“In Flow”! Why Do Users Share Fake News about Environmentally Friendly Brands on Social Media?
Abstract
:1. Introduction
2. Flow Theory in the Social Media Context
3. Hypothesis and Conceptual Model Development
3.1. Social Media Usage, Information Sharing, and Motives for Online Sharing News
3.2. Online Trust
3.3. Social Media Flow and Users’ Motives in Sharing News about Environmentally Friendly Brands
3.4. Social Media and Fake News
4. Research Methodology
4.1. Research Design and Research Context
4.2. Questionnaire Design and Measures
5. Results
5.1. The Evaluation of the Measurement Models
5.2. The Evaluation of the Structural Models
6. Discussions
7. Conclusions
7.1. Theoretical Contributions
7.2. Managerial Implications
7.3. Limitations and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DataReportal. Digital 2022 Global Overview Report. 2022. Online Report. Available online: https://datareportal.com/reports/digital-2022-global-overview-report (accessed on 3 February 2022).
- Shu, K.; Sliva, A.; Wang, S.; Tang, J.; Liu, H. Fake news detection on social media: A data mining perspective. ACM SIGKDD Explor. Newsl. 2017, 19, 22–36. [Google Scholar] [CrossRef]
- Pew Research Center (PRC). News Use Across Social Media Platforms in 2020. Online Report. 2022. Available online: https://www.pewresearch.org/journalism/2021/01/12/news-use-across-Social-Media-platforms-in-2020 (accessed on 29 January 2022).
- Baum, D.; Spann, M.; Füller, J.; Thürridl, C. The impact of social media campaigns on the success of new product introductions. J. Retail. Consum. Serv. 2018, 50, 289–297. [Google Scholar] [CrossRef]
- Torres de Oliveira, R.; Indulska, M.; Steen, J.; Verreynne, M.L. Towards a framework for innovation in retailing through social media. J. Retail. Consum. Serv. 2019, 54, 101772. [Google Scholar] [CrossRef]
- Movsisyan, S.A. Social media marketing strategy of Yerevan brandy company. Ann. Agrar. Sci. 2016, 14, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Yadav, M.; Joshi, Y.; Rahman, Z. Mobile social media: The new hybrid element of digital marketing communications. Procedia Soc. Behav. Sci. 2015, 189, 335–343. [Google Scholar] [CrossRef] [Green Version]
- Salim, N.; Ab Rahman, M.N.; Wahab, D.A.; Muhammed, A.A. Influence of Social Media Usage on the Green Product Innovation of Manufacturing Firms through Environmental Collaboration. Sustainability 2020, 12, 8685. [Google Scholar] [CrossRef]
- Zhang, W.; Chintagunta, P.K.; Kalwani, M.U. Social Media, Influencers, and Adoption of an Eco-Friendly Product: Field Experiment Evidence from Rural China. J. Mark. 2021, 85, 10–27. [Google Scholar] [CrossRef]
- Obadă, D.R. Sharing Fake News about Brands on Social Media: A New Conceptual Model Based on Flow Theory. Argum. J. Sem. Disc. Logic Argum. Theo. Rhet. 2019, 17, 144–166. [Google Scholar]
- Fârte, G.; Obadă, D.R. The Effects of Fake News on Consumers’ Brand Trust. Roma. J. Com. Public Rel. 2021, 23, 47–61. [Google Scholar] [CrossRef]
- Zhang, M.; Xu, P.; Ye, Y. Trust in social media brands and perceived media values: A survey study in China. Comput. Hum. Behav. 2022, 127, 107024. [Google Scholar] [CrossRef]
- Allcott, H.A.; Gentzkow, M. Social Media and Fake News in the 2016 Election. J. Econ. Persp. 2017, 31, 211–236. [Google Scholar] [CrossRef] [Green Version]
- Fulgoni, G.M.; Lipsman, A. The Downside of Digital Word of Mouth and the Pursuit of Media Quality. J. Advert. Res. 2017, 57, 27–31. [Google Scholar] [CrossRef]
- Dwivedi, Y.K.; Ismagilova, E.; Hughes, D.L.; Carlson, J.; Filieri, R.; Jacobson, J.; Jain, V.; Karjaluoto, H.; Kefi, H.; Krishen, A.S.; et al. Setting the future of digital and social media marketing research: Perspectives and research propositions. Int. J. Inf. Manag. 2021, 59, 102168. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Z.; Yuan, X.; Zhang, X. Recognizing fake information through a developed feature scheme: A user study of health misinformation on social media in China. Inf. Proc. Manag. 2022, 59, 102769. [Google Scholar] [CrossRef]
- Zhang, X.; Ghorbani, A.A. An overview of online fake news: Characterization, detection, and discussion. Inf. Proc. Manag. 2020, 57, 102025. [Google Scholar] [CrossRef]
- Berthon, P.R.; Treen, E.R.; Pitt, L.F. How Truthiness, Fake News and Post-Fact Endanger Brands and What to Do About It. GfK Mark. Int. Rev. 2018, 10, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Coffee, P. PR Fail: Barilla Chairman Says He Will ‘Never’ Include Gays in Ads 2013. Available online: https://www.adweek.com/digital/pr-fail-barilla-chairmansays-he-will-never-include-gays-in-ads (accessed on 10 December 2021).
- Kohli, C.; Suri, R.; Kapoor, A. Will social media kill branding? Bus. Horiz. 2015, 58, 35–44. [Google Scholar] [CrossRef]
- Hennig-Thurau, T.; Hofacker, C.F.; Bloching, B. Marketing the pinball way: Understanding how social media change the generation of value for consumers and companies. J. Interact. Mark. 2013, 27, 237–241. [Google Scholar] [CrossRef]
- Pop, R.; Săplăcan, Z.; Dabija, D.C.; Alt, A.M. The Impact of Social Media Influencers on Travel Decisions: The Role of Trust in Consumer Decision Journey. Cur. Iss. Tour. 2021, 25, 823–843. [Google Scholar] [CrossRef]
- Dabija, D.C.; Bejan, B.; Tipi, N. Generation X versus Millennials Communication Behavior on SOCIAL MEDIA when Purchasing Food versus Tourist Services. Ekon. Manag. 2018, 21, 191–205. [Google Scholar] [CrossRef]
- Chayko, M. Superconnected: The Internet, Digital Media, and Tecno-Social Life; SAGE Publications: Los Angeles, CA, USA, 2017. [Google Scholar]
- Schwitzer, G. Pollution of health news. BMJ 2017, 365, 1262. [Google Scholar] [CrossRef] [PubMed]
- Waszak, P.M.; Kasprzycka-Waszak, W.; Kubanek, A. The spread of medical fake news in social media—The pilot quantitative study. Health Pol. Technol. 2018, 7, 115–118. [Google Scholar] [CrossRef]
- Fârte, G.; Obadă, D.R. Reactive Public Relations Strategies for Managing Fake News in the Online Environment. Postmod. Open. 2018, 9, 26–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talwar, S.; Dhir, A.; Kaur, P.; Zafar, N.; Alrasheedy, M. Why do people share fake news? Associations between the dark side of social media use and fake news sharing behavior. J. Retail. Consum. Serv. 2019, 51, 72–82. [Google Scholar] [CrossRef]
- Balakrishnan, V.; Ng, K.S.; Rahim, H.A. To share or not to share—The underlying motives of sharing fake news amidst the COVID-19 pandemic in Malaysia. Technol. Soc. 2021, 66, 101676. [Google Scholar] [CrossRef]
- Newhoff, D. Why Do We Share Fake News? 2018. Available online: https://illusionofmore.com/why-do-we-share-fake-news/ (accessed on 23 December 2021).
- Di Domenico, G.; Sit, J.; Ishizaka, A.; Nunan, D. Fake news, social media and marketing: A systematic review. J. Bus. Res. 2021, 124, 329–341. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M. Beyond Boredom and Anxiety: Experiencing Flow in Work and Play; Jossey-Bass: San Francisco, CA, USA, 1975. [Google Scholar]
- Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience; Harpers Perennial: New York, NY, USA, 1990. [Google Scholar]
- Brailovskaia, J.; Schillack, H.; Margraf, J. Tell me why are you using social media (SM)! Relationship between reasons for use of SM, SM flow, daily stress, depression, anxiety, and addictive SM use—An exploratory investigation of young adults in Germany. Comput. Hum. Behav. 2020, 113, 106511. [Google Scholar] [CrossRef]
- Internet Speeds by Country 2022. Available online: https://worldpopulationreview.com/country-rankings/internet-speeds-by-country (accessed on 27 March 2022).
- Getzel, J.W.; Csikszentmihalyi, M. The study of creativity in future artists: The criterion problem. In Experience, Structure, and Adaptability; Harvey, O.J., Ed.; Springer: New York, NY, USA, 1966. [Google Scholar]
- Csikszentmihalyi, M.; Bennett, S. An exploratory model of play. Am. Anthrop. 1971, 73, 45–58. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M.; Getzels, J.W. The personality of young artist: An empirical and theoretical exploration. Brit. J. Psychol. 1973, 64, 91–104. [Google Scholar] [CrossRef]
- Csikszentmihalyi, M.; LeFevre, J. Optimal experience in work and leisure. J. Person. Soc. Psychol. 1989, 56, 815–822. [Google Scholar] [CrossRef]
- Moneta, G.B.; Csikszentmihalyi, M. The effect of perceived challenges and skills on the quality of subjective experience. J. Person. 1996, 64, 275–310. [Google Scholar] [CrossRef] [PubMed]
- Csikszentmihalyi, M.; Rathunde, K. The measurement of flow in everyday life. Nebraska Symp. Motiv. 1993, 40, 57–97. [Google Scholar]
- Gardner, H.; Csikszentmihalyi, M.; Damon, W. Good Work: When Excellence and Ethics Meet; Basic Books: New York, NY, USA, 2001. [Google Scholar]
- Csikszentmihalyi, M.; Larson, R. Being Adolescent: Conflict and Growth in the Teenage Years; Basic Books: New York, NY, USA, 1984. [Google Scholar]
- Csikszentmihalyi, M. Flow: The Psychology of Optimal Experience; Harper and Row: New York, NY, USA, 2008. [Google Scholar]
- Delle-Fave, A.; Massimini, F. The investigation of optimal experience and apathy: Developmental and psychosocial implications. Eur. Psychol. 2005, 10, 264–274. [Google Scholar] [CrossRef]
- Delle-Fave, A.; Massimini, F. The cross-cultural investigation of optimal experience. Ric. Psicol. 2004, 27, 79–102. [Google Scholar]
- Pace, S. The Roles of Challenge and Skill in the Flow Experiences of Web Users. Issues Inf. Sci. Inf. Technol. 2004, 1, 331–340. [Google Scholar] [CrossRef] [Green Version]
- Csikszentmihalyi, M.; Csikszentmihalyi, I.S. Optimal Experience: Psychological Studies of Flow in Consciousness; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Rettie, R. An exploration of flow during Internet use. Int. Res. 2001, 11, 103–113. [Google Scholar] [CrossRef] [Green Version]
- Obadă, D.R. Online Flow Experience and Perceived Quality of a Brand Website: InPascani.ro Case Study. Proc. Soc. Behav. Sci. 2014, 149, 673–679. [Google Scholar] [CrossRef] [Green Version]
- Pelet, J.É.; Ettis, S.; Cowart, K. Optimal experience of flow enhanced by telepresence: Evidence from social media use. Inf. Manag. 2017, 54, 115–128. [Google Scholar] [CrossRef]
- Chen, H. Exploring Web Users’ On-line Optimal Flow Experiences. Ph.D. Thesis, Syracuse University, Syracuse, NY, USA, 2000. [Google Scholar]
- Huang, Y.; Backman, S.J.; Backman, K.F. Exploring the impacts of involvement and flow experiences in Second Life on people’s travel intentions. J. Hospit. Tour. Techn. 2012, 3, 4–23. [Google Scholar] [CrossRef]
- Lee, S.M.; Chen, L. The impact of flow on online consumer behavior. J. Comp. Inf. Syst. 2010, 50, 1–10. [Google Scholar]
- Lin, J.; Lin, S.; Turel, O.; Xu, F. The buffering effect of flow experience on the relationship between overload and social media users’ discontinuance intentions. Telemat. Inf. 2020, 49, 101374. [Google Scholar] [CrossRef]
- Celik, Z.; Uslu, A. Bibliometric Analysis of Flow Theory from Past to Present with Visual Mapping Technique: A Marketing-Sided Approach. Öneri Dergisi 2022, 17, 243–267. [Google Scholar] [CrossRef]
- Ryan, R.M.; Deci, E.L. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am. Psych. 2000, 55, 68–78. [Google Scholar] [CrossRef]
- Burger, J.M. Negative responses to increases in perceived personal control. J. Person. Soc. Psych. 1989, 56, 246–256. [Google Scholar] [CrossRef]
- Ajzen, I. The theory of planned behavior. Organ. Behav. Hum. Dec. Proc. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Ghani, J.A.; Deshpande, S.P. Task Characteristics and the Experience of Optimal Flow in Human-Computer Interaction. J. Psychol. 1994, 128, 381–391. [Google Scholar] [CrossRef]
- Webster, J.; Trevino, L.K.; Ryan, L. The Dimensionality and Correlates of Flow in Human Computer Interactions. Comput. Hum. Behav. 1993, 9, 411–426. [Google Scholar] [CrossRef]
- Novak, T.P.; Hoffman, D.L.; Yung, Y.F. Measuring the Customer Experience in Online Environments: A Structural Modeling Approach. Mark. Sci. 2000, 19, 22–42. [Google Scholar] [CrossRef] [Green Version]
- Koufaris, M. Applying the technology acceptance model and flow theory to online consumer behavior. Inf. Syst. Res. 2002, 13, 205–223. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.; Zhou, T.; Wang, B. Exploring Chinese users’ acceptance of instant messaging using the theory of planned behavior, the technology acceptance model, and the flow theory. Comput. Hum. Behav. 2009, 25, 29–39. [Google Scholar] [CrossRef]
- Lin, J.C.C. Online stickiness: Its antecedents and effect on purchasing intention. Behav. Inf. Technol. 2007, 26, 507–516. [Google Scholar] [CrossRef]
- Hoffman, D.L.; Novak, T.P. Flow Online: Lessons Learned and Future Prospects. J. Interact. Mark. 2009, 23, 23–34. [Google Scholar] [CrossRef]
- Khang, H.; Kim, J.K.; Kim, Y. Self-traits and motivations as antecedents of digital media flow and addiction: The Internet, mobile phones, and video games. Comput. Hum. Behav. 2013, 29, 2416–2424. [Google Scholar] [CrossRef]
- Kwak, K.T.; Choi, S.K.; Lee, B.G. SNS flow, SNS self-disclosure and post hoc interpersonal relations change: Focused on Korean Facebook user. Comput. Hum. Behav. 2014, 31, 294–304. [Google Scholar] [CrossRef]
- Kaur, P.; Dhir, A.; Chen, S.; Rajala, R. Flow in context: Development and validation of the flow experience instrument for social networking. Comput. Hum. Behav. 2016, 59, 358–367. [Google Scholar] [CrossRef]
- Kaplan, A.; Haenlein, M. The Use and Potential of Twitter and Micro-Blogging for Marketing Strategy: A Qualitative Case Study Approach. In Proceedings of the 9th International Marketing Trends Conference, Venice, Italy, 21–23 January 2010; pp. 21–23. [Google Scholar]
- Edwards, S.M. A social media mindset. J. Int. Advert. 2011, 12, 1–3. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, Y.R.R. How brand-stakeholder dialogue drives brand-hosted community engagement on social media: A mixed-methods approach. Comp. Human Beh. 2022, 31, 107208. [Google Scholar] [CrossRef]
- Khan, M.L. Social media engagement: What motivates user participation and consumption on YouTube? Comp. Human Beh. 2017, 66, 236–247. [Google Scholar] [CrossRef]
- Verduyn, P.; Ybarra, O.; Résibois, M.; Jonides, J.; Kross, E. Do social network sites enhance or undermine subjective well-being? A critical review. Soc. Iss. Policy Rev. 2017, 11, 274–302. [Google Scholar] [CrossRef]
- Trifiro, B.M.; Gerson, J. Social Media Usage Patterns: Research Note Regarding the Lack of Universal Validated Measures for Active and Passive Use. Soc. Media Soc. 2019, 5, 2056305119848743. [Google Scholar] [CrossRef]
- Karnowski, V.; Leonhard, L.; Kümpel, A.S. Why Users Share the News: A Theory of Reasoned Action-Based Study on the Antecedents of News-Sharing Behavior. Com. Res. Rep. 2018, 35, 91–100. [Google Scholar] [CrossRef]
- Kim, A.; Dennis, A.R. Says Who? The Effects of Presentation Format and Source Rating on Fake News in Social Media. MIS Quart. 2019, 43, 1025–1039. [Google Scholar] [CrossRef]
- Dabija, D.C.; Băbuţ, R.; Dinu, V.; Lugojan, M. Cross-Generational Analysis of Information Searching based on Social Media in Romania. Transf. Bus. Econ. 2017, 16, 248–270. [Google Scholar]
- Buchanan, T.; Benson, V. Spreading Disinformation on Facebook: Do Trust in Message Source, Risk Propensity, or Personality Affect the Organic Reach of “Fake News”? Soc. Med. Soc. 2019, 5, 2056305119888654. [Google Scholar] [CrossRef] [Green Version]
- Tandoc, E.C.; Lim, Z.W.; Ling, R. Defining “Fake News”: A typology of scholarly definitions. Dig. Journal. 2018, 6, 137–153. [Google Scholar] [CrossRef]
- Tandoc, E.C.; Ling, R.; Westlund, O.; Duffy, A.; Goh, D.; Zheng Wei, L. Audiences’ acts of authentication in the age of fake news: A conceptual framework. New Media Soc. 2018, 20, 2745–2763. [Google Scholar] [CrossRef]
- Verma, N.; Fleischmann, K.R.; Koltai, K.S. Human values and trust in scientific journals, the mainstream media and fake news. Proc. Assoc. Inf. Sci. Technol. 2017, 54, 426–435. [Google Scholar] [CrossRef]
- Vosoughi, S.; Roy, D.; Aral, S. The spread of true and false news online. Science 2018, 359, 1146–1151. [Google Scholar] [CrossRef]
- Zubiaga, A.; Ji, H. Tweet, but Verify: Epistemic Study of Information Verification on Twitter. Social Network Analysis and Mining. 2013. Available online: https://arxiv.org/abs/1312.5297 (accessed on 10 November 2021).
- Statista. Number of Social Network Users Worldwide from 2017 to 2025. 2021. Available online: https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users (accessed on 3 February 2022).
- Apuke, O.D.; Omar, B. Fake news and COVID-19: Modelling the predictors of fake news sharing among social media users. Telemat. Inform. 2021, 56, 101475. [Google Scholar] [CrossRef]
- Burcă-Voicu, M. How to communicate the Quality of the Romanian Organic Food Products. Roma. Rev. Int. Stud. 2015, 1, 225–229. Available online: http://dsi.institute.ubbcluj.ro/docs/revista/166_ro.pdf (accessed on 25 September 2021).
- Kissling, M.; Fiedler, M. Fake News a Danger for Green Brands? Analyzing the Role of Fake News in Green Advertising. In Proceedings of the 10th EMAC Regional Conference, Saint Petersburg, Russia, 25–27 September 2019. [Google Scholar]
- Chadwick, A.; Vaccari, C. Survey Report: News Sharing on UK Social Media: Misinformation, Disinformation & Correction, Loughborough University. 2019. Available online: https://www.lboro.ac.uk/research/online-civic-culture-centre/news-events/articles/o3c-1-survey-report-news-sharing-misinformation (accessed on 15 September 2021).
- Wang, Y.D.; Emurian, H.H. An overview of online trust: Concepts, elements, and implications. Comput. Hum. Behav. 2005, 21, 105–125. [Google Scholar] [CrossRef]
- Husted, B.W. The ethical limits of trust in business relations. Bus. Ethics Quart. 1998, 8, 233–248. [Google Scholar] [CrossRef]
- Ayaburi, E.W.; Treku, D.N. Effect of penitence on social media trust and privacy concerns: The case of Facebook. Int. J. Inf. Manag. 2020, 50, 171–181. [Google Scholar] [CrossRef]
- Mayer, R.C.; Davis, J.H.; Schoorman, F.D. An integrative model of organizational trust. Acad. Manag. Rev. 1995, 20, 709–734. [Google Scholar] [CrossRef]
- Chen, Z.F.; Cheng, Y. Consumer response to fake news about brands on social media: The effects of self-efficacy, media trust, and persuasion knowledge on brand trust. J. Prod. Brand Manag. 2020, 29, 188–198. [Google Scholar] [CrossRef]
- Lee, K.C.; Kang, I.; McKnight, D.H. Transfer from Offline Trust to Key Online Perceptions: An Empirical Study. IEEE Trans. Eng. Manag. 2007, 54, 729–741. [Google Scholar] [CrossRef]
- Luhmann, N. Trust and Power; Wiley: New York, NY, USA, 1979. [Google Scholar]
- Zhou, T. Examining mobile banking user adoption from the perspectives of trust and flow experience. Inf. Technol. Manag. 2012, 13, 27–37. [Google Scholar] [CrossRef]
- Grabner-Kräuter, S.; Bitter, S. Trust in online social networks: A multifaceted perspective. Forum Soc. Econ. 2013, 44, 48–68. [Google Scholar] [CrossRef] [Green Version]
- Krasnova, H.; Spiekermann, S.; Koroleva, K.; Hildebrand, T. Online social networks: Why we disclose. J. Inf. Technol. 2010, 25, 109–125. [Google Scholar] [CrossRef]
- Lin, S.-W.; Liu, Y.-C. The effects of motivations, trust, and privacy concern in social networking. Serv. Bus. 2012, 6, 411–424. [Google Scholar] [CrossRef]
- DuBois, T.; Golbeck, J.; Srinivasan, A. Predicting trust and distrust in social networks. In Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third International Conference on Social Computing. IEEE Computer Society, Boston, MA, USA, 9–11 October 2011; pp. 418–424. [Google Scholar] [CrossRef] [Green Version]
- Talwar, S.; Amandeep, D.; Dilraj, S.; Singh, V.G.; Jari, S. Sharing of fake news on social media: Application of the honeycomb framework and the third-person effect hypothesis. J. Retail. Consum. Serv. 2020, 57, 102197. [Google Scholar] [CrossRef]
- Buchanan, T. Trust, personality, and belief as determinants of the organic reach of political disinformation on social media. Soc. Sci. J. 2021, 5, 1975085. [Google Scholar] [CrossRef]
- Hoffman, D.L.; Novak, T.P. Marketing in hypermedia computer-mediated environments: Conceptual foundations. J. Mark. 1996, 60, 50–69. [Google Scholar] [CrossRef]
- Esteban-Millat, I.; Martínez-López, F.J.; Luna, D.; Rodríguez-Ardura, I. The concept of flow in online consumer behavior. In Handbook of Strategic E-Business Management; Martínez-López, F.J., Ed.; Springer: New York, NY, USA, 2014; pp. 371–402. [Google Scholar]
- Hyun, H.; Thavisay, T.; Lee, S.H. Enhancing the role of flow experience in social media usage and its impact on shopping. J. Retail. Consum. Serv. 2022, 65, 102492. [Google Scholar] [CrossRef]
- Maslow, A.H. A theory of human motivation. Psychol. Rev. 1943, 50, 370–396. [Google Scholar] [CrossRef] [Green Version]
- Deci, E.L.; Ryan, R.M. Intrinsic Motivation, and Self-Determination in Human Behavior; Plenum: New York, NY, USA, 1985. [Google Scholar]
- Obadă, D.R. Impactul Stării de Flux Din Mediul Online Asupra Calității Percepute a Unui Site Web de Brand; Pro Universitaria: Bucureşti, Romenia, 2015. [Google Scholar]
- Kim, M.J.; Lee, C.K.; Bonn, M. Obtaining a better understanding about travel-related purchase intentions among senior users of mobile social network sites. Int. J. Inf. Manag. 2017, 37, 484–496. [Google Scholar] [CrossRef]
- Chantal, Y.; Vallerand, R.J.; Vallières, E.F. Motivation and gambling involvement. J. Soc. Psychol. 1995, 135, 755–763. [Google Scholar] [CrossRef]
- Teo, E.W.; Khoo, S.; Wong, R.; Wee, E.H.; Lim, B.H.; Rengasamy, S.S. Intrinsic and Extrinsic Motivation Among Adolescent Ten-Pin Bowlers in Kuala Lumpur, Malaysia. J. Human Kinet. 2015, 45, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Waterman, A.S.; Schwartz, S.J.; Goldbacher, E.; Green, H.; Miller, C.; Philip, S. Predicting the Subjective Experience of Intrinsic Motivation: The Roles of Self-Determination, the Balance of Challenges and Skills, and Self-Realization Values. Personal. Soc. Psychol. Bull. 2003, 29, 1447–1458. [Google Scholar] [CrossRef] [Green Version]
- Leung, X.Y.; Bai, B. How motivation, opportunity, and ability impact travelers’ social media involvement and revisit intention. J. Travel Tour. Mark. 2013, 30, 58–77. [Google Scholar] [CrossRef]
- Tellis, G.J.; MacInnis, D.J.; Tirunillai, S.; Zhang, Y. What drives virality (sharing) of online digital content? The critical role of information, emotion, and brand prominence. J. Mark. 2019, 83, 1–20. [Google Scholar] [CrossRef]
- Oh, S.; Syn, S.Y. Motivations for sharing information and social support in social media: A comparative analysis of Facebook, Twitter, Delicious, You Tube, and Flickr. J. Assoc. Inf. Sci. Technol. 2015, 66, 2045–2060. [Google Scholar] [CrossRef]
- Hennig-Thurau, T.; Gwinner, K.P.; Walsh, G.; Gremler, D.D. Electronic word-of-mouth via consumer-opinion platforms: What motivates consumers to articulate themselves on the internet? J. Interact. Mark. 2004, 18, 38–52. [Google Scholar] [CrossRef]
- Lovett, M.J.; Peres, R.; Shachar, R. On brands and word of mouth. J. Mark. Res. 2013, 50, 427–444. [Google Scholar] [CrossRef] [Green Version]
- Obadă, D.R. Flow Theory and Online Marketing Outcomes: A Critical Literature Review. Proc. Econ. Fin. 2013, 6, 550–561. [Google Scholar] [CrossRef] [Green Version]
- Carlson, J.; Jane de Vries, N.; Rahman, M.M.; Taylor, A. Go with the flow: Engineering flow experiences for customer engagement value creation in branded social media environments. J. Brand Manag. 2017, 24, 334–348. [Google Scholar] [CrossRef]
- Gray, J.; Bounegru, L.; Venturini, T. Fake news as infrastructural uncanny. New Media Soc. 2020, 22, 317–341. [Google Scholar] [CrossRef]
- Wang, X.; McKee, M.; Torbica, A.; Stuckler, D. Systematic Literature Review on the Spread of Health-related Misinformation on Social Media. Soc. Sci. Med. 2019, 240, 112552. [Google Scholar] [CrossRef]
- McGonagle, T. Fake news: False fears or real concerns? Nether. Quart. Hum. Rights 2017, 35, 203–209. [Google Scholar] [CrossRef]
- Gelfert, A. Fake News: A Definition. Inf. Log. 2018, 38, 84–117. [Google Scholar] [CrossRef]
- Price, R. Facebook Will Now Teach You How to Spot Fake News. 2017. Available online: http://www.businessinsider.com/facebook-how-to-spot-fake-news-2017-4?IR=T (accessed on 3 November 2021).
- Yougov. 68% of APAC Residents Believe There Is a Problem with Fake News on Digital Platforms. 2017. Available online: https://au.yougov.com/news/2017/08/21/68-apac-residents-believe-thereproblem-fake-news (accessed on 21 August 2021).
- Wardle, C.; Derakhshan, H. Information Disorder: Toward an Interdisciplinary Framework for Research and Policymaking; Council of Europe Report; DGI: Strasbourg, France, 2017. [Google Scholar]
- Kovach, B.; Rosenstiel, T. The Elements of Journalism: What Newspeople Should Know and The Public Should Expect, 1st ed.; Three Rivers Press: New York, NY, USA, 2007. [Google Scholar]
- Figuiera, Á.; Oliveira, L. The current state of fake news: Challenges and opportunities. Proc. Comput. Sci. 2017, 121, 817–825. [Google Scholar] [CrossRef]
- Levy, N. The bad news about fake news. Soc. Epistemol. Rev. Reply Collect. 2017, 6, 20–36. [Google Scholar]
- Oremus, W. Facebook Has Stopped Saying “Fake News”. 2017. Available online: http://www.slate.com/blogs/future_tense/2017/08/08/facebook_has_stopped_saying_fake_news_is_false_news_any_better.html (accessed on 10 January 2022).
- Özgöbek, Ö.; Gulla, J.A. Towards an understanding of fake news. CEUR Workshop Proc. 2017, 2041, 35–42. [Google Scholar]
- Mauri, M.; Cipresso, P.; Balgera, A.; Villamira, M.; Riva, G. Why Is Facebook so successful? Psychophysiological measures describe a core flow state while using Facebook. Cyberpsych. Beh. Soc. Netw. 2011, 14, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Hirao, K.; Kobayashi, R. Flow experience in daily living and health-related quality of life. Activities of Daily Living: Performance. Imp. Life Qual. Assist. 2013, 169–174. [Google Scholar]
- Rodríguez-Ardura, I.; Meseguer-Artola, A. Flow in e-learning: What drives it and why it matters. Br. J. Educ. Technol. 2017, 48, 899–915. [Google Scholar] [CrossRef]
- Rodríguez-Ardura, I.; Meseguer-Artola, A. Imagine, feel “there”, and flow! Immersive experiences on m-Facebook, and their affective and behavioural effects. Inf. Technol. People 2018, 32, 921–947. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, J.; Csikszentmihalyi, M. Flow theory and research. In Oxford Handbook of Positive Psychology, 2nd ed.; Snyder, C.R., Lopez, S.J., Eds.; Oxford University Press: New York, NY, USA, 2009; pp. 195–206. [Google Scholar]
- Agarwal, R.; Karahanna, E. Time flies when you’re having fun: Cognitive absorption and beliefs about information technology usage. MIS Quart. 2000, 24, 665–694. [Google Scholar] [CrossRef]
- Engeser, S.; Rheinberg, F. Flow, performance and moderators of challenge-skill-balance. Motiv. Emot. 2008, 32, 158–172. [Google Scholar] [CrossRef]
- Fang, X.; Zhang, J.; Chan, S.S. Development of an instrument for studying flow in computer game play. Int. J. Hum. Comput. Interact. 2013, 29, 456–470. [Google Scholar] [CrossRef]
- Lee, C.H.; Wu, J.J. Consumer online flow experience: The relationship between utilitarian and hedonic value, satisfaction and unplanned purchase. Ind. Manag. Data Syst. 2017, 177, 2452–2467. [Google Scholar] [CrossRef]
- Chou, T.J.; Ting, C.C. The role of flow experience in cyber-game addiction. Cyber Psychol. Behav. 2003, 6, 663–675. [Google Scholar] [CrossRef] [PubMed]
- Le, L.H.; Hoang, P.A.; Pham, H.C. Sharing health information across online platforms: A systematic review. Health Commun. 2022, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Croucher, S.M.; Cronn-Mills, D. Understanding Communication Research Methods: A Theoretical and Practical Approach, 2nd ed.; Routledge: New York, NY, USA, 2018. [Google Scholar]
- National Institute of Statistics. Romanian Statistics 2019. Available online: https://insse.ro/cms/sites/default/files/field/publicatii/romania_in_cifre_2019_2.pdf (accessed on 15 January 2021).
- Robinson, M.A. Using multi-item psychometric scales for research and practice in human resource management. Hum. Res. Manag. 2018, 57, 739–750. [Google Scholar] [CrossRef] [Green Version]
- Brailovskaia, J.; Rohmann, E.; Bierhoff, H.W.; Margraf, J. The brave blue world: Facebook flow and Facebook Addiction Disorder (FAD). PLoS ONE 2018, 13, e0201484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fang, J.; Shao, Y.; Wen, C. Transactional quality, relational quality, and consumer e-loyalty: Evidence from SEM and fsQCA. Int. J. Inform. Manag. 2016, 36, 1205–1217. [Google Scholar] [CrossRef]
- Hair, J.F.; Black, W.C.; Babin, B.J. Multivariate Data Analysis: A Global Perspective; Pearson: London, UK, 2010. [Google Scholar]
- Henseler, J.; Sarstedt, M. Goodness-of-fit indices for partial least squares path modeling. Comp. Stat. 2013, 28, 565–580. [Google Scholar] [CrossRef] [Green Version]
- Chin, W.W. The partial least squares approach for structural equation modeling. In Methodology for Business and Management. Modern Methods for Business Research; Marcoulides, G.A., Ed.; Lawrence Erlbaum Associates Publishers: Mahwah, NJ, USA, 1998; pp. 295–336. [Google Scholar]
- Henseler, J.; Ringle, C.M.; Sarstedt, M. A new criterion for assessing discriminant validity in variance-based structural equation modeling. J. Acad. Mark. Sci. 2014, 43, 115–135. [Google Scholar] [CrossRef] [Green Version]
- Sarstedt, M.; Ringle, C.M.; Hair, J.F. Partial Least Squares Structural Equation Modeling. In Handbook of Market Research; Homburg, C., Klarmann, M., Vomberg, A., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Pilke, E.M. Flow Experiences in Information Technology Use. Int. J. Hum. Comput. Stud. 2004, 61, 347–357. [Google Scholar] [CrossRef]
- Deng, L.; Turner, D.E.; Gehling, R.; Prince, B. User experience, satisfaction, and continual usage intention of IT. Eur. J. Inf. Syst. 2010, 19, 60–75. [Google Scholar] [CrossRef]
- Mathwick, C.; Rigdon, E. Play, flow, and the online search experience. J. Consum. Res. 2004, 31, 324–332. [Google Scholar] [CrossRef]
- Ozkara, B.Y.; Ozmen, M.; Kim, J.W. Examining the effect of flow experience on online purchase: A novel approach to the flow theory based on hedonic and utilitarian value. J. Retail. Consum. Serv. 2017, 37, 119–131. [Google Scholar] [CrossRef]
- Chang, H.H.; Wang, I.C. An investigation of user communication behavior in computer mediated environments. Comput. Hum. Behav. 2008, 24, 2336–2356. [Google Scholar] [CrossRef]
- Mahfouz, A.Y.; Joonas, K.; Opara, E.U. An overview of and factor analytic approach to flow theory in online contexts. Technol. Soc. 2020, 61, 101228. [Google Scholar] [CrossRef]
- Alwahaishi, S.; Snásel, V. Acceptance and use of information and communications technology: A UTAUT and flow based theoretical model. J. Technol. Manag. Innov. 2013, 8, 61–73. [Google Scholar] [CrossRef] [Green Version]
- Dabija, D.C.; Cheben, J.; Lancaric, D. Cross-cultural Investigation of Consumers’ Generations Attitudes towards Purchase of Environmentally Friendly Products in Apparel Retail. Stud. Bus. Econ. 2017, 12, 27–42. [Google Scholar] [CrossRef] [Green Version]
- Tandoc, E.C.; Lim, D.; Ling, R. Diffusion of disinformation: How social media users respond to fake news and why. Journalism 2020, 21, 381–398. [Google Scholar] [CrossRef]
- Luo, M.; Hancock, J.T.; Markowitz, D.M. Credibility Perceptions and Detection Accuracy of Fake News Headlines on Social Media: Effects of Truth-Bias and Endorsement Cues. Commun. Res. 2020, 49, 171–195. [Google Scholar] [CrossRef]
- Trninic, D.; Kuprešanin Vukelic, A.; Bokan, J. Perception of “Fake News” and Potentially Manipulative Content in Digital Media—A Generational Approach. Societies 2022, 12, 3. [Google Scholar] [CrossRef]
- Zakrzewski, C. The Technology 2020: More than 70 Companies Victims of Ad Fraud on FACEBOOK, According to New Report. The Washington Post. 22 July 2020. Available online: https://www.washingtonpost.com/politics/2020/07/22/technology-202-more-than-70-companies-victims-ad-fraud-facebook-according-new-report (accessed on 3 December 2021).
- Loveday, S. Yet Another Fake Video to Hurt Tesla: TikTok Maker Apologizes. INSEDEEVs, 29 June 2021. Available online: https://insideevs.com/news/517105/fake-defective-tesla-video-apology (accessed on 20 December 2021).
- Berthon, P.R.; Pitt, L.F. Brands, Truthiness and Post-Fact: Managing Brands in a Post-Rational World. J. Macromark. 2018, 38, 218–227. [Google Scholar] [CrossRef]
- Pelau, C.; Ene, I.; Pop, M.I. The Impact of Artificial Intelligence on Consumers’ Identity and Human Skills. Amfit. Econ. 2021, 23, 33–45. [Google Scholar] [CrossRef]
- Micu, A.; Micu, A.E.; Geru, M.; Căpățînă, A.; Muntean, M.C. The Impact of Artificial Intelligence Use on the E-Commerce in Romania. Amfiteatru Econ. 2021, 23, 137–154. [Google Scholar] [CrossRef]
- Patterson, D. The Pfizer-BioNTech Vaccine Is a Top Target of Conspiracy Theories. CBS NEWS. Available online: https://www.cbsnews.com/news/covid-vaccine-pfizer-conspiracy-theories (accessed on 24 November 2021).
- WHO. Ten Threats to Global Health in 2019. Available online: https://www.who.int/emergencies/tenthreats-to-global-health-in-2019 (accessed on 5 February 2022).
- Vafeiadis, M.; Bortree, D.S.; Buckley, C.; Diddi, P.; Xiao, A. Refuting fake news on social media: Nonprofits, crisis response strategies and issue involvement. J. Prod. Brand Manag. 2020, 29, 209–222. [Google Scholar] [CrossRef]
- Visentin, M.; Pizzi, G.; Pichierri, M. Fake News, Real Problems for Brands: The Impact of Content Truthfulness and Source Credibility on consumers’ Behavioral Intentions toward the Advertised Brands. J. Inter. Mark. 2019, 45, 99–112. [Google Scholar] [CrossRef]
- Berduygina, O.N.; Vladimirova, T.N.; Chernyaeva, E.V. Trends in the spread of fake news in mass media. Media Watch 2019, 10, 122–132. [Google Scholar] [CrossRef]
- Mills, A.J.; Pitt, C.; Ferguson, S.L. The relationship between fake news and advertising: Brand management in the era of programmatic advertising and prolific falsehood. J. Advert. Res. 2019, 59, 3–8. [Google Scholar] [CrossRef]
- Bakir, V.; McStay, A. Fake News and The Economy of Emotions. Digit. Journal. 2018, 6, 154–175. [Google Scholar] [CrossRef]
- Van Duyn, E.; Collier, J. Priming and Fake News: The Effects of Elite Discourse on Evaluations of News Media. Mass Comm. Soc. 2019, 22, 29–48. [Google Scholar] [CrossRef]
- Rapp, D.N.; Salovich, N.A. Can’t We Just Disregard Fake News? The Consequences of Exposure to Inaccurate Information. Policy Insights Behav. Brain Sci. 2018, 5, 232–239. [Google Scholar] [CrossRef]
- Carrieri, V.; Madio, L.; Principe, F. Vaccine hesitancy and (fake) news: Quasi-experimental evidence from Italy. Health Econ. 2019, 28, 1377–1382. [Google Scholar] [CrossRef]
- Brigida, M.; Pratt, W.R. Fake news. N. Am. J. Econ. Fin. 2017, 42, 564–573. [Google Scholar] [CrossRef]
- Dobson-Lohman, E.; Potcovaru, A.-M. Fake News Content Shaping the COVID-19 Pandemic Fear: Virus Anxiety, Emotional Contagion, and Responsible Media Reporting. Anal. Metaphys. 2020, 19, 94–100. [Google Scholar] [CrossRef]
- Lăzăroiu, G.; Pera, A.; Ştefănescu-Mihăilă, R.O.; Bratu, S.; Mircică, N. The Cognitive Information Effect of Televised News. Front. Psych. 2017, 8, 1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mihăilă, R.; Braniște, L. Digital Semantics of Beauty Apps and Filters: Big Data-driven Facial Retouching, Aesthetic Self-Monitoring Devices, and Augmented Reality-based Body-Enhancing Technologies. J. Res. Gend. Stud. 2021, 11, 100–112. [Google Scholar] [CrossRef]
- Watson, R.; Popescu, G.H. Will the COVID-19 Pandemic Lead to Long-Term Consumer Perceptions, Behavioral Intentions, and Acquisition Decisions? Econ. Manag. Fin. Mark. 2021, 16, 70–83. [Google Scholar] [CrossRef]
- Andronie, M.; Lăzăroiu, G.; Ștefănescu, R.; Ionescu, L.; Cocoșatu, M. Neuromanagement Decision-Making and Cognitive Algorithmic Processes in the Technological Adoption of Mobile Commerce Apps. Oecon. Copern. 2021, 12, 863–888. [Google Scholar] [CrossRef]
- Lăzăroiu, G.; Adams, C. Viral Panic and Contagious Fear in Scary Times: The Proliferation of COVID-19 Misinformation and Fake News. Analy. Metaphys. 2020, 19, 80–86. [Google Scholar] [CrossRef]
- Popescu Ljungholm, D.; Olah, M.L. Regulating Fake News Content during COVID-19 Pandemic: Evidence-based Reality, Trustworthy Sources, and Responsible Media Reporting. Rev. Contemp. Philos. 2020, 19, 43–49. [Google Scholar] [CrossRef]
- Bratu, S. The Fake News Sociology of COVID-19 Pandemic Fear: Dangerously Inaccurate Beliefs, Emotional Contagion, and Conspiracy Ideation. Linguist. Philos. Investig. 2020, 19, 128–134. [Google Scholar] [CrossRef]
- Rydell, L.; Kucera, J. Cognitive Attitudes, Behavioral Choices, and Purchasing Habits during the COVID-19 Pandemic. J. Self Gov. Manag. Econ. 2021, 9, 35–47. [Google Scholar] [CrossRef]
- Sheares, G.; Miklencicova, R.; Grupac, M. The Viral Power of Fake News: Subjective Social Insecurity, COVID-19 Damaging Misinformation, and Baseless Conspiracy Theories. Linguist. Philos. Investig. 2020, 19, 121–127. [Google Scholar] [CrossRef]
- Rochlin, N. Fake news: Belief in post-truth. Libr. Hi Tech. 2017, 35, 386–392. [Google Scholar] [CrossRef]
- The Guardian. Misinformation ‘Superspreaders’: COVID Vaccine Falsehoods Still Thriving on Facebook and Instagram. 2021. Available online: https://www.theguardian.com/world/2021/jan/06/facebook-instagram-urged-fight-deluge-anti-covid-vaccine-falsehoods (accessed on 21 August 2021).
- Ofcom. Half of UK Adults Exposed to False Claims about Coronavirus. 2020. Available online: https://www.ofcom.org.uk/about-ofcom/latest/features-and-news/half-of-uk-adults-exposed-to-false-claims-about-coronavirus (accessed on 24 January 2022).
- Li, H.O.Y.; Bailey, A.; Huynh, D.; Chan, J. YouTube as a source of information on COVID-19: A pandemic of misinformation? BMJ Glob. Health 2020, 5, e002604. [Google Scholar] [CrossRef] [PubMed]
- Pennycook, G.; Rand, D. The Psychology of Fake News. Trends Cogn. Scie. 2021, 25, 388–402. [Google Scholar] [CrossRef]
Dimension | Variable | Frequency | Percentage | Percentage | Deviation of Sample vs. Statistics * |
---|---|---|---|---|---|
National Statistics * | |||||
Gender | Female | 524 | 55.75% | 51.1% | +4.65 |
Male | 408 | 44.25% | 48.8% | −4.55 | |
Education | Out-of-school | 1 | 0.1% | n/c | n/c |
Primary school | 7 | 0.8% | n/c | n/c | |
Gymnasium | 47 | 5.1% | n/c | n/c | |
10 classes | 70 | 7.6% | n/c | n/c | |
Vocational school | 58 | 6.3% | n/c | n/c | |
High school | 374 | 40.6% | n/c | n/c | |
College | 52 | 5.6% | n/c | n/c | |
University | 210 | 22.8% | n/c | n/c | |
Postdoctoral studies | 103 | 11.2% | n/c | n/c | |
Age | <30 years | 445 | 45.8% | 31% | +14.8% |
30–50 years | 430 | 44.1% | 30% | +14.1% | |
>50 years | 70 | 10.1% | 39% | −28.9% | |
Income | Low | 401 | 43.5% | n/c | n/c |
Middle | 439 | 47.6% | n/c | n/c | |
High | 82 | 8.9% | n/c | n/c |
Item | Measure | Loading | Cronbach’s Alpha/AVE/CR | Source | |
---|---|---|---|---|---|
Social Media Flow (SMF) | SMF1 | While using social media, I am deeply engrossed. | 0.763 | 0.836/0.603/0.884 | Adapted from Kwak et al. [68]; Brailovskaia et al. [147] |
SMF2 | While using social media, I am immersed in the task I am performing. | 0.743 | |||
SMF3 | Time flies when I am using social media. | 0.764 | |||
SMF4 | While using social media, I often lose track of time. | 0.829 | |||
SMF5 | While using social media, I often spend more time than I had intended. | 0.781 | |||
Sharing Fake News on Social Media (SFNSM) | SFNSM1 | The news I shared on social media about environmentally friendly brands seemed accurate at the time, but later I found out it was made up. | 0.868 | 0.895/0.707/0.923 | Adapted from Chadwick and Vaccari [89] |
SFNSM2 | The news I shared on social media about environmentally friendly brands was exaggerated, but I was not aware of this at the time of sharing. | 0.828 | |||
SFNSM3 | The news I shared on social media about environmentally friendly brands seemed to be real news at the time of sharing, but later I found out that was fake news. | 0.888 | |||
SFNSM4 | The news I shared on social media about environmentally friendly brands initially seemed accurate but was later proven to be a hoax. | 0.882 | |||
SFNSM5 | The satirical news I shared on social media about environmentally friendly brands was presented as real news. | 0.727 | |||
Online Trust (OT) | OT1 | I trust the information that is shared on social media (Facebook, Instagram, Twitter, TikTok, etc.). | 0.923 | 0.846/0.866/0.928 | Adapted from Fang et al. [148] |
OT2 | I trust the news that is shared on social media (Facebook, Instagram, Twitter, TikTok, etc.). | 0.938 | |||
Motives in Sharing News about Brands on Social Media (MSNSM) | MSNSM1 | When I share news about brands on social media (Facebook, Instagram, Twitter, TikTok, etc.) is important to find out other people’s opinions. | 0.766 | 0.893/0.609/0.916 | Adapted from Chadwick and Vaccari [89] |
MSNSM2 | … to influence others. | 0.797 | |||
MSNSM3 | … to provoke discussions. | 0.767 | |||
MSNSM4 | … to entertain others. | 0.756 | |||
MSNSM5 | … to feel like I belong to a group. | 0.835 | |||
MSNSM6 | … to demonstrate my knowledge. | 0.795 | |||
MSNSM7 | … to please others. | 0.743 | |||
Exposure to Inaccurate Information on Social Media (EIISM) | EIISM1 | Over the last month, I come across news on social media that I thought was not fully accurate/authentic. | 1.000 | 1.000/1.000/1.000 | Adapted from Chadwick and Vaccari [89] |
Social Media Usage (SMU) | SMU1 | On average, I spend a lot of time browsing on Facebook. | 0.738 | 0.721/0.643/0.843 | Adapted from Chadwick and Vaccari [89] |
SMU2 | On average, I spend a lot of time browsing on Instagram. | 0.869 | |||
SMU3 | On average, I spend a lot of time browsing on TikTok. | 0.794 |
Construct | OT | EIISM | MSNSM | SFNSM | SMF | SMU |
---|---|---|---|---|---|---|
OT | 0.931 | |||||
EIISM | −0.048 | 1.000 | ||||
MSNSM | 0.161 | 0.094 | 0.781 | |||
SFNSM | 0.176 | 0.043 | 0.263 | 0.841 | ||
SMF | 0.244 | 0.107 | 0.233 | 0.192 | 0.777 | |
SMU | 0.042 | 0.160 | 0.236 | 0.090 | 0.296 | 0.802 |
Construct | OT | EIISM | MSNSM | SFNSM | SMF | SMU |
---|---|---|---|---|---|---|
OT | ||||||
EIISM | 0.053 | |||||
MSNSM | 0.186 | 0.098 | ||||
SFNSM | 0.201 | 0.045 | 0.295 | |||
SMF | 0.283 | 0.121 | 0.263 | 0.222 | ||
SMU | 0.069 | 0.189 | 0.291 | 0.110 | 0.378 |
Paths | Path Coefficients | Standard Deviation | T-Value | CI 1 | p-Value | Hypotheses |
---|---|---|---|---|---|---|
SMU→EIISM | 0.160 | 0.032 | 5.091 | 0.100–0.277 | 0.000 ** | H1-Supported |
SMU→MSNSM | 0.219 | 0.036 | 6.143 | 0.147–0.285 | 0.000 ** | H2-Supported |
EIISM→MSNSM | 0.066 | 0.034 | 1.967 | −0.006–0.130 | 0.050 * | H3-Supported |
OT→MSNSM | 0.156 | 0.032 | 4.932 | 0.096–0.218 | 0.000 ** | H4-Supported |
OT→SMF | 0.212 | 0.034 | 6.247 | 0.147–0.278 | 0.000 ** | H5-Supported |
OT→SFNSM | 0.138 | 0.034 | 4.009 | 0.076–0.205 | 0.000 ** | H6- Supported |
MSNSM→SMF | 0.199 | 0.030 | 6.632 | 0.142–0.254 | 0.000 ** | H7- Supported |
SMF→SFNSM | 0.158 | 0.033 | 4.800 | 0.094–0.221 | 0.000 ** | H8-Supported |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obadă, D.-R.; Dabija, D.-C. “In Flow”! Why Do Users Share Fake News about Environmentally Friendly Brands on Social Media? Int. J. Environ. Res. Public Health 2022, 19, 4861. https://doi.org/10.3390/ijerph19084861
Obadă D-R, Dabija D-C. “In Flow”! Why Do Users Share Fake News about Environmentally Friendly Brands on Social Media? International Journal of Environmental Research and Public Health. 2022; 19(8):4861. https://doi.org/10.3390/ijerph19084861
Chicago/Turabian StyleObadă, Daniel-Rareș, and Dan-Cristian Dabija. 2022. "“In Flow”! Why Do Users Share Fake News about Environmentally Friendly Brands on Social Media?" International Journal of Environmental Research and Public Health 19, no. 8: 4861. https://doi.org/10.3390/ijerph19084861
APA StyleObadă, D.-R., & Dabija, D.-C. (2022). “In Flow”! Why Do Users Share Fake News about Environmentally Friendly Brands on Social Media? International Journal of Environmental Research and Public Health, 19(8), 4861. https://doi.org/10.3390/ijerph19084861