Can Financial Institutional Deepening and Renewable Energy Consumption Lower CO2 Emissions in G-10 Countries: Fresh Evidence from Advanced Methodologies
Abstract
:1. Introduction
2. Literature Review
3. Theoretical Approach
3.1. Model Building
3.2. Datasets and Methodology
4. Empirical Findings and Discussion
4.1. CS-ARDL
4.2. Wavelet Coherence
5. Conclusions
6. Policy Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jian, J.; Fan, X.; He, P.; Xiong, H.; Shen, H. The Effects of Energy Consumption, Economic Growth and Financial Development on CO2 Emissions in China: A VECM Approach. Sustainability 2019, 11, 4850. [Google Scholar] [CrossRef] [Green Version]
- Musah, M.; Owusu-Akomeah, M.; Boateng, F.; Iddris, F.; Mensah, I.A.; Antwi, S.K.; Agyemang, J.K. Long-run equilibrium relationship between energy consumption and CO2 emissions: A dynamic heterogeneous analysis on North Africa. Environ. Sci. Pollut. Res. 2021, 29, 10416–10433. [Google Scholar] [CrossRef] [PubMed]
- Tahir, T.; Luni, T.; Majeed, M.T.; Zafar, A. The impact of financial development and globalization on environmental quality: Evidence from South Asian economies. Environ. Sci. Pollut. Res. 2021, 28, 8088–8101. [Google Scholar] [CrossRef] [PubMed]
- Dogan, B.; Madaleno, M.; Tiwari, A.K.; Hammoudeh, S. Impacts of export quality on environmental degradation: Does income matter? Environ. Sci. Pollut. Res. 2020, 27, 13735–13772. [Google Scholar] [CrossRef]
- Zhao, Y.; Ramzan, M.; Adebayo, T.S.; Oladipupo, S.D.; Adeshola, I.; Agyekum, E.B. Role of Renewable Energy Consumption and Technological Innovation to Achieve Carbon Neutrality in Spain: Fresh Insights from Wavelet Coherence and Spectral Causality Approaches. Front. Environ. Sci. 2021, 9, 769067. [Google Scholar] [CrossRef]
- Mehmood, U.; Tariq, S. Globalization and CO2 emissions nexus: Evidence from the EKC hypothesis in South Asian countries. Environ. Sci. Pollut. Res. 2020, 27, 37044–37056. [Google Scholar] [CrossRef] [PubMed]
- Tariq, S.; Mehmood, U.; Haq, Z.U.; Mariam, A. Exploring the existence of environmental Phillips curve in South Asian countries. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Ojekemi, O.S.; Rjoub, H.; Awosusi, A.A.; Agyekum, E.B. Toward a sustainable environment and economic growth in BRICS economies: Do innovation and globalization matter? Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Khan, A.A.; Khan, S.U.; Ali, M.A.S.; Safi, A.; Gao, Y.; Luo, J. Role of institutional quality and renewable energy consumption in achieving carbon neutrality: Case study of G-7 economies. Sci. Total Environ. 2022, 814, 152797. [Google Scholar] [CrossRef]
- Tariq, S.; Imran, A.; Mehmood, U. CO2 Emissions from Pakistan and India and Their Relationship with Economic Variables CO2 Emissions from Pakistan and India and Their Relationship with Economic Variables. Appl. Ecol. 2017, 15. [Google Scholar] [CrossRef]
- Majeed, M.T.; Tauqir, A.; Mazhar, M.; Samreen, I. Asymmetric effects of energy consumption and economic growth on ecological footprint: New evidence from Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 32945–32961. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ozturk, I.; Majeed, M.T.; Hafeez, M.; Ullah, S. Considering the asymmetric effect of financial deepening on environmental quality in BRICS economies: Policy options for the green economy. J. Clean. Prod. 2022, 331, 129909. [Google Scholar] [CrossRef]
- Mehmood, U. Renewable energy and foreign direct investment: Does the governance matter for CO2 emissions? Application of CS-ARDL. Environ. Sci. Pollut. Res. 2021, 29, 19816–19822. [Google Scholar] [CrossRef]
- Wang, S.; Li, G.; Fang, C. Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels. Renew. Sustain. Energy Rev. 2018, 81, 2144–2159. [Google Scholar] [CrossRef]
- Qayyum, F.; Mehmood, U.; Tariq, S.; Haq, Z.U.; Nawaz, H. Particulate matter (PM2.5) and diseases: An autoregressive distributed lag (ARDL) technique. Environ. Sci. Pollut. Res. 2021, 28, 67511–67518. [Google Scholar] [CrossRef] [PubMed]
- Mariam, A.; Tariq, S.; Ul-Haq, Z.; Mehmood, U. Spatio-temporal variations in fine particulate matter and evaluation of associated health risk over Pakistan. Integr. Environ. Assess. Manag. 2021, 17, 1243–1254. [Google Scholar] [CrossRef]
- Mehmood, U.; Azhar, A.; Qayyum, F.; Nawaz, H.; Tariq, S.; Haq, Z.U. Air pollution and hospitalization in megacities: Empirical evidence from Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 51384–51390. [Google Scholar] [CrossRef]
- Ren, Z.; Liu, X.; Liu, T.; Chen, D.; Jiao, K.; Wang, X.; Suo, J.; Yang, H.; Liao, J.; Ma, L. Effect of ambient fine particulates (PM2.5) on hospital admissions for respiratory and cardiovascular diseases in Wuhan, China. Respir. Res. 2021, 22, 128. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Chen, T.; Chang, Q.; Kao, Y.-W.; Li, J.; Chen, M.; Li, Y.; Shia, B.-C. Respiratory diseases are positively associated with PM2.5 concentrations in different areas of Taiwan. PLoS ONE 2021, 16, e0249694. [Google Scholar] [CrossRef]
- The Paris Agreement; United Nations: New York, NY, USA, 2016.
- Kyoto Protocol; Nations Unies Framework Convention on Climate Change-Secretariat Convention-Cadre sur les Changements Climatiques-Secrétariat; United Nations: New York, NY, USA, 2005.
- Natural Capital Partners the Carbon Neutral Protocol; The CarbonNeutral Protocol: London, UK, 2020.
- Van Soest, H.L.; den Elzen, M.G.J.; van Vuuren, D.P. Net-zero emission targets for major emitting countries consistent with the Paris Agreement. Nat. Commun. 2021, 12, 2140. [Google Scholar] [CrossRef] [PubMed]
- CNCA 2019 Annual Report; CNCA: San Francisco, CA, USA, 2019; Volume 15, pp. 1–56.
- Adebayo, T.S. Renewable Energy Consumption and Environmental Sustainability in Canada: Does Political Stability Make a Difference? Environ. Sci. Pollut. Res. 2022, 1–16. [Google Scholar] [CrossRef] [PubMed]
- IPCC. IPCC, 2018: Summary for Policymakers. In Global Warming of 1.5 °C; An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- World Bank. Gross Domestic Product 2020 Gross Domestic Product 2020; World Bank: Washington, DC, USA, 2021. [Google Scholar]
- Mehmood, U.; Mansoor, A. CO2 emissions and the role of urbanization in East Asian and Pacific countries. Environ. Sci. Pollut. Res. 2021, 28, 58549–58557. [Google Scholar] [CrossRef] [PubMed]
- Al-Mulali, U.; Ozturk, I.; Lean, H.H. The influence of economic growth, urbanization, trade openness, financial development, and renewable energy on pollution in Europe. Nat. Hazards 2015, 79, 621–644. [Google Scholar] [CrossRef]
- Salari, M.; Javid, R.J.; Noghanibehambari, H. The nexus between CO2 emissions, energy consumption, and economic growth in the U.S. Econ. Anal. Policy 2021, 69, 182–194. [Google Scholar] [CrossRef]
- Mehmood, U.; Imran, A.; Abid, A.; Tariq, S.; Ul-Haq, Z.; Mazhar, R.; Daud, A.; Mahmood, K.; Iqbal, M.; Batool, A. Nexus between Greenhouse Gas Emissions, Energy Use and Economic Growth: Empirical Evidence from South Asian Countries. Pol. J. Environ. Stud. 2021, 31, 763–770. [Google Scholar] [CrossRef]
- Majeed, M.T.; Mazhar, M. Financial Development and Ecological Footprint: A Global Panel Data Analysis. Pak. J. Commer. Soc. Sci. 2019, 13, 487–514. [Google Scholar]
- Khan, M.K.; Teng, J.-Z.; Khan, M.I.; Khan, M.O. Impact of globalization, economic factors and energy consumption on CO2 emissions in Pakistan. Sci. Total Environ. 2019, 688, 424–436. [Google Scholar] [CrossRef]
- Khan, Z.; Ali, S.; Umar, M.; Kirikkaleli, D.; Jiao, Z. Consumption-based carbon emissions and International trade in G7 countries: The role of Environmental innovation and Renewable energy. Sci. Total Environ. 2020, 730, 138945. [Google Scholar] [CrossRef]
- Tariq, S.; Qayyum, F.; Ul-Haq, Z.; Mehmood, U. Long-term spatiotemporal trends in aerosol optical depth and its relationship with enhanced vegetation index and meteorological parameters over South Asia. Environ. Sci. Pollut. Res. 2022, 29, 30638–30655. [Google Scholar] [CrossRef]
- Tariq, S.; Nawaz, H.; Ul-Haq, Z.; Mehmood, U. Investigating the relationship of aerosols with enhanced vegetation index and meteorological parameters over Pakistan. Atmos. Pollut. Res. 2021, 12, 101080. [Google Scholar] [CrossRef]
- Ul-Haq, Z.; Tariq, S.; Ali, M.; Mahmood, K.; Batool, S.A.; Rana, A.D. A study of tropospheric NO2 variability over Pakistan using OMI data. Atmos. Pollut. Res. 2014, 5, 709–720. [Google Scholar] [CrossRef] [Green Version]
- Musah, M.; Kong, Y.; Vo, X.V. Predictors of carbon emissions: An empirical evidence from NAFTA countries. Environ. Sci. Pollut. Res. 2021, 28, 11205–11223. [Google Scholar] [CrossRef] [PubMed]
- Destek, M.A.; Sarkodie, S.A. Investigation of environmental Kuznets curve for ecological footprint: The role of energy and financial development. Sci. Total Environ. 2019, 650, 2483–2489. [Google Scholar] [CrossRef] [PubMed]
- Sarkodie, S.A.; Adams, S. Renewable energy, nuclear energy, and environmental pollution: Accounting for political institutional quality in South Africa. Sci. Total Environ. 2018, 643, 1590–1601. [Google Scholar] [CrossRef]
- Cheng, G.; Zhao, C.; Iqbal, N.; Gülmez, Ö.; Işik, H.; Kirikkaleli, D. Does energy productivity and public-private investment in energy achieve carbon neutrality target of China? J. Environ. Manag. 2021, 298, 113464. [Google Scholar] [CrossRef]
- Lin, B.; Zhu, J. The role of renewable energy technological innovation on climate change: Empirical evidence from China. Sci. Total Environ. 2019, 659, 1505–1512. [Google Scholar] [CrossRef]
- Adenle, A.A.; Azadi, H.; Arbiol, J. Global assessment of technological innovation for climate change adaptation and mitigation in developing world. J. Environ. Manag. 2015, 161, 261–275. [Google Scholar] [CrossRef]
- Chhetri, N.; Chaudhary, P.; Tiwari, P.R.; Yadaw, R.B. Institutional and technological innovation: Understanding agricultural adaptation to climate change in Nepal. Appl. Geogr. 2012, 33, 142–150. [Google Scholar] [CrossRef]
- Su, C.-W.; Naqvi, B.; Shao, X.-F.; Li, J.-P.; Jiao, Z. Trade and technological innovation: The catalysts for climate change and way forward for COP21. J. Environ. Manag. 2020, 269, 110774. [Google Scholar] [CrossRef]
- Aragon-Correa, J.A.; Hurtado-Torres, N.E.; Sharma, S.; Morales, V.J.G.; Sharma, S.K. Environmental strategy and performance in small firms: A resource-based perspective. J. Environ. Manag. 2008, 86, 88–103. [Google Scholar] [CrossRef] [PubMed]
- Danish; Ozcan, B.; Ulucak, R. An empirical investigation of nuclear energy consumption and carbon dioxide (CO2) emission in India: Bridging IPAT and EKC hypotheses. Nucl. Eng. Technol. 2021, 53, 2056–2065. [Google Scholar] [CrossRef]
- Guo, J.; Zhou, Y.; Ali, S.; Shahzad, U.; Cui, L. Exploring the role of green innovation and investment in energy for environmental quality: An empirical appraisal from provincial data of China. J. Environ. Manag. 2021, 292, 112779. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-J.; Peng, Y.-L.; Ma, C.-Q.; Shen, B. Can environmental innovation facilitate carbon emissions reduction? Evidence from China. Energy Policy 2017, 100, 18–28. [Google Scholar] [CrossRef]
- Xue, C.; Shahbaz, M.; Ahmed, Z.; Ahmad, M.; Sinha, A. Clean energy consumption, economic growth, and environmental sustainability: What is the role of economic policy uncertainty? Renew. Energy 2022, 184, 899–907. [Google Scholar] [CrossRef]
- Paramati, S.R.; Apergis, N.; Ummalla, M. Financing clean energy projects through domestic and foreign capital: The role of political cooperation among the EU, the G20 and OECD countries. Energy Econ. 2017, 61, 62–71. [Google Scholar] [CrossRef]
- Mehmood, U.; Agyekum, E.B.; Uhunamure, S.E.; Shale, K.; Mariam, A. Evaluating the Influences of Natural Resources and Ageing People on CO2 Emissions in G-11 Nations: Application of CS-ARDL Approach. Int. J. Environ. Res. Public Health 2022, 19, 1449. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ahmed, R.; Mashud, A.H.M.; Malik, A.I.; Miah, S.; Abedin, M.Z. Consumption-Based CO2 Emissions on Sustainable Development Goals of SAARC Region. Sustainability 2022, 14, 1467. [Google Scholar] [CrossRef]
- Hao, Y. Effect of Economic Indicators, Renewable Energy Consumption and Human Development on Climate Change: An Empirical Analysis Based on Panel Data of Selected Countries. Front. Energy Res. 2022, 10, 243. [Google Scholar] [CrossRef]
- Majewska, A.; Gierałtowska, U. Impact of Economic Affluence on CO2 Emissions in CEE Countries. Energies 2022, 15, 322. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Udemba, E.N.; Ahmed, Z.; Kirikkaleli, D. Determinants of consumption-based carbon emissions in Chile: An application of non-linear ARDL. Environ. Sci. Pollut. Res. 2021, 28, 43908–43922. [Google Scholar] [CrossRef] [PubMed]
- Bekhet, H.A.; Matar, A.; Yasmin, T. CO2 emissions, energy consumption, economic growth, and financial development in GCC countries: Dynamic simultaneous equation models. Renew. Sustain. Energy Rev. 2017, 70, 117–132. [Google Scholar] [CrossRef]
- Ahmad, M.; Khattak, S.I.; Khan, S.; Rahman, Z.U. Do aggregate domestic consumption spending & technological innovation affect industrialization in South Africa? An application of linear & non-linear ARDL models. J. Appl. Econ. 2020, 23, 43–64. [Google Scholar] [CrossRef] [Green Version]
- Sharif, A.; Mishra, S.; Sinha, A.; Jiao, Z.; Shahbaz, M.; Afshan, S. The renewable energy consumption-environmental degradation nexus in Top-10 polluted countries: Fresh insights from quantile-on-quantile regression approach. Renew. Energy 2020, 150, 670–690. [Google Scholar] [CrossRef] [Green Version]
- Sharif, A.; Baris-Tuzemen, O.; Uzuner, G.; Ozturk, I.; Sinha, A. Revisiting the role of renewable and non-renewable energy consumption on Turkey’s ecological footprint: Evidence from Quantile ARDL approach. MPRA Pap. 2020, 57, 102138. [Google Scholar] [CrossRef]
- Mehmood, U.; Tariq, S.; Ul-Haq, Z.; Meo, M.S. Does the modifying role of institutional quality remains homogeneous in GDP-CO2 emission nexus? New evidence from ARDL approach. Environ. Sci. Pollut. Res. 2020, 28, 10167–10174. [Google Scholar] [CrossRef]
- Mehmood, U. Renewable-nonrenewable energy: Institutional quality and environment nexus in South Asian countries. Environ. Sci. Pollut. Res. 2021, 28, 26529–26536. [Google Scholar] [CrossRef] [PubMed]
- Shahbaz, M.; Shahzad, S.J.H.; Mahalik, M.K.; Hammoudeh, S. Does Globalization Worsen Environmental Quality in Developed Economies? Does Globalization Worsen Environmental Quality in Developed Economies? Munich Personal RePEc Archive: Munich, Germany, 2017. [Google Scholar]
- Alola, A.A.; Kirikkaleli, D. The nexus of environmental quality with renewable consumption, immigration, and healthcare in the US: Wavelet and gradual-shift causality approaches. Environ. Sci. Pollut. Res. 2019, 26, 35208–35217. [Google Scholar] [CrossRef]
- Mishra, C.; Chakraborty, A.; Mishra, S.R. Spectral characteristics of a modified inverted-Y system beyond rotating wave approximation. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 95002. [Google Scholar] [CrossRef] [Green Version]
- Khalfaoui, R.; Tiwari, A.K.; Khalid, U.; Shahbaz, M. Nexus between carbon dioxide emissions and economic growth in G7 countries: Fresh insights via wavelet coherence analysis. J. Environ. Plan. Manag. 2021, 1–36. [Google Scholar] [CrossRef]
- Kirikkaleli, D.; Sowah, J.K. A wavelet coherence analysis: Nexus between urbanization and environmental sustainability. Environ. Sci. Pollut. Res. 2020, 27, 30295–30305. [Google Scholar] [CrossRef] [PubMed]
- Onyutha, C. Trends and variability of temperature and evaporation over the African continent: Relationships with precipitation. Atmosfera 2021, 34, 267–287. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. A Simple Test for Heteroscedasticity and Random Coefficient Variation. Econometrica 1979, 47, 1287. [Google Scholar] [CrossRef]
- Cook, R.D.; Weisberg, S. Diagnostics for Heteroscedasticity in Regression. Biometrika 1983, 70, 1–10. [Google Scholar] [CrossRef]
- Pesaran, M.H. General Diagnostic Tests for Cross-Section Dependence in Panels. In Cambridge Working Papers in Economics; Faculty of Economics, University of Cambridge: Cambridge, UK, 2004. [Google Scholar]
- Pesaran, M.H.; Yamagata, T. Testing slope homogeneity in large panels. J. Econ. 2008, 142, 50–93. [Google Scholar] [CrossRef] [Green Version]
- Pedroni, P. Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- Johansen, S. Statistical analysis of cointegration vectors. J. Econ. Dyn. Control 1988, 12, 231–254. [Google Scholar] [CrossRef]
- Westerlund, J.; Edgerton, D.L. A panel bootstrap cointegration test. Econ. Lett. 2007, 97, 185–190. [Google Scholar] [CrossRef]
- Chudik, A.; Pesaran, M.H. Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. J. Econ. 2015, 188, 393–420. [Google Scholar] [CrossRef] [Green Version]
- Chudik, A.; Mohaddes, K.; Pesaran, M.H.; Raissi, M. Long-Run Effects in Large Heterogeneous Panel Data Models with Cross-Sectionally Correlated Errors; Emerald Group Publishing Limited: Bingley, UK, 2016. [Google Scholar]
- Dumitrescu, E.-I.; Hurlin, C. Testing for Granger non-causality in heterogeneous panels. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econ. 2007, 22, 265–312. [Google Scholar] [CrossRef] [Green Version]
- Musah, M.; Kong, Y.; Mensah, I.A.; Antwi, S.K.; Donkor, M. The link between carbon emissions, renewable energy consumption, and economic growth: A heterogeneous panel evidence from West Africa. Environ. Sci. Pollut. Res. 2020, 27, 28867–28889. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Zhao, H.; Han, X.; He, Z.; Guo, S. Economic Growth, Electricity Consumption, Labor Force and Capital Input: A More Comprehensive Analysis on North China Using Panel Data. Energies 2016, 9, 891. [Google Scholar] [CrossRef] [Green Version]
- Musah, M.; Kong, Y.; Mensah, I.A.; Antwi, S.K.; Osei, A.A.; Donkor, M. Modelling the connection between energy consumption and carbon emissions in North Africa: Evidence from panel models robust to cross-sectional dependence and slope heterogeneity. Environ. Dev. Sustain. 2021, 23, 15225–15239. [Google Scholar] [CrossRef]
- Westerlund, J. New Simple Tests for Panel Cointegration. New Simple Tests for Panel Cointegration. Econ. Rev. 2007, 24, 297–316. [Google Scholar] [CrossRef]
- Erdoğan, S.; Yıldırım, S.; Yıldırım, D.Ç.; Gedikli, A. The effects of innovation on sectoral carbon emissions: Evidence from G20 countries. J. Environ. Manag. 2020, 267, 110637. [Google Scholar] [CrossRef]
- Murshed, M.; Ali, S.R.; Banerjee, S. Consumption of liquefied petroleum gas and the EKC hypothesis in South Asia: Evidence from cross-sectionally dependent heterogeneous panel data with structural breaks. Energy Ecol. Environ. 2021, 6, 353–377. [Google Scholar] [CrossRef]
- Wahab, S.; Zhang, X.; Safi, A.; Wahab, Z.; Amin, M. Does Energy Productivity and Technological Innovation Limit Trade-Adjusted Carbon Emissions? Econ. Res. -Ekon. Istraživanja 2021, 34, 1896–1912. [Google Scholar] [CrossRef]
- Hasanov, F.J.; Liddle, B.; Mikayilov, J. The impact of international trade on CO2 emissions in oil exporting countries: Territory vs consumption emissions accounting. Energy Econ. 2018, 74, 343–350. [Google Scholar] [CrossRef]
- Bosupeng, M. The Effect of Exports on Carbon Dioxide Emissions: Policy Implications. Int. J. Manag. Econ. 2016, 51, 20–32. [Google Scholar] [CrossRef] [Green Version]
- U.S. Energy Information Administration. March 2021 Monthly Energy Review; U.S. Energy Information Administration: Washington, DC, USA, 2021; Volume 35, ISBN 2025862792. [Google Scholar]
- Cai, Y.; Sam, C.Y.; Chang, T. Nexus between clean energy consumption, economic growth and CO2 emissions. J. Clean. Prod. 2018, 182, 1001–1011. [Google Scholar] [CrossRef]
- Shahbaz, M.; Nasir, M.A.; Hille, E.; Mahalik, M.K. UK’s Net-Zero Carbon Emissions Target: Investigating the Potential Role of Economic Growth, Financial Development, and R&D Expenditures Based on Historical Data (1870–2017). Technol. Forecast. Soc. Chang. 2020, 161, 120255. [Google Scholar] [CrossRef]
- Balcilar, M.; Ozdemir, Z.A.; Ozdemir, H.; Shahbaz, M. Carbon Dioxide Emissions, Energy Consumption and Economic Growth: The Historical Decomposition Evidence from G-7 Countries; Working Papers; Eastern Mediterranean University, Department of Economics: Famagusta, Cyprus, 2018. [Google Scholar]
- Zweig, D. Market Power, NAIRU, and the Phillips Curve. Abstr. Appl. Anal. 2020, 2020, 7083981. [Google Scholar] [CrossRef]
- Menegaki, A. How does the wavelet approach satisfy the required deliverables in the energy-growth nexus studies? In A Guide to Econometrics Methods for the Energy-Growth Nexus; Academic Press: London, UK, 2021; pp. 219–239. [Google Scholar] [CrossRef]
- Adebayo, T.S.; Oladipupo, S.D.; Adeshola, I.; Rjoub, H. Wavelet analysis of impact of renewable energy consumption and technological innovation on CO2 emissions: Evidence from Portugal. Environ. Sci. Pollut. Res. 2021, 29, 23887–23904. [Google Scholar] [CrossRef]
- Mutascu, M.; Sokic, A. Trade Openness—CO2 Emissions Nexus: A Wavelet Evidence from EU. Environ. Model. Assess. 2020, 25, 411–428. [Google Scholar] [CrossRef]
Parameters | Abbreviation | Measurement | Source |
---|---|---|---|
Carbon-Dioxide Emissions | CO2e | Metric ton | World Bank |
Financial Institutional Deepening | FID | FID is constructed from financial institutional depth, access, and efficiency | IMF |
Technology Innovations | TI | Patent applications, residents, and non-residents | World Bank |
Gross Domestic Products | GDP | constant 2015 US$ | World Bank |
Renewable Energy Consumption | REC | Percentage of total final energy consumption | World Bank |
Import | IMP | Percent of GDP | World Bank |
Export | EXP | Percent of GDP | World Bank |
Parameters | Mean | Min | Max | SD | Skewness | Kurtosis | Sample Variance |
---|---|---|---|---|---|---|---|
CO2e | 0.75 | 0.27 | 1.0 | 0.17 | −0.25 | −0.60 | 0.03 |
FID | 0.71 | 0.48 | 0.88 | 0.09 | −0.45 | −0.22 | 0.01 |
TI | 5.21 × 104 | 617 | 4.40 × 105 | 6.10 × 103 | 2.62 | 5.31 | 1.16 × 1010 |
GDP | 1.68 × 1012 | 2.83 × 1011 | 4.59 × 1012 | 1.22 × 1012 | 0.67 | −0.61 | 1.48 × 1024 |
REC | 12.91 | 0.61 | 52.89 | 12.12 | 1.45 | 1.86 | 146.83 |
IMP | 36.74 | 6.94 | 83.28 | 17.41 | 0.79 | 0.06 | 303.01 |
EXP | 39.52 | 8.82 | 84.68 | 19.51 | 0.67 | −0.52 | 380.63 |
Variable | Test Statistics (p-Values) |
---|---|
CO2e | 29.99 *** (0.00) |
FID | 35.84 *** (0.00) |
TI | 27.78 *** (0.00) |
GDP | 37.35 *** (0.00) |
REC | 33.59 *** (0.00) |
IMP | 37.29 *** (0.00) |
EXP | 37.30 *** (0.00) |
Statistics | Test Value (p-Value) |
---|---|
Delta tilde | −1.79 * (0.073) |
Delta tilde Adjusted | −2.16 ** (0.031) |
Statistic | Values |
---|---|
Gt | −2.206 |
Ga | −10.272 *** |
Pt | −5.226 |
Pa | −7.619 *** |
Variable | CIPS Test | CADF Test | ||
---|---|---|---|---|
At Level | First Difference | At Level | First Difference | |
CO2e | −2.43 | −4.78 *** | −2.17 | −2.83 ** |
FID | −3.39 | −5.94 *** | −2.75 | −3.94 *** |
TI | −3.90 | −6.45 *** | −2.78 | −4.00 *** |
GDP | −2.55 | −3.89 ** | −2.42 | −3.18 *** |
REC | −3.61 | −6.13 *** | −2.78 | −4.08 *** |
IMP | −2.52 | −5.03 *** | −3.18 | −4.21 *** |
EXP | −1.94 | −4.07 *** | −2.95 | −3.43 *** |
Dependent Variable: CO2e | ||||||
---|---|---|---|---|---|---|
Variable | Short Run | Long Run | ||||
Coefficients | Std. Error | Significance | Coefficients | Std. Error | Significance | |
ΔlnFID | 0.5403 *** | 0.1210 | 0.000 | 0.2980 *** | 0.0682 | 0.000 |
ΔlnTI | −0.0957 ** | 0.0966 | 0.022 | −0.0569 * | 0.0539 | 0.092 |
ΔlnGDP | −0.1444 ** | 0.2983 | 0.028 | −0.0514 ** | 0.1537 | 0.038 |
ΔlnREC | −0.0661 * | 0.0715 | 0.053 | −0.0354 * | 0.0389 | 0.062 |
ΔlnIMP | 0.2942 ** | 0.1448 | 0.042 | 0.1479 *** | 0.0717 | 0.007 |
ΔlnEXP | −0.3697 *** | 0.1340 | 0.006 | −0.1906 ** | 0.0708 | 0.039 |
Dependent Parameter: CO2e | DCCEMG | ||
---|---|---|---|
Coefficient | Std. Error | Significance | |
FID | 0.7435 *** | 0.1566 | 0.000 |
TI | −0.0560 * | 0.0745 | 0.052 |
GDP | −0.8008 ** | 0.2581 | 0.002 |
REC | −0.0593 * | 0.1012 | 0.058 |
IMP | 0.0790 ** | 0.1581 | 0.017 |
EXP | −0.0697 ** | 0.1260 | 0.080 |
Null Hypothesis | W-Stat. | Z-Bar-Stat. | Prob. |
---|---|---|---|
lnFID ⇏ lnCO2 | 5.0161 *** | 3.7501 | 0.000 |
lnCO2 ⇏ lnFID | 5.7351 *** | 4.7013 | 0.000 |
lnGDP ⇏ lnCO2e | 4.7603 *** | 3.4115 | 0.001 |
lnCO2e ⇏ lnGDP | 6.3406 *** | 5.5025 | 0.000 |
lnTI ⇏ lnCO2e | 5.6951 *** | 4.6434 | 0.000 |
lnCO2e ⇏ lnTI | 3.5401 * | 1.7944 | 0.073 |
lnREC⇏ lnCO2e | 2.6809 * | 0.6604 | 0.509 |
lnCO2e ⇏ lnREC | 4.8328 *** | 3.5076 | 0.000 |
lnCO2e ⇏ lnEXP | 9.7368 *** | 9.9959 | 0.000 |
lnEXP ⇏ lnCO2e | 4.9428 *** | 3.6531 | 0.000 |
lnIMP ⇏ lnCO2 | 4.9739 *** | 3.6943 | 0.000 |
lnCO2 ⇏ lnIMP | 10.9025 *** | 11.5383 | 0.000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehmood, U.; Tariq, S.; Ul-Haq, Z.; Agyekum, E.B.; Kamel, S.; Elnaggar, M.; Nawaz, H.; Hameed, A.; Ali, S. Can Financial Institutional Deepening and Renewable Energy Consumption Lower CO2 Emissions in G-10 Countries: Fresh Evidence from Advanced Methodologies. Int. J. Environ. Res. Public Health 2022, 19, 5544. https://doi.org/10.3390/ijerph19095544
Mehmood U, Tariq S, Ul-Haq Z, Agyekum EB, Kamel S, Elnaggar M, Nawaz H, Hameed A, Ali S. Can Financial Institutional Deepening and Renewable Energy Consumption Lower CO2 Emissions in G-10 Countries: Fresh Evidence from Advanced Methodologies. International Journal of Environmental Research and Public Health. 2022; 19(9):5544. https://doi.org/10.3390/ijerph19095544
Chicago/Turabian StyleMehmood, Usman, Salman Tariq, Zia Ul-Haq, Ephraim Bonah Agyekum, Salah Kamel, Mohamed Elnaggar, Hasan Nawaz, Ammar Hameed, and Shafqat Ali. 2022. "Can Financial Institutional Deepening and Renewable Energy Consumption Lower CO2 Emissions in G-10 Countries: Fresh Evidence from Advanced Methodologies" International Journal of Environmental Research and Public Health 19, no. 9: 5544. https://doi.org/10.3390/ijerph19095544
APA StyleMehmood, U., Tariq, S., Ul-Haq, Z., Agyekum, E. B., Kamel, S., Elnaggar, M., Nawaz, H., Hameed, A., & Ali, S. (2022). Can Financial Institutional Deepening and Renewable Energy Consumption Lower CO2 Emissions in G-10 Countries: Fresh Evidence from Advanced Methodologies. International Journal of Environmental Research and Public Health, 19(9), 5544. https://doi.org/10.3390/ijerph19095544