Effects of Mirror Neurons-Based Rehabilitation Techniques in Hand Injuries: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Methods
2.1. Protocol and Registration
2.2. Search Strategies and Selection of the Studies
2.3. Data Extraction and Quality Assessment
2.4. Statistical Analyses
3. Results
3.1. Search Results
3.2. Characteristics of the Included Studies
3.3. Motor Imagery
3.4. Mirror Therapy
3.5. Trial Quality and Risk of Bias
3.6. Meta-Analysis of Primary Outcomes
- ▪
- Effect of Mirror Therapy as Measured with DASH: 6–9 weeks post-intervention. The studies of Abolfazli, 2019 and Rostami, 2013 were considered. Meta-analysis revealed statistically significant results (p < 0.00001) in favor of the experimental group compared to the control group (mean difference = −14.80 95% Confidence Interval (CI) = −17.22, −12.38) (see Figure 2)
- ▪
- Effect of Mirror Therapy as Measured with DASH: 10–12 weeks post-intervention. The studies of Abolfazli, 2019 and Paula, 2019 were considered. Meta-analysis revealed statistically significant results (p < 0.00001) in favor of the experimental group compared to the control group (mean difference = −13.11 95% Confidence Interval (CI) = −17.53, −8.69) (see Figure 3).
- ▪
- Effect of Mirror Therapy as Measured with MMDT. The studies of Abolfazli, 2019 and Hsu, 2019. For the Turning Test of the MMDT, the meta-analysis did not reveal statistically significant results (p = 0.44) (mean difference = −30.07 95% Confidence Interval (CI) = −107.17, 47.04). For the Placing Test of the MMDT, meta-analysis did not reveal statistically significant results (p = 0.15) (mean difference = −38.13 95% Confidence Interval (CI) = −89.82, 13.56). However, for both subscales of the MMDT clinical improvement for manual dexterity was found (see Figure 4).
- ▪
- Effect of Mirror Therapy on Range of Motion after 6 weeks post-intervention. The studies of Abolfazli, 2019 and Rostami, 2013 were considered. Meta-analysis did not reveal statistically significant results (p = 0.32) (mean difference = 50.30 95% Confidence Interval (CI) = −48.66, 149.27) (see Figure 5).
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Crowe, C.S.; Massenburg, B.B.; Morrison, S.D.; Chang, J.; Friedrich, J.B.; Abady, G.G.; Alahdab, F.; Alipour, V.; Arabloo, J.; Asaad, M.; et al. Global Trends of Hand and Wrist Trauma: A Systematic Analysis of Fracture and Digit Amputation Using the Global Burden of Disease 2017 Study. Inj. Prev. 2020, 26, i115. [Google Scholar] [CrossRef] [PubMed]
- Dębski, T.; Noszczyk, B.H. Epidemiology of Complex Hand Injuries Treated in the Plastic Surgery Department of a Tertiary Referral Hospital in Warsaw. Eur. J. Trauma Emerg. Surg. 2021, 47, 1607–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzelkucuk, U.; Duman, I.; Taskaynatan, M.A.; Dincer, K. Comparison of Therapeutic Activities with Therapeutic Exercises in the Rehabilitation of Young Adult Patients with Hand Injuries. J. Hand Surg. 2007, 32, 1429–1435. [Google Scholar] [CrossRef] [PubMed]
- Thien, T.B.; Becker, J.H.; Theis, J.-C. Rehabilitation after Surgery for Flexor Tendon Injuries in the Hand. In Cochrane Database of Systematic Reviews; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Marotta, N.; Demeco, A.; Marinaro, C.; Moggio, L.; Pino, I.; Barletta, M.; Petraroli, A.; Ammendolia, A. Comparative Effectiveness of Orthoses for Thumb Osteoarthritis: A Systematic Review and Network Meta-Analysis. Arch. Phys. Med. Rehabil. 2021, 102, 502–509. [Google Scholar] [CrossRef]
- Çetin, A.; Dinçer, F.; Keçik, A.; Çetin, M. Rehabiliation of Flexor Tendon Injuries by Use of a Combined Regimen of Modified Kleinert and Modified Duran Techniques. Am. J. Phys. Med. Rehabil. 2001, 80, 721–728. [Google Scholar] [CrossRef]
- Sarasini, F.; Tirillò, J.; Puglia, D.; Kenny, J.M.; Dominici, F.; Santulli, C.; Tofani, M.; de Santis, R. Effect of Different Lignocellulosic Fibres on Poly(ε-Caprolactone)-Based Composites for Potential Applications in Orthotics. RSC Adv. 2015, 5, 23798–23809. [Google Scholar] [CrossRef] [Green Version]
- Waldburger, L.; Schaller, R.; Furthmüller, C.; Schrepfer, L.; Schaefer, D.J.; Kaempfen, A. 3D-Printed Hand Splints versus Thermoplastic Splints: A Randomized Controlled Pilot Feasibility Trial. Int. J. Bioprint. 2022, 8, 128–138. [Google Scholar] [CrossRef]
- Benzy, V.K.; Vinod, A.P.; Member, S.; Subasree, R.; Alladi, S.; Raghavendra, K. Motor Imagery Hand Movement Direction Decoding Using Brain Computer Interface to Aid Stroke Recovery and Rehabilitation; Motor Imagery Hand Movement Direction Decoding Using Brain Computer Interface to Aid Stroke Recovery and Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 3051–3062. [Google Scholar] [CrossRef]
- Malouin, F.; Jackson, P.L.; Richards, C.L. Towards the Integration of Mental Practice in Rehabilitation Programs. A Critical Review. Front. Hum. Neurosci. 2013, 7, 576. [Google Scholar] [CrossRef] [Green Version]
- Mayer, J.; Bohn, J.; Görlich, P.; Eberspächer, H. Mentales Gehtraining—Wirksamkeit Eines Therapieverfahrens in Der Rehabilitation Nach Hüftendoprothetik. Z. Orthop. Ihre Grenzgeb. 2005, 143, 419–423. [Google Scholar] [CrossRef]
- Jeannerod, M. Mental Imagery in the Motor Context. Neuropsychologia 1995, 33, 1419–1432. [Google Scholar] [CrossRef]
- Vogt, S.; Di Rienzo, F.; Collet, C.; Collins, A.; Guillot, A. Multiple Roles of Motor Imagery during Action Observation. Front. Hum. Neurosci. 2013, 7, 807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keysers, C.; Wicker, B.; Gazzola, V.; Anton, J.L.; Fogassi, L.; Gallese, V. A Touching Sight: SII/PV Activation during the Observation and Experience of Touch. Neuron 2004, 42, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Xing, Y.; Li, C.; Hua, Y.; Hu, J.; Wang, Y.; Ya, R.; Meng, Q.; Bai, Y. Mirror Therapy for Unilateral Neglect after Stroke: A Systematic Review. Eur. J. Neurol. 2021, 29, 358–371. [Google Scholar] [CrossRef] [PubMed]
- Moseley, G.L. Graded Motor Imagery for Pathologic Pain: A Randomized Controlled Trial. Neurology 2006, 67, 2129–2134. [Google Scholar] [CrossRef] [PubMed]
- Dohle, C.; Püllen, J.; Nakaten, A.; Küst, J.; Rietz, C.; Karbe, H. Mirror Therapy Promotes Recovery from Severe Hemiparesis: A Randomized Controlled Trial. Neurorehabilit. Neural Repair 2009, 23, 209–217. [Google Scholar] [CrossRef]
- Garry, M.I.; Loftus, A.; Summers, J.J. Mirror, Mirror on the Wall: Viewing a Mirror Reflection of Unilateral Hand Movements Facilitates Ipsilateral M1 Excitability. Exp. Brain Res. 2005, 163, 118–122. [Google Scholar] [CrossRef]
- Buccino, G. Action Observation Treatment: A Novel Tool in Neurorehabilitation. Philos. Trans. R. Soc. B Biol. Sci. 2014, 369, 20130185. [Google Scholar] [CrossRef]
- Buchignani, B.; Beani, E.; Pomeroy, V.; Iacono, O.; Sicola, E.; Perazza, S.; Bieber, E.; Feys, H.; Klingels, K.; Cioni, G.; et al. Action Observation Training for Rehabilitation in Brain Injuries: A Systematic Review and Meta-Analysis. BMC Neurol. 2019, 19, 344. [Google Scholar] [CrossRef]
- Rothgangel, A.S.; Braun, S.M.; Beurskens, A.J.; Seitz, R.J.; Wade, D.T. The Clinical Aspects of Mirror Therapy in Rehabilitation: A Systematic Review of the Literature. Int. J. Rehabil. Res. 2011, 34, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, B.; Berardi, A.; Tofani, M.; Panuccio, F.; Ruotolo, I.; Sellitto, G.; Galeoto, G. A Systematic Review of the Psychometric Properties of the Jebsen–Taylor Hand Function Test (JTHFT). Hand Surg. Rehabil. 2021, 40, 560–567. [Google Scholar] [CrossRef] [PubMed]
- Tofani, M.; Castelli, E.; Sabbadini, M.; Berardi, A.; Murgia, M.; Servadio, A.; Galeoto, G. Examining Reliability and Validity of the Jebsen-Taylor Hand Function Test Among Children With Cerebral Palsy. Percept. Mot. Ski. 2020, 127, 684–697. [Google Scholar] [CrossRef]
- Berardi, A.; Saffioti, M.; Tofani, M.; Nobilia, M.; Culicchia, G.; Valente, D.; Servadio, A.; Galeoto, G. Internal Consistency and Validity of the Jebsen-Taylor Hand Function Test in an Italian Population with Hemiparesis. NeuroRehabilitation 2019, 45, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Savona, A.; Ferralis, L.; Saffioti, M.; Tofani, M.; Nobilia, M.; Culicchia, G.; Berardi, A.; Servadio, A.; Galeoto, G. Evaluation of Intra- and Inter-Rater Reliability and Concurrent Validity of the Italian Version of the Jebsen–Taylor Hand Function Test in Adults with Rheumatoid Arthritis. Hand Ther. 2019, 24, 48–54. [Google Scholar] [CrossRef] [Green Version]
- Panuccio, F.; Galeoto, G.; Marquez, M.A.; Tofani, M.; Nobilia, M.; Culicchia, G.; Berardi, A. Internal Consistency and Validity of the Italian Version of the Jebsen–Taylor Hand Function Test (JTHFT-IT) in People with Tetraplegia. Spinal Cord 2021, 59, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Tofani, M.; Nobilia, M.; Culicchia, G.; Esposito, G.; Savona, A.; Tashi, I.; Ventura, A.; Galeoto, G. The Italian Version of Rheumatoid Arthritis Pain Scale (IT-RAPS): Psychometric Properties on Community and Clinical Samples. Reumatismo 2019, 71, 13–18. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 339, b2700. [Google Scholar]
- Moher, D.; Shamseer, L.; Clarke, M.; Ghersi, D.; Liberati, A.; Petticrew, M.; Shekelle, P.; Stewart, L.A.; Estarli, M.; Barrera, E.S.A.; et al. Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols (PRISMA-P) 2015 Statement. Rev. Esp. De Nutr. Hum. Y Diet. 2016, 4, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Tsao, J.W.; Finn, S.B.; Miller, M.E. Reversal of Phantom Pain and Hand-to-Face Remapping after Brachial Plexus Avulsion. Ann. Clin. Transl. Neurol. 2016, 3, 463–464. [Google Scholar] [CrossRef] [Green Version]
- Rosén, B.; Lundborg, G. Training with a Mirror in Rehabilitation of the Hand. Scand. J. Plast. Reconstr. Surg. Hand Surg. 2005, 39, 104–108. [Google Scholar] [CrossRef]
- Selles, R.W.; Schreuders, T.A.R.; Stam, H.J. Mirror Therapy in Patients with Causalgia (Complex Regional Pain Syndrome Type II) Following Peripheral Nerve Injury: Two Cases. J. Rehabil. Med. 2008, 40, 312–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altschuler, E.L.; Hu, J. Mirror Therapy in a Patient with a Fractured Wrist and No Active Wrist Extension. Scand. J. Plast. Reconstr. Surg. Hand Surg. 2008, 42, 110–111. [Google Scholar] [CrossRef] [PubMed]
- Guillot, A.; Lebon, F.; Vernay, M.; Girbon, J.P.; Doyon, J.; Collet, C. Effect of Motor Imagery in the Rehabilitation of Burn Patients. J. Burn Care Res. 2009, 30, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Paula, M.H.; Barbosa, R.I.; Marcolino, A.M.; Elui, V.M.C.; Rosén, B.; de Fonseca, M.C.R. Early Sensory Re-Education of the Hand after Peripheral Nerve Repair Based on Mirror Therapy: A Randomized Controlled Trial. Braz. J. Phys. Ther. 2016, 20, 58–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yun, D.E.; Kim, M.K. Effects of Mirror Therapy on Muscle Activity, Muscle Tone, Pain, and Function in Patients with Mutilating Injuries: A Randomized Controlled Trial. Medicine 2019, 98, e15157. [Google Scholar] [CrossRef]
- Hsu, H.Y.; Chen, P.T.; Kuan, T.S.; Yang, H.C.; Shieh, S.J.; Kuo, L.C. A Touch-Observation and Task-Based Mirror Therapy Protocol to Improve Sensorimotor Control and Functional Capability of Hands for Patients with Peripheral Nerve Injury. Am. J. Occup. Ther. 2019, 73. [Google Scholar] [CrossRef]
- Rostami, H.R.; Arefi, A.; Tabatabaei, S. Effect of Mirror Therapy on Hand Function in Patients with Hand Orthopaedic Injuries: A Randomized Controlled Trial. Disabil. Rehabil. 2013, 35, 1647–1651. [Google Scholar] [CrossRef]
- Abolfazli, M.; Lajevardi, L.; Mirzaei, L.; Abdorazaghi, H.A.; Azad, A.; Taghizadeh, G. The Effect of Early Intervention of Mirror Visual Feedback on Pain, Disability and Motor Function Following Hand Reconstructive Surgery: A Randomized Clinical Trial. Clin. Rehabil. 2019, 33, 494–503. [Google Scholar] [CrossRef]
- Stenekes, M.W.; Geertzen, J.H.; Nicolai, J.P.A.; de Jong, B.M.; Mulder, T. Effects of Motor Imagery on Hand Function During Immobilization After Flexor Tendon Repair. Arch. Phys. Med. Rehabil. 2009, 90, 553–559. [Google Scholar] [CrossRef]
- Avanzino, L.; Bassolino, M.; Pozzo, T.; Bove, M. Use-Dependent Hemispheric Balance. J. Neurosci. 2011, 31, 3423–3428. [Google Scholar] [CrossRef]
- Avanzino, L.; Pelosin, E.; Abbruzzese, G.; Bassolino, M.; Pozzo, T.; Bove, M. Shaping Motor Cortex Plasticity through Proprioception. Cereb. Cortex 2014, 24, 2807–2814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huber, R.; Ghilardi, M.F.; Massimini, M.; Ferrarelli, F.; Riedner, B.A.; Peterson, M.J.; Tononi, G. Arm Immobilization Causes Cortical Plastic Changes and Locally Decreases Sleep Slow Wave Activity. Nat. Neurosci. 2006, 9, 1169–1176. [Google Scholar] [CrossRef] [PubMed]
- Bassolino, M.; Bove, M.; Jacono, M.; Fadiga, L.; Pozzo, T. Functional Effect of Short-Term Immobilization: Kinematic Changes and Recovery on Reaching-to-Grasp. Neuroscience 2012, 215, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moisello, C.; Bove, M.; Huber, R.; Abbruzzese, G.; Battaglia, F.; Tononi, G.; Ghilardi, M.F. Short-Term Limb Immobilization Affects Motor Performance. J. Mot. Behav. 2008, 40, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Toussaint, L.; Meugnot, A. Short-Term Limb Immobilization Affects Cognitive Motor Processes. J. Exp. Psychol. Learn. Mem. Cogn. 2013, 39, 623–632. [Google Scholar] [CrossRef]
- Meugnot, A.; Agbangla, N.F.; Almecija, Y.; Toussaint, L. Motor Imagery Practice May Compensate for the Slowdown of Sensorimotor Processes Induced by Short-Term Upper-Limb Immobilization. Psychol. Res. 2015, 79, 489–499. [Google Scholar] [CrossRef]
- Silva, S.; Loubinoux, I.; Olivier, M.; Bataille, B.; Fourcade, O.; Samii, K.; Jeannerod, M.; Démonet, J.F. Impaired Visual Hand Recognition in Preoperative Patients during Brachial Plexus Anesthesia: Importance of Peripheral Neural Input for Mental Representation of the Hand. Anesthesiology 2011, 114, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Toussaint, L.; Blandin, Y. On the Role of Imagery Modalities on Motor Learning. J. Sports Sci. 2010, 28, 497–504. [Google Scholar] [CrossRef]
- Holmes, P.; Calmels, C. A Neuroscientific Review of Imagery and Observation Use in Sport. J. Mot. Behav. 2008, 40, 433–445. [Google Scholar] [CrossRef]
- Gentili, R.; Han, C.E.; Schweighofer, N.; Papaxanthis, C. Motor Learning without Doing: Trial-by-Trial Improvement in Motor Performance during Mental Training. J. Neurophysiol. 2010, 104, 774–783. [Google Scholar] [CrossRef]
- Jackson, P.L.; Lafleur, M.F.; Malouin, F.; Richards, C.L.; Doyon, J. Functional Cerebral Reorganization Following Motor Sequence Learning through Mental Practice with Motor Imagery. Neuroimage 2003, 20, 1171–1180. [Google Scholar] [CrossRef]
- Jeannerod, M. Neural Simulation of Action: A Unifying Mechanism for Motor Cognition. NeuroImage 2001, 14, S103–S109. [Google Scholar] [CrossRef] [PubMed]
- Ruby, P.; Decety, J. What You Believe versus What You Think They Believe: A Neuroimaging Study of Conceptual Perspective-Taking. Eur. J. Neurosci. 2003, 17, 2475–2480. [Google Scholar] [CrossRef] [PubMed]
- Solodkin, A.; Hlustik, P.; Chen, E.E.; Small, S.L. Fine Modulation in Network Activation during Motor Execution and Motor Imagery. Cereb. Cortex 2004, 14, 1246–1255. [Google Scholar] [CrossRef]
- Stinear, C.M.; Byblow, W.D.; Steyvers, M.; Levin, O.; Swinnen, S.P. Kinesthetic, but Not Visual, Motor Imagery Modulates Corticomotor Excitability. Exp. Brain Res. 2006, 168, 157–164. [Google Scholar] [CrossRef]
- Yang, Y.J.; Jeon, E.J.; Kim, J.S.; Chung, C.K. Characterization of Kinesthetic Motor Imagery Compared with Visual Motor Imageries. Sci. Rep. 2021, 11, 3751. [Google Scholar] [CrossRef]
- Jackson, P.L.; Lafleur, M.F.; Malouin, F.; Richards, C.; Doyon, J. Potential Role of Mental Practice Using Motor Imagery in Neurologic Rehabilitation. Arch. Phys. Med. Rehabil. 2001, 82, 1133–1141. [Google Scholar] [CrossRef]
- Mulder, T. Motor Imagery and Action Observation: Cognitive Tools for Rehabilitation. J. Neural. Transm. 2007, 114, 1265–1278. [Google Scholar] [CrossRef] [Green Version]
- Touzalin-Chretien, P.; Ehrler, S.; Dufour, A. Dominance of Vision over Proprioception on Motor Programming: Evidence from ERP. Cereb. Cortex 2010, 20, 2007–2016. [Google Scholar] [CrossRef] [Green Version]
- Nojima, I.; Mima, T.; Koganemaru, S.; Thabit, M.N.; Fukuyama, H.; Kawamata, T. Human Motor Plasticity Induced by Mirror Visual Feedback. J. Neurosci. 2012, 32, 1293–1300. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran, V.S.; Hirstein, W. The Perception of Phantom Limbs. The D. O. Hebb Lecture. Brain 1998, 121, 1603–1630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brodie, E.E.; Whyte, A.; Waller, B. Increased Motor Control of a Phantom Leg in Humans Results from the Visual Feedback of a Virtual Leg. Neurosci. Lett. 2003, 341, 167–169. [Google Scholar] [CrossRef]
- Giraux, P.; Sirigu, A. Illusory Movements of the Paralyzed Limb Restore Motor Cortex Activity. NeuroImage 2003, 20, S107–S111. [Google Scholar] [CrossRef] [PubMed]
- McCabe, C.S.; Haigh, R.C.; Ring, E.F.J.; Halligan, P.W.; Wall, P.D.; Blake, D.R. A Controlled Pilot Study of the Utility of Mirror Visual Feedback in the Treatment of Complex Regional Pain Syndrome (Type 1). Rheumatology 2003, 42, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Maihöfner, C.; Handwerker, H.O.; Neundörfer, B.; Birklein, F. Cortical Reorganization during Recovery from Complex Regional Pain Syndrome. Neurology 2004, 63, 693–701. [Google Scholar] [CrossRef]
- Grèzes, J.; Armony, J.L.; Rowe, J.; Passingham, R.E. Activations Related to “Mirror” and “Canonical” Neurones in the Human Brain: An FMRI Study. Neuroimage 2003, 18, 928–937. [Google Scholar] [CrossRef]
- von Hippel, P.T. The Heterogeneity Statistic I2 Can Be Biased in Small Meta-Analyses. BMC Med. Res. Methodol. 2015, 15, 35. [Google Scholar] [CrossRef] [Green Version]
Author | Study | Technique | Sample | Interventions | Outcome | Follow-Up | Results | Jadad |
---|---|---|---|---|---|---|---|---|
Tsao J.W. et al., 2016 [30] | Case Report | MT | 1 single case brachial plexus avulsion | 15 min daily, 5 days/week | Pain and Sensation | 1 month 8 months | MT coupled with nerve grafting may relieve phantom limb pain and restore sensation | / |
Rosen B. et al., 2005 [31] | Case Series | MT | 3 cases following hand surgery | Different timing, no more specified | Pain, ROM, Sensation | Different timing, no more specified | MT can contribute to restore sensation, pain and ROM after surgery of the hand | / |
Selles R.W. et al., 2008 [32] | Case Series | MT | 2 cases with peripheral nerve Injury (neuroma) | 3–5 times each day for 15 min | Pain (VAS) | Different timing | MT can contribute to reducing pain in people with neuroma | / |
Altschuler E.L. et al., 2008 [33] | Case Report | MT | 1 case with fractured wrist | 2–3 time each week for 15 min of MT combined with electrical stimulation | Active ROM | After treatment 3 months | MT combined with other approaches can contribute to recovery active motion | / |
Guillot A. et al., 2009 [34] | RCT | MI | 14 people with hand burns 9 EG, 5 CG | EG: five MI sessions combined with conventional therapy CG: conventional therapy | ROM Pain (VAS) | After 2-week period treatment | MI contributes to a better motor recovery in term of ROM. Pain outcome were not reported caused heterogeneity of medication and timing | 1/5 |
Paula M.H. et al., 2016 [35] | RCT | MT | 20 people with peripheral nerve and tendons injuries 11 EG, 9 CG | EG: Duran Protocol for tendons combined with 30 min MT CG: Duran Protocol combined with classic sensory re-education | Sensibility (Rosen Score, SWS) Function (DASH) | After 3 and 6 months | MT does not contribute to better outcome. None statistical significant differences were observed. | 3/5 |
Yun D. et al. 2019 [36] | RCT | MT | 30 people with mutilating injuries 15 EG, 15 CG | EG: conventional physical therapy combined with MT (30 min daily, 3 days a week for 4 weeks) CG: conventional physical therapy | Muscle Elasticity (MytonPRO) Pain (VAS) Function (PRWE) | None | MT combined with conventional physical therapy improves hand function and reduces pain | 3/5 |
Hsu H. et al., 2019 [37] | RCT | MT | 11 people with peripheral nerve injuries 6 EG, 5 CG | EG: touch-observation and task-based mirror therapy for 12 weeks CG: classic sensory re-education combined with 40 min hand/physical therapy | Sensibility (SWS test, Static 2 point discrimination) Dexterity (PPT, MMDT, Pinch-holding-up activity test) | After 3 months | Touch-observed and task-based mirror therapy result in improvement of sensation and manual dexterity | 3/5 |
Rostami H.R. et al., 2013 [38] | RCT | MT | 23 people with orthopedic injuries 12 EG, 11 CG | EG: hand therapy combined (30 min) with MT 30 min daily, 5 days a week for 3 weeks CG: hand therapy 30 min with other 30 min of functional tasks observing affected hand | ROM Function (DASH) | After 3 weeks | Mirror therapy contribute to better outcomes for both ROM and hand function in post-intervention. After 3 weeks improvement in hand function remain, while not significant improvement in ROM was observed. | 3/5 |
Abolfazi M. et al., 2019 [39] | RCT | MT | 40 people with different hand injuries (nerves, tendons soft tissue) 20 EG, 20 CG | EG: 30 min mirror therapy plus 45 conventional rehabilitation twice a week for 8 weeks CG: 75 min conventional rehabilitation | ROM Pain (McGill) Function (DASH) Strenght (Dynamometer) Dexterity (MMDT) | After 12 weeks | Mirror therapy combined with conventional hand therapy contribute in reducing pain and disability, and improving hand function and ROM in both short term and follow-up. This approach seems does not influence strength and grip. | 1/5 |
Stenekes M.W. et al., 2009 [40] | RCT | MI | 25 people with flexor tendons injuries 12 EG, 13 CG | EG: motor imagery during immobilization combined with protocol for tendons rehabilitation CG: protocol for tendon rehabilitation | Kinematic analysis Pain (VAS) Function (MHQ) ROM (Range of Motion Kit) Grip strength and pinch strength (digital dynamometer) | After 12 weeks | Motor imagery positively influences central aspects of hand function (ie, preparation time) during the rehabilitation after flexor tendon repair, while other hand function modalities appear to be unaffected | 2/5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tofani, M.; Santecchia, L.; Conte, A.; Berardi, A.; Galeoto, G.; Sogos, C.; Petrarca, M.; Panuccio, F.; Castelli, E. Effects of Mirror Neurons-Based Rehabilitation Techniques in Hand Injuries: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 5526. https://doi.org/10.3390/ijerph19095526
Tofani M, Santecchia L, Conte A, Berardi A, Galeoto G, Sogos C, Petrarca M, Panuccio F, Castelli E. Effects of Mirror Neurons-Based Rehabilitation Techniques in Hand Injuries: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health. 2022; 19(9):5526. https://doi.org/10.3390/ijerph19095526
Chicago/Turabian StyleTofani, Marco, Luigino Santecchia, Antonella Conte, Anna Berardi, Giovanni Galeoto, Carla Sogos, Maurizio Petrarca, Francescaroberta Panuccio, and Enrico Castelli. 2022. "Effects of Mirror Neurons-Based Rehabilitation Techniques in Hand Injuries: A Systematic Review and Meta-Analysis" International Journal of Environmental Research and Public Health 19, no. 9: 5526. https://doi.org/10.3390/ijerph19095526
APA StyleTofani, M., Santecchia, L., Conte, A., Berardi, A., Galeoto, G., Sogos, C., Petrarca, M., Panuccio, F., & Castelli, E. (2022). Effects of Mirror Neurons-Based Rehabilitation Techniques in Hand Injuries: A Systematic Review and Meta-Analysis. International Journal of Environmental Research and Public Health, 19(9), 5526. https://doi.org/10.3390/ijerph19095526