnated Ceramic Filter Report 2: Field Investigations. Methods 2001, 1–121. [Google Scholar]
- Lin, J.C.T.; Hsiao, T.C.; Hsiau, S.S.; Chen, D.R.; Chen, Y.K.; Huang, S.H.; Chang, M.B. Effects of temperature, dust concentration, and filtration superficial velocity on the loading behavior and dust cakes of ceramic candle filters during hot gas filtration. Sep. Purif. Technol. 2018, 198, 146–154. [Google Scholar] [CrossRef]
- Mahlangu, O.; Mamba, B.; Momba, M. Efficiency of Silver Impregnated Porous Pot (SIPP) Filters for Production of Clean Potable Water. Int. J. Environ. Res. Public Health 2012, 9, 3014–3029. [Google Scholar] [CrossRef] [Green Version]
- Mayoral, J.M.; Castañon, E.; Alcantara, L.; Tepalcapa, S. Seismic response characterization of high plasticity clays. Soil Dyn. Earthq. Eng. 2016, 84, 174–189. [Google Scholar] [CrossRef]
- Murphy, H.M.; McBean, E.A.; Farahbakhsh, K. A critical evaluation of two point-of-use water treatment technologies: Can they provide water that meets WHO drinking water guidelines? J. Water Health 2010, 8, 611–630. [Google Scholar] [CrossRef] [Green Version]
- Oyanedel-Craver, V.A.; Smith, J.A. Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment. Environ. Sci. Technol. 2008, 42, 927–933. [Google Scholar] [CrossRef]
- Potters for Peace. Best Practice Recommendations for Local Manufacturing of Ceramic Pot Filters for Household Water Treatment. Ceram. Manuf. Group 2011, 1, 187. [Google Scholar]
- Roberts, M. Field test of a silver-impregnated ceramic water filter. In Proceedings of the 30th WEDC International Conference, Vientiane, Laos, 25–29 October 2003; pp. 1–6. [Google Scholar]
- Savage, D.; Liu, J. Water/clay ratio, clay porosity models and impacts upon clay transformations. Appl. Clay Sci. 2015, 116–117, 16–22. [Google Scholar] [CrossRef]
- Tufiño, G.; Vieira, N.; Lascano, L. Propiedades Térmicas de Arcillas Ecuatorianas para ser Utilizadas como Material Refractario. 2015, Volume 6, p. 14. Available online: https://nanopdf.com/download/propiedades-termicas-de-arcillas-ecuatorianas-para_pdf (accessed on 5 April 2022).
- Van der Laan, H.; van Halem, D.; Smeets, P.W.M.H.; Soppe, A.I.A.; Kroesbergen, J.; Wubbels, G.; Heijman, S.G.J. Bacteria and virus removal effectiveness of ceramic pot filters with different silver applications in a long term experiment. Water Res. 2014, 51, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Van Halem, D.; Heijman, S.G.J.; Soppe, A.I.A.; Van Dijk, J.C.; Amy, G.L. Ceramic silver-impregnated pot filters for household drinking water treatment in developing countries: Material characterization and performance study. Water Sci. Technol. Water Supply 2007, 7, 9–17. [Google Scholar] [CrossRef]
- van Halem, D.; van der Laan, H.; Soppe, A.I.A.; Heijman, S.G.J. High flow ceramic pot 26 filters. Water Res. 2017, 124, 398–406. [Google Scholar] [CrossRef]
- Voigt, C.; Jäckel, E.; Taina, F.; Zienert, T.; Salomon, A.; Wolf, G.; Le Brun, P. Filtration Efficiency of Functionalized Ceramic Foam Filters for Aluminum Melt Filtration. Metall. Mater. Trans. B 2017, 48, 497–505. [Google Scholar] [CrossRef]
- Wang, S.; Javadpour, F.; Feng, Q. Confinement Correction to Mercury Intrusion Capillary Pressure of Shale Nanopores. Sci. Rep. 2016, 6, 20160. [Google Scholar] [CrossRef] [Green Version]
- WHO; UNICEF. Progress on sanitation and drinking-water—2014 update. Monitor. Programme Water Supply Sanitat. 2014, 1–78. [Google Scholar]
Parameter | Before BCWF | After BCWF (n = 5) | SD (After BCWF) | Reduction Level (%) After BCWF | p Value |
---|---|---|---|---|---|
Turbidity (NTU) | 3.38 | 1.72 | 1.83 | 49.11 * | 0.02138 |
Nitrite (mg/L) | 0.13 | 0.02 | 0.02 | 85.18 * | 0.02708 |
Nitrate (mg/L) | 1.77 | 1.54 | 0.60 | 13.39 NS | 0.07752 |
BOD | 17.80 | 2.80 | 1.30 | 84.27 NS | 0.1226 |
COD | 34.41 | 10.65 | 1.88 | 69.06 ** | 0.00475 |
Ammonia (mg/L) | 0.11 | 0.04 | 0.02 | 63.70 ** | 0.002501 |
Phosphate (mg/L) | 1.84 | 1.13 | 0.05 | 38.49 *** | 0.00018 |
Chloride (mg/L) | 58.46 | 17.53 | 8.54 | 70.01 *** | 0.00007 |
Sulfate (mg/L) | 14.74 | 9.84 | 5.91 | 33.26 ** | 0.00678 |
Oil (mg/L) | 0.01 | 0.01 | 0.00 | 58.90 * | 0.03597 |
Alkalinity (mg/L) | 131.19 | 109.29 | 36.93 | 16.69 NS | 0.05738 |
Sampling Points | Natural Source | Distance to the Town Center (Km) | Altitude (Masl) * | CFU/mL before Filtering | ESBL-Producing E. coli | Clonal Complex (Strain) | CFU/mL after Filtering |
---|---|---|---|---|---|---|---|
1 | Pond | 4.07 | 2594 | 29 | - | ND ** | 0 |
2 | River | 4.2 | 2583 | 31 | - | ND | 0 |
3 | Pond | 4.98 | 2429 | >300 | blaTEM, blaCTX-M-1 | ST10 (98) | 0 |
4 | Pond | 4.72 | 2623 | 74 | - | ND | 0 |
5 | River | 4.18 | 2435 | >300 | blaTEM, blaCTX-M-9 | ST10 (98) | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastidas-Caldes, C.; Ochoa, J.; Guerrero-Latorre, L.; Moyota-Tello, C.; Tapia, W.; Rey-Pérez, J.M.; Baroja, M.I. Removal of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli, ST98, in Water for Human Consumption by Black Ceramic Water Filters in Low-Income Ecuadorian Highlands. Int. J. Environ. Res. Public Health 2022, 19, 4736. https://doi.org/10.3390/ijerph19084736
Bastidas-Caldes C, Ochoa J, Guerrero-Latorre L, Moyota-Tello C, Tapia W, Rey-Pérez JM, Baroja MI. Removal of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli, ST98, in Water for Human Consumption by Black Ceramic Water Filters in Low-Income Ecuadorian Highlands. International Journal of Environmental Research and Public Health. 2022; 19(8):4736. https://doi.org/10.3390/ijerph19084736
Chicago/Turabian StyleBastidas-Caldes, Carlos, Juan Ochoa, Laura Guerrero-Latorre, Carlos Moyota-Tello, Wilson Tapia, Joaquín María Rey-Pérez, and Maria Isabel Baroja. 2022. "Removal of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli, ST98, in Water for Human Consumption by Black Ceramic Water Filters in Low-Income Ecuadorian Highlands" International Journal of Environmental Research and Public Health 19, no. 8: 4736. https://doi.org/10.3390/ijerph19084736
APA StyleBastidas-Caldes, C., Ochoa, J., Guerrero-Latorre, L., Moyota-Tello, C., Tapia, W., Rey-Pérez, J. M., & Baroja, M. I. (2022). Removal of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli, ST98, in Water for Human Consumption by Black Ceramic Water Filters in Low-Income Ecuadorian Highlands. International Journal of Environmental Research and Public Health, 19(8), 4736. https://doi.org/10.3390/ijerph19084736