Bacterial Isolates and Antibiotic Resistance of Escherichia coli Isolated from Fresh Poultry Excreta Used for Vegetable Farming in Freetown, Sierra Leone
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.2.1. General Setting
2.2.2. Specific Setting
2.2.3. Sample Collection
2.3. Study Population and Period
2.4. Identification of Bacterial Isolates
2.5. Antibiotic Sensitivity Pattern
2.6. Data Variables and Sources of Data
2.7. Data Analysis and Statistics
3. Results
3.1. Bacterial Isolates in Poultry Excreta
3.2. Antibiotic Resistance Pattern
3.3. MDR and Phenotypic Profile
3.4. Antibiotic Resistance Based on ‘AWaRe’ and ‘Critically Important Antibiotics for Human Use’
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Food and Agriculture Organisation of the United States. The Future of Food and Agriculture: Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; Volume 4, ISBN 1815-6797. [Google Scholar]
- Castanon, J.I.R. History of the use of antibiotic as growth promoters in European poultry feeds. Poult. Sci. 2007, 86, 2466–2471. [Google Scholar] [CrossRef] [PubMed]
- Zalewska, M.; Błażejewska, A.; Czapko, A.; Popowska, M. Antibiotics and Antibiotic Resistance Genes in Animal Manure—Consequences of Its Application in Agriculture. Front. Microbiol. 2021, 12, 610656. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Robles Aguilar, G.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Van Boeckel, T.P.; Glennon, E.E.; Chen, D.; Gilbert, M.; Robinson, T.P.; Grenfell, B.T.; Levin, S.A.; Bonhoeffer, S.; Laxminarayan, R. Reducing antimicrobial use in food animals. Science 2017, 357, 1350–1352. [Google Scholar] [CrossRef] [Green Version]
- Hedman, H.D.; Vasco, K.A.; Zhang, L. A review of antimicrobial resistance in poultry farming within low-resource settings. Animals 2020, 10, 1264. [Google Scholar] [CrossRef]
- Muhammad, J.; Khan, S.; Su, J.Q.; Hesham, A.E.L.; Ditta, A.; Nawab, J.; Ali, A. Antibiotics in poultry manure and their associated health issues: A systematic review. J. Soils Sediments 2020, 20, 486–497. [Google Scholar] [CrossRef]
- Lima, T.; Domingues, S.; Silva, G.J. Da Manure as a potential hotspot for antibiotic resistance dissemination by horizontal gene transfer events. Vet. Sci. 2020, 7, 110. [Google Scholar] [CrossRef]
- Tang, K.L.; Caffrey, N.P.; Nóbrega, D.B.; Cork, S.C.; Ronksley, P.E.; Barkema, H.W.; Polachek, A.J.; Ganshorn, H.; Sharma, N.; Kellner, J.D.; et al. Restricting the use of antibiotics in food-producing animals and its associations with antibiotic resistance in food-producing animals and human beings: A systematic review and meta-analysis. Lancet Planet. Health 2017, 1, e316–e327. [Google Scholar] [CrossRef]
- Leno, A.; Kizito, W.; Jalloh, A.T.; Bah, M.A.; Kamara, S.M.; Zolfo, M.; Sheriff, A.A.; Hann, K.; Thekkur, P.; Kumar, A.M.V. Veterinary healthcare provision and quality of reported data on antimicrobial use in the treatment of livestock in Sierra Leone, 2016–2019. Trop. Med. Infect. Dis. 2021, 6, 73. [Google Scholar] [CrossRef]
- Pujiastuti, E.S.; Tarigan, J.R.; Sianturi, E.; Ginting, B.B. The effect of chicken manure and beneficial microorganisms of EM-4 on growth and yield of kale (Brassica oleraceae acephala) grown on Andisol. IOP Conf. Ser. Earth Environ. Sci. 2018, 205, 012020. [Google Scholar] [CrossRef]
- Heredia, N.; García, S. Animals as sources of food-borne pathogens: A review. Anim. Nutr. 2018, 4, 250–255. [Google Scholar] [CrossRef]
- Golden, C.E.; Rothrock, M.J.; Mishra, A. Mapping foodborne pathogen contamination throughout the conventional and alternative poultry supply chains. Poult. Sci. 2021, 100, 101157. [Google Scholar] [CrossRef]
- Merchant, L.E.; Rempel, H.; Forge, T.; Kannangara, T.; Bittman, S.; Delaquis, P.; Topp, E.; Ziebell, K.A.; Diarra, M.S. Characterization of antibiotic-resistant and potentially pathogenic Escherichia coli from soil fertilized with litter of broiler chickens fed antimicrobial-supplemented diets. Can. J. Microbiol. 2012, 58, 1084–1098. [Google Scholar] [CrossRef]
- Moffo, F.; Mouiche, M.M.M.; Djomgang, H.K.; Tombe, P.; Wade, A.; Kochivi, F.L.; Dongmo, J.B.; Mbah, C.K.; Mapiefou, N.P.; Ngogang, M.P.; et al. Poultry litter contamination by escherichia coli resistant to critically important antimicrobials for human and animal use and risk for public health in Cameroon. Antibiotics 2021, 10, 402. [Google Scholar] [CrossRef]
- Abdu, H.U. Isolation and Characterization of Multidrug-resistant Escherichia coli from Poultry Litter samples from Selected Farms in Kano metropolis, Nigeria. Niger. J. Microbiol. 2021, 35, 5623–5629. [Google Scholar]
- Mehdi, Y.; Létourneau-Montminy, M.P.; Gaucher, M.-L.; Chorfi, Y.; Suresh, G.; Rouissi, T.; Brar, S.K.; Côté, C.; Ramirez, A.A.; Godbout, S. Use of antibiotics in broiler production: Global impacts and alternatives. Anim. Nutr. 2018, 4, 170–178. [Google Scholar] [CrossRef]
- Nzouankeu, A.; Ngandjio, A.; Ejenguele, G.; Njine, T.; Wouafo, M.N. Multiple contaminations of chickens with campylobacter, Escherichia coli and Salmonella in Yaounde (Cameroon). J. Infect. Dev. Ctries. 2010, 4, 583–586. [Google Scholar] [CrossRef]
- Moustafa, S.; Mourad, D. Resistance to 3rd generation cephalosporin of Escherichia coli isolated from the feces of healthy broilers chickens in Algeria. J. Vet. Med. Anim. Health 2015, 7, 290–295. [Google Scholar] [CrossRef] [Green Version]
- Bernabé, K.J.; Langendorf, C.; Ford, N.; Ronat, J.B.; Murphy, R.A. Antimicrobial resistance in West Africa: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 2017, 50, 629–639. [Google Scholar] [CrossRef]
- Statistics Sierra Leone. Available online: https://www.statistics.sl/index.php/census.html (accessed on 7 February 2022).
- Agriculture and Food Security. West Aftrica Regional. Available online: https://www.usaid.gov/west-africa-regional/agriculture-and-food-security (accessed on 7 February 2022).
- FAO. The State of Food and Agriculture: Climate Change, Agriculture and Food Security; FAO: Rome, Italy, 2016. [Google Scholar]
- EnteroPluri-Test Identification System of Enterobacteriaceae and Other Gram Negative, Oxidase Negative Bacteria. Available online: https://legacy.bd.com/ds/technicalCenter/inserts/L010570(02).pdf (accessed on 28 March 2022).
- North Carolina State University. 8.2: Introduction to Bacterial Identification Using Enterotube Test—Biology LibreTexts. Available online: https://bio.libretexts.org/Courses/North_Carolina_State_University/MB352_General_Microbiology_Laboratory_2021_(Lee)/08%3A_Bacterial_Identification/8.02%3A_Introduction_to_Bacterial_Identification_using_Enterotube_test (accessed on 26 March 2022).
- European Committee on Anti Microbial Susceptibility Testing. Clinical Break Points and Dosing of Antibiotics. Available online: https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Guidance_documents/To_clinical_colleagues_on_recent_changes_in_clinical_microbiology_susceptibility_reports_9_July2021.pdf (accessed on 5 February 2022).
- WHO Advisory Group on Integrated Surveillance of Antimicrobial Resistance. WHO|WHO List of Critically Important Antimicrobials (CIA); WHO: Geneve, Switzerland, 2019; ISBN 9789241515528.
- World Health Organization (WHO). Antibiotics on 22nd Model List of Essential Medicine. 2021. Available online: https://www.who.int/publications/i/item/2021-aware-classification (accessed on 7 February 2022).
- Nyandjou, Y.; Yakubu, S.; Abdullahi, I.; Machido, D. Multidrug Resistance Patterns and Multiple Antibiotic Resistance Index of Salmonella species Isolated from Waste Dumps in Zaria Metropolis, Nigeria. J. Appl. Sci. Environ. Manag. 2019, 23, 41. [Google Scholar] [CrossRef] [Green Version]
- Ayandele, A.A.; Oladipo, E.K.; Oyebisi, O.; Kaka, M.O. Prevalence of multi-antibiotic resistant Escherichia coli and Klebsiella species obtained from a tertiary medical institution in Oyo State, Nigeria. Qatar Med. J. 2020, 2020, 225–232. [Google Scholar] [CrossRef]
- EUCAST. To clinical colleagues: On Recent changes in clinical microbiology susceptibility reports—New interpretation of susceptibility categories S, I and R. Susceptible Resistant. J. Clin. Microbiol. 2020, 57, 2020–2022. [Google Scholar]
- Amadi, V.A.; Watson, N.; Onyegbule, O.A.; Matthew-Belmar, V.; Avendano, E.; Tiwari, K.; Sharma, R.; Hariharan, H. Antimicrobial resistance profiles of Escherichia coli recovered from feces of healthy free-range chickens in Grenada, West Indies. Int. J. Curr. Microbiol. Appl. Sci. 2015, 4, 168–175. [Google Scholar]
- Vounba, P.; Yaghouba, K.; Ndiaye, C.; Arsenault, J.; Fairbrother, J.M.; Bada Alambédji, R. Molecular Characterization of Escherichia coli Isolated from Chickens with Colibacillosis in Senegal. Foodborne Pathog. Dis. 2018, 15, 517–525. [Google Scholar] [CrossRef] [PubMed]
- Eyasu, A.; Moges, F.; Alemu, A. Bacterial isolates from poultry litters and their antimicrobial susceptibility patterns in Gondar, Northwest Ethiopia. Int. J. Microbiol. Res. Rev. 2017, 6, 197–204. [Google Scholar]
- Joseph Fuh, N. Prevalence and Antibiotic Resistance of Escherichia coli O157: H7 Serotype from Chicken Droppings Produced by Free—Ranged and Poultry Birds in Cross River, Nigeria. Am. J. Biomed. Life Sci. 2018, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- Adelowo, O.O.; Fagade, O.E.; Agersø, Y. Antibiotic resistance and resistance genes in Escherichia coli from poultry farms, southwest Nigeria. J. Infect. Dev. Ctries. 2014, 8, 1103–1112. [Google Scholar] [CrossRef] [Green Version]
- Assoumy, M.A.; Bedekelabou, A.P.; Teko-Agbo, A.; Ossebi, W.; Akoda, K.; Nimbona, F.; Zeba, S.H.; Zobo, A.A.; Tiecoura, R.C.T.; Kallo, V.; et al. Antibiotic resistance of Escherichia coli and Salmonella spp. strains isolated from healthy poultry farms in the districts of Abidjan and Agnibilékrou (Côte d’Ivoire). Vet. World 2021, 14, 1020–1027. [Google Scholar] [CrossRef]
- Van, T.T.H.; Yidana, Z.; Smooker, P.M.; Coloe, P.J. Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. J. Glob. Antimicrob. Resist. 2020, 20, 170–177. [Google Scholar] [CrossRef]
- Noack, S.; Chapman, H.D.; Selzer, P.M. Anticoccidial drugs of the livestock industry. Parasitol. Res. 2019, 118, 2009. [Google Scholar] [CrossRef] [Green Version]
- Kant, V.; Singh, P.; Verma, P.K.; Bais, I.; Parmar, M.S.; Gopal, A.; Gupta, V. Anticoccidial Drugs Used in the Poultry: An Overview. Sci. Int. 2013, 1, 261–265. [Google Scholar] [CrossRef] [Green Version]
Name of Antibiotic | No. of Isolates Tested for Sensitivity | Antibiogram * | |||||
---|---|---|---|---|---|---|---|
Sensitive | Intermediate | Resistant | |||||
n | (%) | n | (%) | n | (%) | ||
Ampicillin | 93 | 0 | (0) | 82 | (88) | 11 | (12) |
Chloramphenicol | 92 | 26 | (28) | 34 | (37) | 32 | (35) |
Erythromycin | 65 | 0 | (0) | 0 | (0) | 65 | (100) |
Cefoxitin | 88 | 0 | (0) | 0 | (0) | 88 | (100) |
Penicillin | 88 | 0 | (0) | 35 | (40) | 53 | (60) |
Streptomycin | 93 | 0 | (0) | 0 | (0) | 93 | (100) |
Sulfafurazole | 93 | 0 | (0) | 35 | (38) | 58 | (62) |
Tetracycline | 63 | 0 | (0) | 0 | (0) | 63 | (100) |
No. of Antibiotics Tested | Phenotypic Resistance Profile | No. of Isolates | MARI |
---|---|---|---|
Four | AMP CHL STR SFZ | 5 | 0.50 |
Six | AMP CHL CXT PEN STR SFZ | 20 | 0.56 |
Seven | AMP CHL CXT PEN STR SFZ TET | 3 | 0.43 |
AMP CHL ERY CXT PEN STR SFZ | 5 | 0.60 | |
Eight | AMP CHL ERY CXT PEN STR SFZ TET | 60 | 0.74 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mansaray, A.H.D.; Yankson, D.P.Y.; Johnson, R.A.B.; Moses, F.L.; Kanu, J.S.; Kamara, I.F.; Zachariah, R.; Kumar, A.M.V.; Selvaraj, K. Bacterial Isolates and Antibiotic Resistance of Escherichia coli Isolated from Fresh Poultry Excreta Used for Vegetable Farming in Freetown, Sierra Leone. Int. J. Environ. Res. Public Health 2022, 19, 5405. https://doi.org/10.3390/ijerph19095405
Mansaray AHD, Yankson DPY, Johnson RAB, Moses FL, Kanu JS, Kamara IF, Zachariah R, Kumar AMV, Selvaraj K. Bacterial Isolates and Antibiotic Resistance of Escherichia coli Isolated from Fresh Poultry Excreta Used for Vegetable Farming in Freetown, Sierra Leone. International Journal of Environmental Research and Public Health. 2022; 19(9):5405. https://doi.org/10.3390/ijerph19095405
Chicago/Turabian StyleMansaray, Alie H. D., Dennis P. Y. Yankson, Raymonda A. B. Johnson, Francis L. Moses, Joseph Sam Kanu, Ibrahim Franklyn Kamara, Rony Zachariah, Ajay M. V. Kumar, and Kalaiselvi Selvaraj. 2022. "Bacterial Isolates and Antibiotic Resistance of Escherichia coli Isolated from Fresh Poultry Excreta Used for Vegetable Farming in Freetown, Sierra Leone" International Journal of Environmental Research and Public Health 19, no. 9: 5405. https://doi.org/10.3390/ijerph19095405
APA StyleMansaray, A. H. D., Yankson, D. P. Y., Johnson, R. A. B., Moses, F. L., Kanu, J. S., Kamara, I. F., Zachariah, R., Kumar, A. M. V., & Selvaraj, K. (2022). Bacterial Isolates and Antibiotic Resistance of Escherichia coli Isolated from Fresh Poultry Excreta Used for Vegetable Farming in Freetown, Sierra Leone. International Journal of Environmental Research and Public Health, 19(9), 5405. https://doi.org/10.3390/ijerph19095405