Eye-Tracking in Assessment of the Mental Workload of Harvester Operators
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Operators
2.2. Machines Involved in the Research
2.3. Study Areas
2.4. Study Procedure
- Felling, which began when the tree was grasped by the head, through the positioning of the head, until the tree was felled, and processing started, or the tree was released from the head;
- Processing, which was from the moment the feed rollers started rotating, through cross-cutting of the logs, until the top was dropped.
- Number and duration of saccades (ms);
- Frequency of saccades (n/s);
- Proportion of saccade time (%);
- Mean pupil diameter during fixations (mm);
- Mean pupil diameter during saccades (mm).
2.5. Statistical Analysis
3. Results
3.1. Duration of Saccades
3.2. Frequency of Saccades
3.3. Proportion of Saccade Time
3.4. Pupil Diameter
3.4.1. Fixations
3.4.2. Saccades
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Forest Product Statistics. Global Production and Trade in Forest Products in 2019. 2019. Available online: http://www.fao.org/forestry/statistics/80938/en/ (accessed on 9 March 2021).
- Szewczyk, G.; Sowa, J.M.; Kulak, D.; Stańczykiewicz, A. Multifactor analisis of time consumption in manipulation and cutting stacked wood into length. Acta Sci. Pol. Silvarum Colendarum Ratio Ind. Lignaria 2012, 11, 53–62. [Google Scholar]
- Moskalik, T.; Borz, S.A.; Dvořák, J.; Ferencik, M.; Glushkov, S.; Muiste, P.; Lazdiņš, A.; Styranivsky, O. Timber Harvesting Methods in Eastern European Countries: A Review. Croat. J. For. Eng. 2017, 38, 231–241. [Google Scholar]
- Mederski, P.S.; Borz, S.A.; Duka, A.; Lazdinš, A. Challenges in forestry and forest engineering—Case studies from four countries in East Europe. Croat. J. For. Eng. 2020, 42, 1–18. [Google Scholar]
- Lundbäck, M.; Häggström, C.; Nordfjell, T. Worldwide trends in methods for harvesting and extracting industrial roundwood. Int. J. For. Eng. 2021, 32, 202–215. [Google Scholar] [CrossRef]
- Sowa, J.M.; Gaj-Gielarowiec, D.; Gielarowiec, K. Wpływ rozwoju konstrukcji kabin maszyn wielooperacyjnych na obciążenie pracą operatorów leśnych. For. Lett. 2013, 105, 77–84. [Google Scholar]
- Phairah, K.; Brink, M.; Chirwa, P.; Todd, A. Operator work-related musculoskeletal disorders during forwarding operations in South Africa: An ergonomic assessment. South. For. A J. For. Sci. 2016, 78, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Berger, C. Mental stress on harvester operators. In Proceedings of the Austro2003 Meeting: High Tech Forest Operations for Mountainous Terrain, Schlaegl, Austria, 5–9 October 2003; p. 10. [Google Scholar]
- Lewark, S.; Kastenholz, E. Sustainability of work as challenge for forest work science. International symposium, Bottlenecks, solutions, and priorities in the context of functions of forest resources. In Proceedings of the 150th Anniversary of Forestry Education in Turkey, Harbiye/Istanbul, Turkey, 17–19 October 2007; Proceedings of Oral Presentations. pp. 375–384.
- Young, M.S.; Brookhuis, K.A.; Wickens, C.D.; Hancock, P.A. State of science: Mental workload in ergonomics. Ergonomics 2015, 58, 1–17. [Google Scholar] [CrossRef]
- Tao, D.; Tan, H.; Wang, H.; Zhang, X.; Qu, X.; Zhang, T. A systematic review of physiological measures of mental workload. Int. J. Environ. Res. Public Health 2019, 16, 2716. [Google Scholar] [CrossRef] [Green Version]
- Lahtinen, M. Ergonomics Evaluation of Cut-to-Lenght Forest Harvesters. Master’s Thesis, Management and Economy in the International Forest Sector, Tampere University of Applied Sciences, Tampere, Finland, June 2017. Available online: https://www.theseus.fi/handle/10024/130914?show=full (accessed on 18 February 2020).
- Jankovský, M.; Merganič, J.; Allman, M.; Ferenčík, M.; Messingerová, V. The cumulative effects of work-related factors increase the heart rate of cabin field machine operators. Int. J. Ind. Ergon. 2018, 65, 173–178. [Google Scholar] [CrossRef]
- Dvořák, J.; Natov, P.; Natovová, L.; Krilek, J.; Kováč, J. Operator’s physical workload in simulated logging and timber bucking by harvester. J. For. Sci. 2016, 62, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Grzywiński, W.; Tomczak, A.; Jelonek, T.; Wandycz, A. Assessment of multifunction machines operators’ workload during mechanized timber harvesting. In Integrated Logging Technology; Technická Univerzita vo Zvolene, Lesnícka Fakulta, Katedra Lesnej T’ažby a Mechanizácie: Zvolen, Slovakia, 2008; pp. 55–61. [Google Scholar]
- Spinelli, R.; Magagnotti, N.; Labelle, E.R. The effect of new silvicultural trends on the mental workload of harvester operators. Croat. J. For. Eng. 2020, 41, 177–190. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, A.; Bren, L.; Humphreys, N. Harvester productivity and operator fatigue: Working extended hours. Int. J. For. Eng. 2004, 15, 57–65. [Google Scholar] [CrossRef]
- Poole, A.; Ball, L.J. Eye tracking in human—Computer interaction and usability research: Current status and future prospects. In Encyclopedia of Human Computer Interaction; Idea Group Inc.: Hershey, PA, USA, 2006; pp. 211–219. [Google Scholar]
- Marquart, G.; de Winter, J. Workload assessment for mental arithmetic task using the task-evoked pupillary response. PeerJ Comput. Sci. 2015, 1, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Krejtz, I.; Krejtz, K.; Bielecki, M. Applications of eye movement analysis in social research. Psychol. Społeczna 2008, 31, 73–86. [Google Scholar]
- Laskowski, M. Eye-Tracking for web usability research. Contemp. Econ. Electron. Sci. J. 2011, 2, 1–11. [Google Scholar]
- Lappi, O. Eye tracking in the Wild: The good, the bad and the ugly. J. Eye Mov. Res. 2015, 8, 1–21. [Google Scholar] [CrossRef]
- Błasiak, W.; Godlewska, M.; Rosiek, R.; Wcisło, D. Eye tracking. New experimental possibilities in educational research. Eduk.-Tech.-Inform. 2013, 4, 481–488. [Google Scholar]
- Wąsikowska, B. Eye-tracking w badaniach marketingowych. Zesz. Nauk. Uniw. Szczecińskiego 863 Studia Inform. 2015, 36, 177–192. [Google Scholar]
- Brychtová, A.; Popelka, S.; Zdobesova, Z. Eye-tracking methods for investigation of cartographic principles. In Proceedings of the SGEM 2012, 12th International Multidisciplinary Scientific GeoConference, Sofia, Bulgaria, 17–23 June 2012; Volume II, pp. 1041–1048. [Google Scholar]
- Di Nocera, F.; Mastrangelo, S.; Proietti Colonna, S.; Steinhage, A.; Baldauf, M.; Kataria, A. Mental workload assessment using eye-tracking glasses in a simulated maritime scenario. In Proceedings of the Human Factors and Ergonomics Society Europe, Groningen, The Netherlands, 14–16 October 2015. [Google Scholar]
- Stolecka-Makowska, A.; Wolny, R. The possibility of application of the eye tracking methods in quantitative marketing research. Zesz. Nauk. Uniw. Ekon. W Katowicach 2014, 195, 195–205. [Google Scholar]
- Cowen, L.; Ball, L.J.; Delin, J. An eye movement analysis of web page usability. In Proceedings of Human-Computer Interaction HCI; Springer: Berlin/Heidelberg, Germany, 2002; pp. 317–335. [Google Scholar]
- Sałaj, J. Widzenie Kontrolowane, Czyli Kiedy Technika Wkracza w Pole Patrzenia. Eyetracking, Patrzenie i Widzenie w Kontekstach Kulturoznawczych. Historia i Teoria Kultury, Red; Dziewit, J., Kołodziej, M., Pisarek, A., Eds.; grupakulturalna.pl: Katowice, Poland, 2016; pp. 289–303. [Google Scholar]
- Paśko, J.R.; Mulawka, K. Visual analysis of the periodic table of chemical elements during the search for their symbols (eyetracker research). Probl. Współczesnej Pedagog. 2018, 4, 57–72. [Google Scholar]
- Nowakowska-Buryła, I.; Joński, T. Eyetrackingowe Badania Prezentacji Multimedialnych Konstruowanych dla Wspomagania Edukacji Wczesnoszkolnej; Dylak, S., Skrzydlewski, W., Eds.; Media–Edukacja–Kultura, W Stronę Edukacji Medialnej, Rzeszów; Wydawnictwo Uniwersytetu Rzeszowskiego: Rzeszów, Poland, 2012; pp. 485–499. [Google Scholar]
- Hoeks, B.; Levelt, W.J.M. Pupillary dilation as a measure of attention: A quantitative system analysis. Behav. Res. Metchods Instrum. Comput. 1993, 25, 16–26. [Google Scholar] [CrossRef]
- Goldberg, J.H.; Stimson, M.J.; Lewenstein, M.; Scott, N.; Wichansky, A.M. Eye tracking in web search tasks: Design implications. In Proceedings of the 2002 Symposium on Eye Tracking Research & Applications, New Orleans, LA, USA, 25–27 March 2002; pp. 51–58. [Google Scholar]
- Pumplun, M.; Sunkara, S. Pupil dilation as an indicator of cognitiive workload in human-computer interaction. In Proceedings of the 2009 HCI International, Crete, Greece, 19–24 July 2003. [Google Scholar]
- Duchowski, A.T. Eye Tracking Methodology: Theory and Practice; Springer: London, UK, 2007. [Google Scholar]
- Pernice, K.; Nielsen, J. How to Conduct Eyetracking Studies; Nielsien Norman Group: Fremont, CA, USA, 2009; p. 19. [Google Scholar]
- Tobii Technology AB. Accuracy and Precision Test Method for Remote Eye Trackers; Test Specification, Version 2.1.1; Tobii Technology AB: Danderyd, Sweden, 2011; pp. 1–28. [Google Scholar]
- Wyatt, J. The Human Pupil and the Use of Video-Based Eyetrackers. Vis. Res. 2010, 50, 1982–1988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Häggström, C. Human Factors in Mechanized Cut-to-Length Forest Operations. In Acta Universitatis Agriculturae Sueciae; Sveriges Lantbruksuniversitat: Umeå Sweden, 2015; pp. 1–77. Available online: https://pub.epsilon.slu.se/12208/ (accessed on 13 March 2020).
- Isler, R.; Kirk, P.; Bradford, S.J.; Parker, R.J. Testing the relative conspicuity of safety garments for New Zealand forestry workers. Appl. Ergon. 1997, 28, 323–329. [Google Scholar] [CrossRef]
- Häggström, C.; Englund, M.; Lindroos, O.; Lidestav, G. Eye-Tracking as a Research Tool to Analyse Work Conducted by Harvester Operators. In Proceedings of the 47th International Symposium on Forestry Mechanisation: “Forest Engineering: Propelling the Forest Value Chain” Proceedings 2014, Gerardmer, France, 23–26 September 2014; Available online: https://www.formec.org/proceedings/35-france-2014-proceedings.html (accessed on 13 March 2020).
- Häggström, C.; Englund, M.; Lindroos, O. Examining the gaze behaviors of harvester operators: An eye-tracking study. Int. J. For. Eng. 2015, 26, 96–113. [Google Scholar] [CrossRef]
- Szewczyk, G.; Sowa, J. Eye-tracking studies—New opportunities in analyzing work processes in forestry. In Proceedings of the 125th IUFRO Anniversary Congress, Book of Abstracts, Freiburg, Germany, 18–22 September 2017; p. 9. [Google Scholar]
- Szewczyk, G.; Spinelli, R.; Magagnotti, N.; Tylek, P.; Sowa, J.M.; Rudy, P.; Gaj-Gielarowiec, D. The mental workload of harvester operators working in step terrain conditions. Silva Fenn. 2020, 54, 1–18. [Google Scholar] [CrossRef]
- Szewczyk, G.; Spinelli, R.; Magagnotti, N.; Mitka, B.; Tylek, P.; Kulak, D.; Adamski, K. Perception of the harvester operator’s working environment in windthrow stands. Forests 2021, 12, 168. [Google Scholar] [CrossRef]
- May, J.G.; Kennedy, R.S.; Williams, M.C.; Dunlap, W.P.; Brannan, J.R. Eye movement indices of mental workload. Acta Psychol. 1990, 75, 75–89. [Google Scholar] [CrossRef]
- Tokuda, S. Using Saccadic Eye Movements to Measure Mental Workload. Journal of Vision 8. 2008. Available online: https://jov.arvojournals.org/article.aspx?articleid=2135255 (accessed on 25 January 2020).
- Yamanaka, K.; Kawakami, M. Convenient evaluation of mental stress with pupil diameter. Int. J. Occup. Saf. Ergon. 2009, 15, 447–450. [Google Scholar] [CrossRef] [Green Version]
Logging Variant | Number of Saccades | Min (ms) | Max (ms) | Average (ms) | SD |
---|---|---|---|---|---|
Felling | |||||
Windbreaks | 22,176 | 20 | 240 | 33.8 a | 21.5 |
Clearcuts, day | 30,327 | 20 | 220 | 33.7 a | 20.4 |
Clearcuts, night | 29,542 | 20 | 240 | 33.1 b | 21.4 |
Late thinning | 20,221 | 20 | 320 | 38.7 c | 23.6 |
Processing | |||||
Windbreaks | 74,997 | 20 | 260 | 34.8 a | 21.2 |
Clearcuts, day | 85,220 | 20 | 320 | 33.8 b | 20.0 |
Clearcuts, night | 98,610 | 20 | 300 | 33.5 c | 21.7 |
Late thinning | 46,058 | 20 | 220 | 36.0 d | 20.6 |
Logging Variant | Min (n/s) | Max (n/s) | Average (n/s) | SD |
---|---|---|---|---|
Felling | ||||
Windbreaks | 0.78 | 6.44 | 3.40 ac | 1.50 |
Clearcuts, day | 2.16 | 8.56 | 4.61 ab | 1.78 |
Clearcuts, night | 2.32 | 8.75 | 4.82 b | 1.50 |
Late thinning | 1.69 | 5.49 | 3.26 c | 1.02 |
Processing | ||||
Windbreaks | 3.16 | 14.80 | 7.47 a | 2.85 |
Clearcuts, day | 3.20 | 18.80 | 8.96 a | 4.25 |
Clearcuts, night | 5.47 | 16.30 | 10.10 a | 3.55 |
Late thinning | 1.94 | 7.28 | 4.09 b | 1.39 |
Logging Variant | Min (ms) | Max (ms) | Average (ms) | SD |
---|---|---|---|---|
Felling | ||||
Windbreaks | 3.10 | 21.60 | 11.50 a | 5.00 |
Clearcuts, day | 7.50 | 26.60 | 15.50 ab | 4.90 |
Clearcuts, night | 7.80 | 29.70 | 16.00 b | 4.90 |
Late thinning | 6.80 | 18.60 | 12.50 ab | 3.90 |
Processing | ||||
Windbreaks | 11.90 | 52.50 | 26.10 a | 10.00 |
Clearcuts, day | 11.30 | 61.20 | 30.20 a | 13.40 |
Clearcuts, night | 18.30 | 53.80 | 33.90 a | 11.10 |
Late thinning | 6.90 | 22.70 | 14.70 b | 4.30 |
Logging Variant | Number of Measurements | Min (mm) | Max (mm) | Average (mm) | SD |
---|---|---|---|---|---|
Felling | |||||
Windbreaks | 12,129 | 1.81 | 5.42 | 2.84 a | 0.57 |
Clearcuts, day | 14,028 | 1.94 | 8.13 | 3.36 b | 0.90 |
Clearcuts, night | 13,095 | 2.65 | 7.91 | 5.50 c | 0.90 |
Late thinning | 11,670 | 1.84 | 5.80 | 3.08 d | 0.58 |
Processing | |||||
Windbreaks | 22,400 | 1.86 | 5.31 | 2.83 a | 0.54 |
Clearcuts, day | 21,998 | 1,97 | 6.80 | 3.24 b | 0.81 |
Clearcuts, night | 21,403 | 2.78 | 7.80 | 5.34 c | 0.94 |
Late thinning | 22,707 | 2.06 | 5.58 | 3.09 d | 0.56 |
Logging Variant | Number of Measurements | Min (mm) | Max (mm) | Average (mm) | SD |
---|---|---|---|---|---|
Felling | |||||
Windbreaks | 22,176 | 1.63 | 6.95 | 2.91 a | 0.62 |
Clearcuts, day | 30,325 | 1.88 | 8.97 | 3.56 b | 1.03 |
Clearcuts, night | 29,542 | 2.62 | 8.21 | 5.57 c | 0.91 |
Late thinning | 20,221 | 1.87 | 8.57 | 3.13 d | 0.63 |
Processing | |||||
Windbreaks | 74,997 | 1.60 | 7.58 | 2.89 a | 0.59 |
Clearcuts, day | 85,220 | 1.65 | 10.4 | 3.49 b | 0.99 |
Clearcuts, night | 98,610 | 2.37 | 9.40 | 5.52 c | 0.97 |
Late thinning | 46,058 | 1.95 | 7.04 | 3.17 d | 0.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naskrent, B.; Grzywiński, W.; Polowy, K.; Tomczak, A.; Jelonek, T. Eye-Tracking in Assessment of the Mental Workload of Harvester Operators. Int. J. Environ. Res. Public Health 2022, 19, 5241. https://doi.org/10.3390/ijerph19095241
Naskrent B, Grzywiński W, Polowy K, Tomczak A, Jelonek T. Eye-Tracking in Assessment of the Mental Workload of Harvester Operators. International Journal of Environmental Research and Public Health. 2022; 19(9):5241. https://doi.org/10.3390/ijerph19095241
Chicago/Turabian StyleNaskrent, Bartłomiej, Witold Grzywiński, Krzysztof Polowy, Arkadiusz Tomczak, and Tomasz Jelonek. 2022. "Eye-Tracking in Assessment of the Mental Workload of Harvester Operators" International Journal of Environmental Research and Public Health 19, no. 9: 5241. https://doi.org/10.3390/ijerph19095241
APA StyleNaskrent, B., Grzywiński, W., Polowy, K., Tomczak, A., & Jelonek, T. (2022). Eye-Tracking in Assessment of the Mental Workload of Harvester Operators. International Journal of Environmental Research and Public Health, 19(9), 5241. https://doi.org/10.3390/ijerph19095241