The Associations of Meteorological and Environmental Factors with Memory Function of the Older Age in Urban Areas
Abstract
:1. Introduction
2. Methods
2.1. Data Sources and Participants
2.2. Variable Measurement
2.2.1. Individual Level Variables
2.2.2. Provincial Level Variables
2.2.3. Outcome Variable
2.2.4. Covariate
2.3. Data Analysis
3. Results
3.1. The Empty Model
3.2. The Individual Level Model
3.3. The Individual Level and Provincial Level Model
3.4. Interactive Effects between Individual and Provincial Variables on Memory Performance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN. The 2018 Revision of World Urbanization Prospects; UN: New York, NY, USA, 2018.
- 2020 Alzheimer’s disease facts and figures. Alzheimer’s Dement. 2020, 12, 391–460. Available online: https://alz-journals.onlinelibrary.wiley.com/doi/10.1002/alz.12068 (accessed on 7 March 2022).
- Hussenoeder, F.S.; Conrad, I.; Roehr, S.; Fuchs, A.; Pentzek, M.; Bickel, H.; Moesch, E.; Weyerer, S.; Werle, J.; Wiese, B.; et al. Mild cognitive impairment and quality of life in the oldest old: A closer look. Qual. Life Res. 2020, 29, 1675–1683. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, S.; Garrett, C.; Machado, J.C.; Vilaça, M.; Pereira, M.G. Quality of life in patients with mild Alzheimer disease: The mediator role of mindfulness and spirituality. Aging Ment. Health 2020, 24, 2103–2110. [Google Scholar] [CrossRef] [PubMed]
- Athilingam, P.; Visovsky, C.; Elliott, A.F.; Rogal, P.J. Cognitive Screening in Persons with Chronic Diseases in Primary Care. Am. J. Alzheimer’s Dis. Other Dement. 2015, 30, 547–558. [Google Scholar] [CrossRef]
- Ibrahim, A.; Singh, D.K.A.; Shahar, S. ‘Timed Up and Go’ test: Age, gender and cognitive impairment stratified normative values of older adults. PLoS ONE 2017, 12, e0185641. [Google Scholar] [CrossRef]
- Scarmeas, N.; Anastasiou, C.A.; Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018, 17, 1006–1015. [Google Scholar] [CrossRef]
- Steinerman, J.R.; Hall, C.B.; Sliwinski, M.J.; Lipton, R.B. Modeling Cognitive Trajectories within Longitudinal Studies: A Focus on Older Adults. J. Am. Geriatr. Soc. 2010, 58 (Suppl. 2), S313–S318. [Google Scholar] [CrossRef] [Green Version]
- Christman, A.L.; Matsushita, K.; Gottesman, R.F.; Mosley, T.; Alonso, A.; Coresh, J.; Hill-Briggs, F.; Sharrett, A.R.; Selvin, E. Glycated haemoglobin and cognitive decline: The Atherosclerosis Risk in Communities (ARIC) study. Diabetologia 2011, 54, 1645–1652. [Google Scholar] [CrossRef] [Green Version]
- Cukierman, T.; Gerstein, H.C.; Williamson, J.D. Cognitive decline and dementia in diabetes—Systematic overview of prospective observational studies. Diabetologia 2005, 48, 2460–2469. [Google Scholar] [CrossRef]
- Jia, L.; Quan, M.; Fu, Y.; Zhao, T.; Li, Y.; Wei, C.; Tang, Y.; Qin, Q.; Wang, F.; Qiao, Y.; et al. Dementia in China: Epidemiology, clinical management, and research advances. Lancet Neurol. 2020, 19, 81–92. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, L.D.; Wang, K.; Luo, Y.; Li, X. Gender Differences in Cognitive Impairment among Rural Elderly in China. Int. J. Environ. Res. Public Health 2020, 17, 3724. [Google Scholar] [CrossRef] [PubMed]
- Alvarado, B.E.; Zunzunegui, M.-V.; Del Ser, T.; Béland, F. Cognitive decline is related to education and occupation in a Spanish elderly cohort. Aging Clin. Exp. Res. 2002, 14, 132–142. [Google Scholar] [CrossRef]
- Rabbitt, P.; Lunn, M.; Ibrahim, S.; McInnes, L. Further analyses of the effects of practice, dropout, sex, socio-economic advantage, and recruitment cohort differences during the University of Manchester longitudinal study of cognitive change in old age. Q. J. Exp. Psychol. 2009, 62, 1859–1872. [Google Scholar] [CrossRef] [PubMed]
- Daradkeh, G.; Essa, M.M.; Al-Adawi, S.; Koshy, R.P.; Al-Asmi, A.; Waly, M. Nutritional Status and Cognitive Impairment in Elderly. Pak. J. Biol. Sci. 2014, 17, 1098–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, T.Y.; Kajackaite, A. Battle for the thermostat: Gender and the effect of temperature on cognitive performance. PLoS ONE 2019, 14, e0216362. [Google Scholar] [CrossRef]
- Finlay, J.; Khan, A.; Gronlund, C.; Sol, K.; Jang, J.; Melendez, R.; Judd, S.; Clarke, P. Weather Woes? Exploring Potential Links between Precipitation and Age-Related Cognitive Decline. Int. J. Environ. Res. Public Health 2020, 17, 9011. [Google Scholar] [CrossRef]
- Sher, L. Sunshine and suicide: Bright light may lead to serotonin-driven behavioural activation without improvement in depressive cognitive deficits. Med. Hypotheses 2006, 66, 867. [Google Scholar] [CrossRef]
- Zhao, Q.; Wigmann, C.; Areal, A.T.; Altug, H.; Schikowski, T. Effect of non-optimum ambient temperature on cognitive function of elderly women in Germany. Environ. Pollut. 2021, 285, 117474. [Google Scholar] [CrossRef]
- Dai, L.; Kloog, I.; Coull, B.A.; Sparrow, D.; Spiro, A.; Vokonas, P.S.; Schwartz, J.D. Cognitive function and short-term exposure to residential air temperature: A repeated measures study based on spatiotemporal estimates of temperature. Environ. Res. 2016, 150, 446–451. [Google Scholar] [CrossRef] [Green Version]
- Leavitt, V.; Sumowski, J.; Wylie, G.; Chiaravalloti, N.; DeLuca, J. Warmer outdoor temperature is associated with decreased cognitive efficiency in multiple sclerosis. Mult. Scler. J. 2012, 18, 153. [Google Scholar]
- Schlader, Z.J.; Gagnon, D.; Adams, A.; Rivas, E.; Cullum, C.M.; Crandall, C.G. Cognitive and perceptual responses during passive heat stress in younger and older adults. Am. J. Physiol. Integr. Comp. Physiol. 2015, 308, R847–R854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gutiérrez, D.; Wilson, R.J. Intra- and interspecifific variation in the responses of insect phenology to climate. J. Anim. Ecol. 2021, 90, 248–259. [Google Scholar] [CrossRef] [PubMed]
- Lemonsu, A.; Amossé, A.; Chouillou, D.; Gaudio, N.; Haouès-Jouve, S.; Hidalgo, J.; Tudoux, B. Comparison of microclimate measurements and perceptions as part of a global evaluation of environmental quality at neighbourhood scale. Int. J. Biometeorol. 2020, 64, 265–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, X.; Fang, Z.; Liu, W. Decreased humidity improves cognitive performance at extreme high indoor temperature. Indoor Air 2021, 31, 608–627. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, W.; Wargocki, P. Changes in EEG signals during the cognitive activity at varying air temperature and relative humidity. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 285–298. [Google Scholar] [CrossRef] [Green Version]
- Chien, S.-P.; Wu, H.-K. Examining influences of science teachers’ practices and beliefs about technology-based assessment on students’ performances: A hierarchical linear modeling approach. Comput. Educ. 2020, 157, 103986. [Google Scholar] [CrossRef]
- Leavitt, V.M.; Wylie, G.; Chiaravalloti, N.; DeLuca, J.; Sumowski, J.F. Warmer outdoor temperature is associated with task-related increased BOLD activation in patients with multiple sclerosis. Brain Imaging Behav. 2013, 8, 128–132. [Google Scholar] [CrossRef]
- Walter, E.J.; Carraretto, M. The neurological and cognitive consequences of hyperthermia. Crit. Care 2016, 20, 199. [Google Scholar] [CrossRef] [Green Version]
- Dolcini, J.; Kioumourtzoglou, M.A.; Cayir, A.; Sanchez-Guerra, M.; Brennan, K.J.; Dereix, A.E.; Coull, B.A.; Spiro, A., III; Vokonas, P.; Schwartz, J.; et al. Age and mitochondrial DNA copy number influence the association between outdoor temperature and cognitive function: Insights from the VA Normative Aging Study. Environ. Epidemiol. 2020, 4, e0108. [Google Scholar] [CrossRef]
- Cherrie, M.P.; Shortt, N.K.; Mitchell, R.J.; Taylor, A.M.; Redmond, P.; Thompson, C.W.; Starr, J.M.; Deary, I.J.; Pearce, J.R. Green space and cognitive ageing: A retrospective life course analysis in the Lothian Birth Cohort 1936. Soc. Sci. Med. 2018, 196, 56–65. [Google Scholar] [CrossRef]
- Robbins, R.N.; Scott, T.; Joska, J.; Gouse, H. Impact of urbanization on cognitive disorders. Curr. Opin. Psychiatry 2019, 32, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.-T.; Prina, M.; Brayne, C. The association between community environment and cognitive function: A systematic review. Soc. Psychiatry 2015, 50, 351–362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, L. Impact of Highway Construction on Ecology and Environment and Its Countermeasure. Res. Soil Water Conserv. 2005, 12, 193–194,217. [Google Scholar]
- Cao, P.; Fang, L.; Zheng, Z.; Zhang, Z.; Yang, F. Fuzzy Comprehensive Assessment for Impact on Ecology En-vironment of Construction of Extra-long Highway Tunnels in Mountain Area. IOP Conf. Ser. Earth Environ. Sci. 2019, 304, 032032. [Google Scholar] [CrossRef] [Green Version]
- Sunwoo, Y.; Chou, C.; Takeshita, J.; Murakami, M.; Tochihara, Y. Physiological and Subjective Responses to Low Relative Humidity in Young and Elderly Men. J. Physiol. Anthr. 2006, 25, 229–238. [Google Scholar] [CrossRef] [Green Version]
- Bakke, J.V.; Moen, B.E.; Wieslander, G.; Norbäck, D. Gender and the Physical and Psychosocial Work Environments are Related to Indoor Air Symptoms. J. Occup. Environ. Med. 2007, 49, 641–650. [Google Scholar] [CrossRef]
- Lan, L.; Lian, Z.; Liu, W.; Liu, Y. Investigation of gender difference in thermal comfort for Chinese people. Eur. J. Appl. Physiol. 2008, 102, 471–480. [Google Scholar] [CrossRef]
- Qiu, Y.; Wei, K.; Zhu, L.; Wu, D.; Jiao, C. The Association of Meteorological Factors with Cognitive Function in Older Adults. Int. J. Environ. Res. Public Health 2021, 18, 5981. [Google Scholar] [CrossRef]
- Calderón-Garcidueñas, L.; Chávez-Franco, D.A.; Luévano-Castro, S.C.; Macías-Escobedo, E.; Hernández-Castillo, A.; Carlos-Hernández, E.; Franco-Ortíz, A.; Castro-Romero, S.P.; Cortés-Flores, M.; Crespo-Cortés, C.N.; et al. Metals, Nanoparticles, Particulate Matter, and Cognitive Decline. Front. Neurol. 2022, 12, 794071. [Google Scholar] [CrossRef]
- Altug, H.; Fuks, K.B.; Hüls, A.; Mayer, A.-K.; Tham, R.; Krutmann, J.; Schikowski, T. Air pollution is associated with depressive symptoms in elderly women with cognitive impairment. Environ. Int. 2020, 136, 105448. [Google Scholar] [CrossRef]
- Gavin, M. Hierarchical Linear Models: Applications and Data Analysis Methods. Organ. Res. Methods 2004, 7, 228–231. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Eribaum: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Knapp, T.R. Treating ordinal scales as interval scales: An attempt to resolve the controversy. Nurs. Res. 1990, 2, 121–123. [Google Scholar] [CrossRef] [Green Version]
- Snijders, T.A.B. Power and Sample Size in Multilevel Linear Models. Encycl. Stat. Behav. Sci. 2005, 3, 1570–1573. [Google Scholar]
- Kish, L. Sampling Organizations and Groups of Unequal Sizes. Am. Sociol. Rev. 1965, 30, 564–572. [Google Scholar] [CrossRef] [PubMed]
- How Does Atmospheric Temperature Affect Air Pressure? Available online: https://www.reference.com/science/ (accessed on 1 March 2022).
- Huang, J.; Chen, Y.; Jones, P.; Hao, T. Heat stress and outdoor activities in open spaces of public housing estates in Hong Kong: A perspective of the elderly community. Indoor Built Environ. 2020. [Google Scholar] [CrossRef]
- Yeganeh, A.J.; Reichard, G.; McCoy, A.P.; Bulbul, T.; Jazizadeh, F. Correlation of ambient air temperature and cognitive performance: A systematic review and meta-analysis. Build. Environ. 2018, 143, 701–716. [Google Scholar] [CrossRef]
- Pauls, F.; Petermann, F.; Lepach, A.C. Gender differences in episodic memory and visual working memory including the effects of age. Memory 2013, 21, 857–874. [Google Scholar] [CrossRef]
- Hishaw, G.A.; Bergfield, K.L.; Hanson, K.D.; Lin, L.; Minopoli, E.M.; Haws, K.A.; Chen, K.; Reiman, E.M.; Trouard, T.P.; Moeller, J.R.; et al. Relation of MRI white matter hyperintensity severity to the age-related network pattern of gray matter in healthy cognitive aging. In Proceedings of the 41st Annual Meeting of the Society-for-Neuroscience, Washington, DC, USA, 12–16 November 2011. [Google Scholar]
- Raz, N.; Rodrigue, K. Differential aging of the brain: Patterns, cognitive correlates and modifiers. Neurosci. Biobehav. Rev. 2006, 30, 730–748. [Google Scholar] [CrossRef]
- Kingma, B.; van Marken Lichtenbelt, W. Energy consumption in buildings and female thermal demand. Nat. Clim. Chang. 2015, 5, 1054–1056. [Google Scholar] [CrossRef]
- Mishra, A.; Loomans, M.; Hensen, J. Thermal comfort of heterogeneous and dynamic indoor conditions—An overview. Build. Environ. 2016, 109, 82–100. [Google Scholar] [CrossRef] [Green Version]
- Hara, Y.; Yuk, F.; Puri, R.; Janssen, W.G.M.; Rapp, P.R.; Morrison, J.H. Presynaptic mitochondrial morphology in monkey prefrontal cortex correlates with working memory and is improved with estrogen treatment. Proc. Natl. Acad. Sci. USA 2013, 111, 486–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenbaum, M.; Leibel, R.L. Adaptive thermogenesis in humans. Int. J. Obes. 2010, 34, S47–S55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaoua, N.; Herrera, C.P.; Racinais, S.; El Massioui, F. Heat Induces An Overload During Complex Cognitive Performance. Med. Sci. Sports Exerc. 2012, 44, 367. [Google Scholar]
- Liu, K.; Sun, G.; Li, B.; Jiang, Q.; Yang, X.; Li, M.; Li, L.; Qian, S.; Zhao, L.; Zhou, Z.; et al. The impact of passive hyperthermia on human attention networks: An fMRI study. Behav. Brain Res. 2013, 243, 220–230. [Google Scholar] [CrossRef]
- Mattay, V.S.; Fera, F.; Tessitore, A.; Hariri, A.R.; Berman, K.F.; Das, S.; Meyer-Lindenberg, A.; Goldberg, T.E.; Callicott, J.H.; Weinberger, D.R. Neurophysiological correlates of age-related changes in working memory capacity. Neurosci. Lett. 2006, 392, 32–37. [Google Scholar] [CrossRef]
- Reuter-Lorenz, P.A.; Cappell, K.A. Neurocognitive aging and the compensation hypothesis. Curr. Dir. Psychol. Sci. 2008, 17, 177–182. [Google Scholar] [CrossRef]
- Loughnan, M.E.; Carroll, M.; Tapper, N. Learning from our older people: Pilot study findings on responding to heat. Australas. J. Ageing 2014, 33, 271–277. [Google Scholar] [CrossRef]
- Avellini, B.A.; Kamon, E.; Krajewski, J.T. Physiological responses of physically fit men and women to acclimation to humid heat. J. Appl. Physiol. 1980, 49, 254–261. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.-Y.; Gao, Y.-X.; Chai, W.-X.; Wang, S.; Li, L.; Wang, W.; Wang, G.; Liu, B.; Wang, X.-Y.; Li, J.-J. Heavy Pollution Characteristics and Assessment of PM 2.5 Predicted Model Results in Beijing-Tianjin-Hebei Region and Surrounding Areas During November 23 to December 4, 2018. Huan Jing Ke Xue 2020, 41, 574–586. [Google Scholar]
- Li, X.; Hussain, S.A.; Sobri, S.; Said, M.S.M. Overviewing the air quality models on air pollution in Sichuan Basin, China. Chemosphere 2021, 271, 129502. [Google Scholar] [CrossRef]
Variables | All Population | |
---|---|---|
Continuous Variables | n | Mean ± SD (Min–Max) |
Age | 2623 | 67.5 ± 6.1 (60–91) |
Memory test score | 2623 | 7.29 ± 3.07 (0–14) |
Temperature (°C) | 24.60 ± 7.03 (−21.2–30.1) | |
Humidity (%) | 74.97 ± 5.08 (52.2–88.8) | |
Greening (hm2) | 39.04 ± 2.98 (30–48.4) | |
Traffic (km) | 28,745.55 ± 23,516.00 (4907–102,707) | |
Categorical variables | ||
Gender | N | % |
Male | 1522 | 58.0 |
Female | 1101 | 42.0 |
Education level | ||
Low (≤9) | 1919 | 73.2 |
High (>9) | 704 | 26.8 |
Cardiovascular disease | ||
Yes | 860 | 32.8 |
No | 1763 | 67.2 |
Gap (−2) | Variance | ICC | Design Effect | ||
---|---|---|---|---|---|
Within-Province Variance | Between-Province Variance | ||||
Null model | 13,280.283 | 9.086 | 0.755 | 0.077 | 9.00 |
Level 1 model | 13,159.545 | 8.652 | 0.665 | 0.071 | 8.38 |
Level 1 & 2 model | 13,185.948 | 8.623 | 0.621 | 0.067 | 7.96 |
Full model | 13,240.987 | 8.622 | 0.620 | 0.067 | 7.96 |
Categorical Variables. | n | Mean ± SD |
---|---|---|
Gender | ||
male | 1522 | 7.12 ± 3.039 |
female | 1101 | 7.51 ± 3.101 |
Chronic disease | ||
Yes | 860 | 7.19 ± 3.089 |
No | 1763 | 7.33 ± 3.061 |
Total score | 2623 | 7.29 ± 3.070 |
The Empty Model | The Individual Level Model | The Individual Level and Provincial Level Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Parameter | Estimate | t | p | 95% CI | Estimate | T | p | 95% CI | Estimate | t | p | 95% CI |
Intercept | 7.008 | 36.348 | <0.001 | 6.604–7.413 | 13.930 | 19.975 | <0.001 | 12.561–15.297 | 19.935 | 10.111 | <0.001 | 16.035–23.835 |
Individual level variable | ||||||||||||
Age (γ10) | −0.107 | −11.242 | <.001 | −0.126–−0.089 | −0.107 | −11.268 | <0.001 | −0.126–−0.089 | ||||
Gender (γ20) | 0.233 | 1.980 | 0.048 | 0.002–0.463 | 0.237 | 2.026 | 0.043 | 0.008–0.467 | ||||
Chronic disease (γ30) | −0.066 | −0.537 | 0.591 | −0.309–0.176 | −0.055 | −0.441 | 0.660 | −0.297–0.118 | ||||
Provincial level variable | ||||||||||||
Temperature (γ01) | 0.009 | 0.861 | 0.390 | −0.012–0.031 | ||||||||
Humidty (γ02) | −0.049 | −2.943 | 0.003 | −0.082–−0.016 | ||||||||
Greening (γ03) | −0.063 | −1.524 | 0.134 | −0.147–0.020 | ||||||||
Control variable | ||||||||||||
Traffic (γ04) | −3.75 × 10−7 | −0.052 | 0.959 | −1.53 × 10−5–1.45 × 10−5 |
The Full Model | ||||||
---|---|---|---|---|---|---|
Parameter | Estimate | SE | df | t | p | 95% CI |
Intercept | 15.810 | 11.863 | 2571.133 | 1.333 | 0.183 | −7.452–39.073 |
Individual-level variable | ||||||
Age (γ10) | −0.077 | 0.167 | 2592.386 | −0.460 | 0.646 | −0.403–0.250 |
Gender (γ20) | 1.976 | 1.958 | 2588.152 | 1.009 | 0.313 | −1.863–5.815 |
Chronic disease (γ30) | −0.917 | 2.030 | 2596.149 | −0.451 | 0.652 | −4.898–3.065 |
province-level variable | ||||||
Temperature (γ01) | −0.090 | 0.110 | 2592.392 | −0.821 | 0.412 | −0.306–0.125 |
Humidity (γ02) | 0.042 | 0.137 | 2604.675 | 0.306 | 0.759 | −0.227–0.312 |
Greening (γ03) | −0.071 | 0.247 | 2513.271 | −0.288 | 0.773 | −0.556–0.414 |
Control variable | ||||||
Traffic (γ04) | −1.156 × 10−7 | 7.219 × 10−6 | 24.342 | −0.016 | 0.987 | −1.50 × 10−5 –1.48 × 10−5 |
Provincial level moderating effects | ||||||
Age × Temperature (γ11) | 0.000 | 0.002 | 2586.901 | 0.289 | 0.773 | −0.003–0.004 |
Age × Humidity (γ12) | −0.000 | 0.002 | 2594.657 | −0.172 | 0.863 | −0.004–0.003 |
Age × Greening (γ13) | −0.000 | 0.004 | 2598.087 | −0.123 | 0.902 | −0.007–0.006 |
Gender × Temperature (γ21) | 0.049 | 0.019 | 2581.089 | 2.661 | 0.008 | 0.013–0.086 |
Gender × Humidity (γ22) | −0.049 | 0.023 | 2589.550 | −2.107 | 0.035 | −0.093–−0.003 |
Gender × Greening (γ23) | 0.018 | 0.041 | 2595.275 | 0.429 | 0.668 | −0.063–0.099 |
Chronic disease × Temperature (γ31) | −0.001 | 0.020 | 2598.488 | −0.038 | 0.970 | −0.040–038 |
Chronic disease × Humidity (γ32) | −0.007 | 0.024 | 2603.483 | −0.297 | 0.767 | −0.055–0.040 |
Chronic disease × Greening (γ33) | 0.036 | 0.044 | 2601.822 | 0.831 | 0.406 | −0.049–0.122 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Y.; Deng, Z.; Jiang, C.; Wei, K.; Zhu, L.; Zhang, J.; Jiao, C. The Associations of Meteorological and Environmental Factors with Memory Function of the Older Age in Urban Areas. Int. J. Environ. Res. Public Health 2022, 19, 5484. https://doi.org/10.3390/ijerph19095484
Qiu Y, Deng Z, Jiang C, Wei K, Zhu L, Zhang J, Jiao C. The Associations of Meteorological and Environmental Factors with Memory Function of the Older Age in Urban Areas. International Journal of Environmental Research and Public Health. 2022; 19(9):5484. https://doi.org/10.3390/ijerph19095484
Chicago/Turabian StyleQiu, Yuehong, Zeming Deng, Chujuan Jiang, Kaigong Wei, Lijun Zhu, Jieting Zhang, and Can Jiao. 2022. "The Associations of Meteorological and Environmental Factors with Memory Function of the Older Age in Urban Areas" International Journal of Environmental Research and Public Health 19, no. 9: 5484. https://doi.org/10.3390/ijerph19095484
APA StyleQiu, Y., Deng, Z., Jiang, C., Wei, K., Zhu, L., Zhang, J., & Jiao, C. (2022). The Associations of Meteorological and Environmental Factors with Memory Function of the Older Age in Urban Areas. International Journal of Environmental Research and Public Health, 19(9), 5484. https://doi.org/10.3390/ijerph19095484