Effects of 8-Week Electromyostimulation Training on Upper-Limb Muscle Activity and Respiratory Gas Analysis in Athletes with Disabilities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Procedures
2.3. Data Processing and Analysis
2.3.1. Muscle Stiffness Analysis
2.3.2. Muscle Activity Analysis
2.3.3. Left-to-Right Symmetry Index
2.3.4. Respiratory Gas Analysis
2.4. Statistical Analysis
3. Results
3.1. Muscle Activity Analysis
3.2. Left-to-Right SI
3.3. Respiratory Gas Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2014. [Google Scholar]
- Summary Health Statistics for U.S. Adults: National Health Interview Survey, 2010; United States Department of Health and Human Services: Washington, DC, USA, 2012; p. 147.
- World Health Organization. Physical Activity. Available online: https://www.who.int/en/news-room/fact-sheets/detail/physical-activity (accessed on 23 February 2018).
- Berg, A.I.; Hassing, L.B.; McClearn, G.E.; Johansson, B. What matters for life satisfaction in the oldest-old? Aging Ment. Health 2006, 10, 257–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, P.L.; Nash, M.S. Exercise recommendations for individuals with spinal cord injury. Sports Med. 2004, 34, 727–751. [Google Scholar] [CrossRef] [PubMed]
- Warburton, D.E.; Nicol, C.W.; Bredin, S.S. Health benefits of physical activity: The evidence. CMAJ 2006, 174, 801–809. [Google Scholar] [CrossRef] [Green Version]
- Sunnerhagen, K.S. Circuit training in community-living “younger” men after stroke. J. Stroke Cerebrovasc. Dis. 2007, 16, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.J.; Cha, E.Y. A study on the attitude of sport instructors toward integrating the adapted physical activity. 2000 Seoul Int. Sport Sci. Congr. 2000, 16, 1603–1612. [Google Scholar]
- Sobiecka, J.; Plinta, R.; Gawroński, W.; Drob-Niewicz, K.; Kłodecka-Różalska, J.; Cichoń, K. Medical care during preparations for Paralympics in Beijing 2008 (athletes’ opinions). Pol. Ann. Med. 2012, 19, 106–112. [Google Scholar] [CrossRef]
- Lee, J.Y.; Choi, S.G. An Analysis of Korean National Athletes’ Sports Injuries during the Preparatory Period for the 2012 London Paralympic Games. Korean J. Adapt. Phys. Act. 2014, 22, 111–125. [Google Scholar]
- Patja, K.; Molsa, P.; Livanainen, M. Cause-specific mortality of people with intellectual disability in a population-based 35 year follow-up study. J. Intellect. Disabil. Res. 2001, 45, 30–40. [Google Scholar]
- Bellar, D.; Hatchett, A.; Judge, L.W.; Breaux, M.E.; Marcus, L. The relationship of aerobic capacity, anaerobic peak power and experience to performance in CrossFit exercise. Biol. Sport 2015, 32, 315–320. [Google Scholar] [CrossRef]
- Owen, C.; Rutherford, V.; Jones, M.; Wright, C.; Tennant, C.; Smallman, A. Housing accommodation preferences of people with psychiatric disabilities. Psychiatr. Serv. 1996, 47, 628–632. [Google Scholar]
- Doucet, B.M.; Lam, A.; Griffin, L. Neuromuscular electrical stimulation for skeletal muscle function. Yale J. Biol. Med. 2012, 85, 201–208. [Google Scholar] [PubMed]
- Kaplan, R.E.; Czyrny, J.J.; Fung, T.S.; Unsworth, J.D.; Hirsh, J. Electrical foot stimulation and implications for the prevention of venous thromboembolic disease. Thromb. Haemost. 2002, 88, 200–204. [Google Scholar] [PubMed]
- Granat, M.H.; Ferguson, A.C.B.; Andrews, B.J.; Delargy, M. The role of functional electrical stimulation in the rehabilitation of patients with incomplete spinal cord injury-observed benefits during gait studies. Spinal Cord 1993, 31, 207. [Google Scholar] [CrossRef] [PubMed]
- Petersen, N.T.; Taylor, J.L.; Gandevia, S.C. The effect of electrical stimulation of the corticospinal tract on motor units of the human biceps brachii. J. Physiol. 2002, 544, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Vanderthommen, M.; Depresseux, J.C.; Dauchat, L.; Degueldre, C.; Croisier, J.L.; Crielaard, J.M. Blood flow variation in human muscle during electrically stimulated exercise bouts. Arch. Phys. Med. Rehabil. 2002, 83, 936–941. [Google Scholar] [CrossRef]
- Chae, J.; Sheffler, L.; Knutson, J. Neuromuscular electrical stimulation for motor restoration in hemiplegia. Top. Stroke Rehabil. 2008, 15, 412–426. [Google Scholar] [CrossRef]
- Crameri, R.M.; Weston, A.; Climstein, M.; Davis, G.M.; Sutton, J.R. Effects of electrical stimulation-induced leg training on skeletal muscle adaptability in spinal cord injury. Scand. J. Med. Sci. Sports 2002, 12, 316–322. [Google Scholar] [CrossRef]
- Lin, Z.; Yan, T. Long-term effectiveness of neuromuscular electrical stimulation for promoting motor recovery of the upper extremity after stroke. J. Rehabil. Med. 2011, 43, 506–510. [Google Scholar]
- Kemmler, W.; Bebenek, M.; Engelke, K.; Stengel, S.V. Impact of whole-body electromyostimulation on body composition in elderly women at risk for sarcopenia: The training and electrostimulation trial (test-III). Age 2014, 36, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Stengel, S.; Bebenek, M.; Engelke, K.; Kemmler, W. Whole-body electromyostimulation to fight osteopenia in elderly females: The randomized controlled training and electrostimulation trial (test-III). J. Osteoporos. 2015, 2015, 632520. [Google Scholar] [CrossRef] [Green Version]
- Song, J.E.; Choi, G.H.; Park, H. Effects of the Micro-Training with EMS Device on Body Composition, Isokinetic Muscular Function, and Physical Fitness of Healthy 20’s Males. Korea J. Sport Sci. 2016, 25, 1143–1154. [Google Scholar]
- Vanderthommen, M.; Duchateau, J. Electrical stimulation as a modality to improve performance of the neuromuscular system. Exerc. Sport Sci. Rev. 2007, 35, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Jeong, I.G.; Lee, H.H.; Lee, B.Y.; Shin, Y.R.; Oh, M.J.; Choi, J.W. Approach from Physiological Studies and Sports medicine to Promote Sports for People with Disability. J. Sport Leisure Stud. 2011, 44, 533–544. [Google Scholar] [CrossRef]
- Cooper, R.A.; Boninger, M.L.; Shimada, S.D.; O’Conner, T.J. Elite athletes with impairments in Frontera WR. In Exercise in Rehabilitation Medicine; Human Kinetics: Champaingn, IL, USA, 1999; pp. 425–448. [Google Scholar]
- Kim, T.H.; Park, C.H.; Jekal, Y. The Effect of Customized Training on the Level of Physical Fitness among the Disabled Player. J. Korean Soc. Well 2015, 10, 355–367. [Google Scholar]
- Hargrove, L.J.; Smith, D.G.; Kuiken, T.A. Robotic Leg Control with EMG Decoding in an Amputee with Nerve Transfers. N. Engl. J. Med. 2013, 369, 1237–1242. [Google Scholar] [CrossRef]
- Brown, L.P.; Niehues, S.L.; Harrah, A.; Yavorsky, P.; Hirshman, H.P. Upper extremity range of motion and isokinetic strength of the internal and external shoulder rotators in major league baseball players. Am. J. Sports Med. 1988, 16, 577–585. [Google Scholar] [CrossRef]
- Erol, O.; Ozçakar, L.; Celiker, R. Shoulder rotator strength in patients with stage I-II subacromial impingement: Relationship to pain, disability, and quality of life. J. Shoulder Elbow Surg. 2008, 17, 893–900. [Google Scholar] [CrossRef]
- Mangold, S.; Schuster, C.; Keller, T.; Zimmermann-Schlatter, A.; Ettlin, T. Motor training of upper extremity with functional electrical stimulation in early stroke rehabilitation. Neurorehabil. Neural Repair 2009, 23, 184–190. [Google Scholar] [CrossRef]
- Alon, G.; Levitt, A.F.; McCarthy, P.A. Functional electrical stimulation enhancement of upper extremity functional recovery during stroke rehabilitation: A pilot study. Neurorehabil. Neural Repair 2007, 21, 207–215. [Google Scholar] [CrossRef]
- Kemmler, W.; Schliffka, R.; Mayhew, J.L.; Stengel, S.V. Effects of whole-body electromyostimulation on resting metabolic rate, cody composition, and maximum strength in postmenopausal trial. J. Strength Cond. Res. 2010, 24, 1880–1887. [Google Scholar] [CrossRef]
- Kemmler, W.; Von Stengel, S.; Schwarz, J.; Mayhew, J.L. Effect of whole-body electromyostimulation on energy expenditure during exercise. J. Strength Cond. Res. 2012, 26, 240–245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kipp, S.; Byrnes, W.C.; Kram, R. Calculating metabolic energy expenditure across a wide range of exercise intensities: The equation matters. Appl. Physiol. Nutr. Metab. 2018, 43, 639–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robergs, R.A.; Dwyer, D.; Astorino, T. Recommendations for improved data processing from expired gas analysis indirect calorimetry. Sports Med. 2010, 40, 95–111. [Google Scholar] [CrossRef]
- Babault, N.; Cometti, M.; Bernardin, M.; Pousson, M.; Chatard, J. Effects of electromyostimulation training on muscle strength and power of elite rugby players. J. Strength Cond. Res. 2007, 21, 431–437. [Google Scholar] [PubMed] [Green Version]
- Malatesta, D.; Cattaneo, F.; Dugnani, S.; Maffiuletti, N. Effects of electromyostimulation training and volleyball practice on jumping ability. J. Strength Cond. Res. 2003, 17, 573–579. [Google Scholar] [PubMed]
- Ryzhkin, V.V.; Lobastov, K.V.; Vorontsova, A.V.; Schastlivtsev, I.V.; Barinov, V.E.; Naumov, E.K.; Laberko, L.A. Clinical efficacy of electric stimulation of crural muscles in comprehensive treatment of post-thrombotic disease. Angiol. Sosud. Khirurgiia 2017, 23, 73–81. [Google Scholar]
- Kim, B.H. An Analysis of Effects through Lumbar Stabilization Exercise and Low Frequency EMS to Patient with Chronic Low Back Pain. Korean J. Sport 2021, 19, 571–578. [Google Scholar] [CrossRef]
- Jung, S.Y.; Nam, H.J.; Hong, D.S.; Lee, J.H.; Kim, J.K.; Nho, H.S. A comparison of balance activity and body alignment by sports type in unilateral exercise athletes. Korean J. Phys. Ed. 2013, 52, 431–442. [Google Scholar]
- Kim, J.; Han, K.H. Effect of pronation grip width on maximal strength, upper body tilt, and muscle activity during lat pulldown exercise. Sports Sci. 2022, 40, 233–240. [Google Scholar] [CrossRef]
- Cornwell, A.; Khodiguian, N.; Yoo, E.J. Relevance of hand dominance to the bilateral deficit phenomenon. Eur. J. Appl. Physiol. 2012, 112, 4163–4172. [Google Scholar] [CrossRef]
- Kang, J.; Heo, Y.; Nam, T.; Hong, E.; Kim, K.; Jang, Y. Analysis of push-rim motorized wheelchair drive characteristics of elderly wheelchair users with shoulder disease. J. Rehabil. Welf. Eng. 2018, 12, 100–108. [Google Scholar]
- Robergs, R.; Roberts, S. Fundamental Principles of Exercise Physiology: For Fitness, Performance, and Health; McGraw-Hill: St. Louis, MO, USA, 2001. [Google Scholar]
- Banerjee, P.; Caulfield, B.; Crowe, L.; Clark, A.L. Prolonged electrical muscle stimulation exercise improves strength, peak VO2, and exercise capacity in patients with stable chronic heart failure. J. Card. Fail. 2009, 15, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.W.; Liu, B.; Kwon, Y.K. Effects of Hydrogen Beverage on Exhalation Variables during Incremental Load Exercise. Korean Soc. Sport Sci. 2020, 29, 1077–1089. [Google Scholar] [CrossRef]
- Ainsworth, B.E.; Haskell, W.L.; Whitt, M.C.; Irwin, M.L.; Swartz, A.M.; Strath, S.J.; O’Brien, W.L.; Bassett, D.R., Jr.; Schmitz, K.H.; Emplaincourt, P.O.; et al. Compendium of physical activities: An update of activity codes and MET intensities. Med. Sci. Sport Exerc. 2000, 32, S498–S504. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.Y. Criterion and convergent validity evidences of an Accelerometer and a Pedometer. Korean J. Meas. Eval. Phys. Educ. Sport Sci. 2012, 14, 1–13. [Google Scholar]
- Hayter, T.L.; Coombes, J.S.; Knez, W.L.; Brancato, T.L. Effects of electrical muscle stimulation on oxygen consumption. J. Strength Cond. Res. 2005, 19, 98–101. [Google Scholar] [PubMed]
- Scott, C.B.; Croteau, A.; Ravlo, T. Energy expenditure before, during, and after the bench press. J. Strength Cond. Res. 2009, 23, 611–618. [Google Scholar] [CrossRef]
- Hamada, T.; Hayashi, T.; Kimura, T.; Nakao, K.; Moritani, T. Electrical stimulation of human lower extremities enhances energy consumption, carbohydrate oxidation, and whole body glucose uptake. J. Appl. Physiol. 2004, 96, 911–916. [Google Scholar] [CrossRef]
Variable | Age (years) | Height (m) | Weight (kg) | Duration of Athletic Career (years) |
---|---|---|---|---|
Mean ± SD | 42.00 ± 8.67 | 1.65 ± 0.16 | 64.00 ± 8.72 | 11.75 ± 3.83 |
Variables | Pre | Post | t | Effect Size | p |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | ||||
Pectoralis Major RT | 58.22 ± 21.78 | 75.31 ± 18.06 | −4.844 | 0.84 L | 0.004 * |
Pectoralis Major LT | 62.83 ± 21.87 | 92.64 ± 20.48 | −4.073 | 1.33 L | 0.001 * |
Triceps RT | 57.09 ± 24.13 | 98.58 ± 54.42 | −4.277 | 0.84 L | 0.002 * |
Triceps LT | 63.71 ± 17.02 | 74.73 ± 35.23 | −1.451 | 0.44 S | 0.100 |
Antebrachial RT | 50.27 ± 14.81 | 75.13 ± 27.61 | −4.046 | 1.16 L | 0.001 * |
Antebrachial LT | 79.86 ± 41.45 | 94.77 ± 34.49 | −1.167 | 0.27 S | 0.095 |
Variables | Pre | Post | t | Effect Size | p |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | ||||
Pectoralis Major | 13.13 ± 2.42 | 4.85 ± 3.14 | 0.189 | 0.28 S | 0.441 |
Triceps | 9.12 ± 2.89 | 3.63 ± 2.34 | 0.942 | 0.46 S | 0.260 |
Antebrachial | 2.20 ± 1.06 | 4.33 ± 2.51 | 1.001 | 0.88 L | 0.250 |
Variables | Pre | Post | t | Effect Size | p |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | ||||
VO2 (mL/min) | 448.79 ± 163.46 | 645.69 ± 208.87 | −3.293 | 1.10 L | 0.001 * |
VCO2 (mL/min) | 407.28 ± 172.92 | 611.08 ± 198.74 | −3.245 | 1.14 L | 0.002 * |
RQ | 0.92 ± 0.11 | 0.98 ± 0.17 | −1.291 | 0.36 S | 0.104 |
METs | 2.09 ± 0.68 | 3.05 ± 1.04 | −3.618 | 1.15 L | 0.001 * |
EEm (kcal/min) | 2.20 ± 0.82 | 3.19 ± 1.01 | −3.318 | 1.13 L | 0.001 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Park, J.; Yang, J.; Kim, Y.; Kim, I.; Shim, H.; Jang, C.; Kim, M.; Kim, M.; Lee, B. Effects of 8-Week Electromyostimulation Training on Upper-Limb Muscle Activity and Respiratory Gas Analysis in Athletes with Disabilities. Int. J. Environ. Res. Public Health 2023, 20, 299. https://doi.org/10.3390/ijerph20010299
Kim J, Park J, Yang J, Kim Y, Kim I, Shim H, Jang C, Kim M, Kim M, Lee B. Effects of 8-Week Electromyostimulation Training on Upper-Limb Muscle Activity and Respiratory Gas Analysis in Athletes with Disabilities. International Journal of Environmental Research and Public Health. 2023; 20(1):299. https://doi.org/10.3390/ijerph20010299
Chicago/Turabian StyleKim, Jongbin, Joonsung Park, Jeongok Yang, Youngsoo Kim, Inhyung Kim, Himchan Shim, Changho Jang, Mincheol Kim, Myeongcheol Kim, and Bomjin Lee. 2023. "Effects of 8-Week Electromyostimulation Training on Upper-Limb Muscle Activity and Respiratory Gas Analysis in Athletes with Disabilities" International Journal of Environmental Research and Public Health 20, no. 1: 299. https://doi.org/10.3390/ijerph20010299
APA StyleKim, J., Park, J., Yang, J., Kim, Y., Kim, I., Shim, H., Jang, C., Kim, M., Kim, M., & Lee, B. (2023). Effects of 8-Week Electromyostimulation Training on Upper-Limb Muscle Activity and Respiratory Gas Analysis in Athletes with Disabilities. International Journal of Environmental Research and Public Health, 20(1), 299. https://doi.org/10.3390/ijerph20010299