Association between the Perception of Behavior Change and Habitual Exercise during COVID-19: A Cross-Sectional Online Survey in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Sample
2.3. Measures
2.4. Analytic Strategy
3. Results
3.1. Characteristics of the Study Participants
3.2. Association between the Perception of Behavior Change and Habitual Exercise
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nikoloski, Z.; Alqunaibet, A.M.; Alfawaz, R.A.; Almudarra, S.S.; Herbst, C.H.; El-Saharty, S.; Alsukait, R.; Algwizani, A. COVID-19 and non-communicable diseases: Evidence from a systematic literature review. BMC Public Health 2021, 21, 1068. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Statistics 2018: Monitoring Health for the SDGs. Available online: https://apps.who.int/iris/handle/10665/272596 (accessed on 15 August 2022).
- Carpio-Rivera, E.; Moncada-Jiménez, J.; Salazar-Rojas, W.; Solera-Herrera, A. Acute Effects of Exercise on Blood Pressure: A Meta-Analytic Investigation. Arq. Bras. Cardiol. 2016, 106, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Sampath Kumar, A.; Maiya, A.G.; Shastry, B.A.; Vaishali, K.; Ravishankar, N.; Hazari, A.; Gundmi, S.; Jadhav, R. Exercise and insulin resistance in type 2 diabetes mellitus: A systematic review and meta-analysis. Ann. Phys. Rehabil. Med. 2019, 62, 98–103. [Google Scholar] [CrossRef] [PubMed]
- Ruegsegger, G.N.; Booth, F.W. Health Benefits of Exercise. Cold Spring Harb. Perspect. Med. 2018, 8, a029694. [Google Scholar] [CrossRef] [Green Version]
- Chastin, S.F.M.; Abaraogu, U.; Bourgois, J.G.; Dall, P.M.; Darnborough, J.; Duncan, E.; Dumortier, J.; Pavón, D.J.; McParland, J.; Roberts, N.J.; et al. Effects of Regular Physical Activity on the Immune System, Vaccination and Risk of Community-Acquired Infectious Disease in the General Population: Systematic Review and Meta-Analysis. Sports Med. 2021, 51, 1673–1686. [Google Scholar] [CrossRef]
- Prochaska, J.O.; DiClemente, C.C.; Norcross, J.C. In search of how people change. Applications to addictive behaviors. Am. Psychol. 1992, 47, 1102–1114. [Google Scholar] [CrossRef]
- Romain, A.J.; Bortolon, C.; Gourlan, M.; Carayol, M.; Decker, E.; Lareyre, O.; Ninot, G.; Boiche, J.; Bernard, P. Matched or nonmatched interventions based on the transtheoretical model to promote physical activity. A meta-analysis of randomized controlled trials. J. Sport Health Sci. 2018, 7, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Health, Labour and Welfare. Program for Standard Health Check-ups and Standard Health Guidance. Available online: https://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-Kenkoukyoku/00_3.pdf (accessed on 18 July 2022).
- Ministry of Health, Labour and Welfare. The National Health and Nutrition Survey in Japan. 2019. Available online: https://www.mhlw.go.jp/content/000710991.pdf (accessed on 6 July 2022).
- Godino, J.G.; Watkinson, C.; Corder, K.; Sutton, S.; Griffin, S.J.; van Sluijs, E.M. Awareness of physical activity in healthy middle-aged adults: A cross-sectional study of associations with sociodemographic, biological, behavioural, and psychological factors. BMC Public Health 2014, 14, 421. [Google Scholar] [CrossRef] [Green Version]
- Van Sluijs, E.M.; Griffin, S.J.; Van Poppel, M.N. A cross-sectional study of awareness of physical activity: Associations with personal, behavioral and psychosocial factors. Int. J. Behav. Nutr. Phys. Act. 2007, 4, 53. [Google Scholar] [CrossRef] [Green Version]
- Girum, T.; Lentiro, K.; Geremew, M.; Migora, B.; Shewamare, S. Global strategies and effectiveness for COVID-19 prevention through contact tracing, screening, quarantine, and isolation: A systematic review. Trop. Med. Health 2020, 48, 91. [Google Scholar] [CrossRef]
- Oliveira, M.R.; Sudati, I.P.; Konzen, V.M.; de Campos, A.C.; Wibelinger, L.M.; Correa, C.; Miguel, F.M.; Silva, R.N.; Borghi-Silva, A. COVID-19 and the impact on the physical activity level of elderly people: A systematic review. Exp. Gerontol. 2022, 159, 111675. [Google Scholar] [CrossRef] [PubMed]
- Wilke, J.; Mohr, L.; Tenforde, A.S.; Edouard, P.; Fossati, C.; González-Gross, M.; Sánchez Ramírez, C.; Laiño, F.; Tan, B.; Pillay, J.D.; et al. A Pandemic within the Pandemic? Physical Activity Levels Substantially Decreased in Countries Affected by COVID-19. Int. J. Environ. Res. Public Health 2021, 18, 2235. [Google Scholar] [CrossRef] [PubMed]
- Chirico, A.; Lucidi, F.; Galli, F.; Giancamilli, F.; Vitale, J.; Borghi, S.; La Torre, A.; Codella, R. COVID-19 Outbreak and Physical Activity in the Italian Population: A Cross-Sectional Analysis of the Underlying Psychosocial Mechanisms. Front. Psychol. 2020, 11, 2100. [Google Scholar] [CrossRef] [PubMed]
- Tornaghi, M.; Lovecchio, N.; Vandoni, M.; Chirico, A.; Codella, R. Physical activity levels across COVID-19 outbreak in youngsters of Northwestern Lombardy. J. Sports Med. Phys. Fit. 2021, 61, 971–976. [Google Scholar] [CrossRef] [PubMed]
- Makizako, H.; Akaida, S.; Shono, S.; Shiiba, R.; Taniguchi, Y.; Shiratsuchi, D.; Nakai, Y. Physical Activity and Perceived Physical Fitness during the COVID-19 Epidemic: A Population of 40- to 69-Year-Olds in Japan. Int. J. Environ. Health Res. 2021, 18, 4832. [Google Scholar] [CrossRef]
- Prochaska, J.O.; Velicer, W.F. The transtheoretical model of health behavior change. Am. J. Health Promot. 1997, 12, 38–48. [Google Scholar] [CrossRef]
- Hashemzadeh, M.; Rahimi, A.; Zare-Farashbandi, F.; Alavi-Naeini, A.M.; Daei, A. Transtheoretical Model of Health Behavioral Change: A Systematic Review. Iran. J. Nurs. Midwifery Res. 2019, 24, 83–90. [Google Scholar]
- Matsumoto, H.; Tanaka, S. Validation of the Stages of Exercise Behavior Change with Low, Moderate and Vigorous Physical Activity Behavior in Young Japanese Women. Mukogawa J. Health Exerc. Sci. 2018, 8, 11–14. [Google Scholar]
- IPAQ Research Committee. International Physical Activity Questionnaire. Available online: http://www.tmu-ph.ac/news/data/180327_1.pdf?t (accessed on 7 July 2022).
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour. Available online: https://www.who.int/publications/i/item/9789240015128 (accessed on 18 July 2022).
- Lee, P.H.; Macfarlane, D.J.; Lam, T.H.; Stewart, S.M. Validity of the International Physical Activity Questionnaire Short Form (IPAQ-SF): A systematic review. Int. J. Behav. Nutr. Phys. Act. 2011, 8, 115. [Google Scholar] [CrossRef] [Green Version]
- Murase, N.; Katsumura, T.; Ueda, C.; Inoue, S.; Shimomitsu, T. Validity and reliability of Japanese version of International Physical Activity Questionnaire. J. Health Welf. Stat. 2002, 49, 1–9. [Google Scholar]
- Kimura, M.; Moriyasu, A.; Kumagai, S.; Furuna, T.; Akita, S.; Kimura, S.; Suzuki, T. Community-based intervention to improve dietary habits and promote physical activity among older adults: A cluster randomized trial. BMC Geriatr. 2013, 13, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumagai, S.; Watanabe, S.; Shibata, H.; Amano, H.; Fujiwara, Y.; Shinkai, S.; Yoshida, H.; Suzuki, T.; Yukawa, H.; Yasumura, S.; et al. Effects of dietary variety on declines in high-level functional capacity in elderly people living in a community. Jpn. J. Public Health 2003, 50, 1117–1124. [Google Scholar]
- Narita, M.; Kitamura, A.; Takemi, Y.; Yokoyama, Y.; Morita, A.; Shinkai, S. Food diversity and its relationship with nutrient intakes and meal days involving staple foods, main dishes, and side dishes in community-dwelling elderly adults. Jpn. J. Public Health 2020, 67, 171–182. [Google Scholar]
- Kato, S.; Osada, H. Effects of the motivation for food choice on dietary variety and intake by elderly people living in communities. J. Integr. Study Diet. Habits 2008, 19, 202–213. [Google Scholar] [CrossRef] [Green Version]
- Nakamoto, M.; Kanmura, M.; Yoshida, M.; Tanaka, Y.; Ono, S.; Iwasaki, Y.; Nakamoto, A.; Sakai, T. Validity of dietary diversity assessed using short-form questionnaire among older Japanese community dwellers. J. Med. Invest. 2022, 69, 31–37. [Google Scholar] [CrossRef]
- Health Japan 21 Evaluation Work Team. “Health Japan 21” Final Evaluation. Available online: https://www.mhlw.go.jp/stf/houdou/2r9852000001r5gc-att/2r9852000001r5np.pdf (accessed on 6 July 2022).
- Bagherian, S.; Mardaniyan Ghahfarrokhi, M.; Banitalebi, E. Effect of the COVID-19 Pandemic on Interest in Home-Based Exercise: An Application of Digital Epidemiology. Int. J. Epidemiol. Res. 2021, 8, 47–53. [Google Scholar] [CrossRef]
- Chaabene, H.; Prieske, O.; Herz, M.; Moran, J.; Höhne, J.; Kliegl, R.; Ramirez-Campillo, R.; Behm, D.G.; Hortobágyi, T.; Granacher, U. Home-based exercise programmes improve physical fitness of healthy older adults: A PRISMA-compliant systematic review and meta-analysis with relevance for COVID-19. Ageing Res. Rev. 2021, 67, 101265. [Google Scholar] [CrossRef]
- Stockwell, S.; Trott, M.; Tully, M.; Shin, J.; Barnett, Y.; Butler, L.; McDermott, D.; Schuch, F.; Smith, L. Changes in physical activity and sedentary behaviours from before to during the COVID-19 pandemic lockdown: A systematic review. BMJ Open Sport Exerc. Med. 2021, 7, e000960. [Google Scholar] [CrossRef]
- Koohsari, M.J.; Nakaya, T.; McCormack, G.R.; Shibata, A.; Ishii, K.; Oka, K. Changes in Workers’ Sedentary and Physical Activity Behaviors in Response to the COVID-19 Pandemic and Their Relationships with Fatigue: Longitudinal Online Study. JMIR Public Health Surveill. 2021, 7, e26293. [Google Scholar] [CrossRef]
- Lechner, L.; Bolman, C.; Van Dijke, M. Factors related to misperception of physical activity in The Netherlands and implications for health promotion programmes. Health Promot. Int. 2006, 21, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Marshall, S.J.; Biddle, S.J. The transtheoretical model of behavior change: A meta-analysis of applications to physical activity and exercise. Ann. Behav. Med. 2001, 23, 229–246. [Google Scholar] [CrossRef] [PubMed]
- Watkinson, C.; van Sluijs, E.M.; Sutton, S.; Hardeman, W.; Corder, K.; Griffin, S.J. Overestimation of physical activity level is associated with lower BMI: A cross-sectional analysis. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Willbond, S.M.; Laviolette, M.A.; Duval, K.; Doucet, E. Normal weight men and women overestimate exercise energy expenditure. J. Sports Med. Phys. Fitness 2010, 50, 377–384. [Google Scholar] [PubMed]
- Nienhuis, C.P.; Lesser, I.A. The Impact of COVID-19 on Women’s Physical Activity Behavior and Mental Well-Being. Int. J. Environ. Res. Public Health 2020, 17, 9036. [Google Scholar] [CrossRef]
- Romero-Blanco, C.; Rodríguez-Almagro, J.; Onieva-Zafra, M.D.; Parra-Fernández, M.L.; Prado-Laguna, M.D.C.; Hernández-Martínez, A. Physical Activity and Sedentary Lifestyle in University Students: Changes during Confinement Due to the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 6567. [Google Scholar] [CrossRef]
- Venter, Z.; Barton, D.; Gundersen, V.; Figari, H.; Nowell, M. Urban nature in a time of crisis: Recreational use of green space increases during the COVID-19 outbreak in Oslo, Norway. Environ. Res. Lett. 2020, 15, 104075. [Google Scholar] [CrossRef]
- Pu, B.; Zhang, L.; Tang, Z.; Qiu, Y. The Relationship between Health Consciousness and Home-Based Exercise in China during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2020, 17, 5693. [Google Scholar] [CrossRef]
- Giurge, L.M.; Whillans, A.V.; Yemiscigil, A. A multicountry perspective on gender differences in time use during COVID-19. Proc. Natl. Acad. Sci. USA 2021, 118, e2018494118. [Google Scholar] [CrossRef]
- Flor, L.S.; Friedman, J.; Spencer, C.N.; Cagney, J.; Arrieta, A.; Herbert, M.E.; Stein, C.; Mullany, E.C.; Hon, J.; Patwardhan, V.; et al. Quantifying the effects of the COVID-19 pandemic on gender equality on health, social, and economic indicators: A comprehensive review of data from March 2020 to September 2021. Lancet 2022, 399, 2381–2397. [Google Scholar] [CrossRef]
- Gender Equality Bureau, Cabinet Office, Government of Japan. The White Paper on Gender Equality. 2021. Available online: https://www.gender.go.jp/english_contents/about_danjo/whitepaper/pdf/ewp2021.pdf (accessed on 7 July 2022).
- Zachary, Z.; Brianna, F.; Brianna, L.; Garrett, P.; Jade, W.; Alyssa, D.; Mikayla, K. Self-quarantine and weight gain related risk factors during the COVID-19 pandemic. Obes. Res. Clin. Pract. 2020, 14, 210–216. [Google Scholar] [CrossRef]
- He, M.; Xian, Y.; Lv, X.; He, J.; Ren, Y. Changes in Body Weight, Physical Activity, and Lifestyle During the Semi-lockdown Period After the Outbreak of COVID-19 in China: An Online Survey. Disaster Med. Public Health Prep. 2020, 15, e23–e28. [Google Scholar] [CrossRef] [PubMed]
- Verheggen, R.J.; Maessen, M.F.; Green, D.J.; Hermus, A.R.; Hopman, M.T.; Thijssen, D.H. A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: Distinct effects on body weight and visceral adipose tissue. Obes. Rev. 2016, 17, 664–690. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Roso, M.B.; Knott-Torcal, C.; Matilla-Escalante, D.C.; Garcimartín, A.; Sampedro-Nuñez, M.A.; Dávalos, A.; Marazuela, M. COVID-19 Lockdown and Changes of the Dietary Pattern and Physical Activity Habits in a Cohort of Patients with Type 2 Diabetes Mellitus. Nutrients 2020, 12, 2327. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yeoh, E.K.; Yung, T.K.C.; Wong, M.C.S.; Dong, D.; Chen, X.; Chan, M.K.Y.; Wong, E.L.Y.; Wu, Y.; Guo, Z.; et al. Change in eating habits and physical activities before and during the COVID-19 pandemic in Hong Kong: A cross-sectional study via random telephone survey. J. Int. Soc. Sports Nutr. 2021, 18, 33. [Google Scholar] [CrossRef] [PubMed]
Transtheoretical Model | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Precontemplation (n = 427) | Contemplation (n = 478) | Preparation (n = 213) | Action (n = 163) | Maintenance (n = 218) | ||||||
N (%) | ||||||||||
Age (in years) | ||||||||||
20–39 | 199 | (46.6) | 213 | (44.6) | 108 | (50.7) | 68 | (41.7) | 70 | (32.1) |
40–64 | 168 | (39.3) | 228 | (47.7) | 90 | (42.3) | 73 | (44.8) | 92 | (42.2) |
≥65 | 60 | (14.1) | 37 | (7.7) | 15 | (7.0) | 22 | (13.5) | 56 | (25.7) |
Women | 166 | (38.9) | 226 | (47.3) | 90 | (42.3) | 85 | (52.2) | 83 | (38.1) |
Years of education (years) | ||||||||||
≤9 | 3 | (0.7) | 4 | (0.8) | 2 | (0.9) | 3 | (1.8) | 5 | (2.3) |
10–15 | 203 | (47.5) | 216 | (45.2) | 85 | (39.9) | 71 | (43.6) | 89 | (40.8) |
≥16 | 221 | (51.8) | 258 | (54.0) | 126 | (59.2) | 89 | (54.6) | 124 | (56.9) |
1-year weight change (kg) | ||||||||||
≤−3 | 50 | (11.7) | 98 | (20.5) | 59 | (27.7) | 39 | (23.9) | 30 | (13.8) |
Nearly unchanged | 348 | (81.5) | 352 | (73.6) | 142 | (66.7) | 105 | (64.4) | 160 | (73.4) |
≥+3 | 29 | (6.8) | 28 | (5.9) | 12 | (5.6) | 19 | (11.7) | 28 | (12.8) |
BMI (kg/m2) | ||||||||||
<18.5 | 77 | (37.2) | 59 | (28.5) | 21 | (10.1) | 15 | (7.3) | 35 | (16.9) |
≥18.5 to <25.0 | 289 | (28.3) | 323 | (31.6) | 143 | (14.0) | 111 | (10.9) | 155 | (15.2) |
≥25.0 | 61 | (22.5) | 96 | (35.4) | 49 | (18.1) | 37 | (13.7) | 28 | (10.3) |
FFS (points) | ||||||||||
0–11 | 144 | (33.7) | 158 | (33.1) | 93 | (43.7) | 68 | (41.7) | 111 | (50.9) |
12–16 | 143 | (33.5) | 167 | (34.9) | 72 | (33.8) | 58 | (35.6) | 67 | (30.7) |
≥17 | 140 | (32.8) | 153 | (32.0) | 48 | (22.5) | 37 | (22.7) | 40 | (18.4) |
Current smoking status | 100 | (23.4) | 112 | (23.4) | 43 | (20.2) | 34 | (20.9) | 32 | (14.7) |
Current drinking status | 280 | (65.6) | 343 | (71.8) | 160 | (75.1) | 120 | (73.6) | 146 | (67.0) |
Living alone | 85 | (19.9) | 87 | (18.2) | 44 | (20.7) | 25 | (15.3) | 43 | (19.7) |
State of emergency | 265 | (62.1) | 305 | (63.8) | 142 | (66.7) | 95 | (58.3) | 137 | (62.8) |
Household instability | 159 | (37.2) | 215 | (45.0) | 79 | (37.1) | 60 | (36.8) | 75 | (34.4) |
Medical history | 215 | (50.4) | 210 | (43.9) | 89 | (41.8) | 58 | (35.6) | 67 | (30.7) |
Medication | 112 | (26.2) | 143 | (29.9) | 71 | (33.3) | 69 | (42.3) | 106 | (48.6) |
Occupation | 367 | (86.0) | 415 | (86.8) | 195 | (91.6) | 146 | (89.6) | 168 | (77.1) |
Self-rated health | 360 | (28.7) | 388 | (30.9) | 180 | (14.3) | 142 | (11.3) | 186 | (14.8) |
Median (range) | ||||||||||
Habitual exercise (MET·min/week) | 960 | 0–17,496 | 996 | 0–13,112 | 1386 | 0–16,853 | 1748 | 0–13,083 | 2360 | 0–19,278 |
Perception of Behavior Change | |||||
---|---|---|---|---|---|
No (n = 905) | Yes (n = 594) | p | |||
N (%) | |||||
Age (in years) | |||||
20–39 | 412 | (45.5) | 246 | (41.4) | 0.015 † |
40–64 | 396 | (43.8) | 255 | (42.9) | |
≥65 | 97 | (10.7) | 93 | (15.7) | |
Women | 392 | (43.3) | 258 | (43.4) | 0.964 † |
Years of education (years) | |||||
≤9 | 7 | (0.8) | 10 | (1.7) | 0.055 † |
10–15 | 419 | (46.3) | 245 | (41.3) | |
≥16 | 479 | (52.9) | 339 | (57.1) | |
1-year weight change (kg) | |||||
≤−3 | 57 | (6.3) | 59 | (9.9) | 0.001 † |
Nearly unchanged | 700 | (77.4) | 407 | (68.5) | |
≥+3 | 148 | (16.4) | 128 | (21.6) | |
BMI (kg/m2) | |||||
<18.5 | 136 | (15.0) | 71 | (12.0) | 0.201† |
≥18.5 to <25.0 | 612 | (67.6) | 409 | (68.9) | |
≥25.0 | 157 | (17.4) | 114 | (19.2) | |
FFS (points) | |||||
0–11 | 302 | (33.4) | 272 | (45.8) | <0.001 † |
12–16 | 310 | (34.3) | 197 | (33.2) | |
≥17 | 293 | (32.4) | 125 | (21.0) | |
Current smoking status | 212 | (23.4) | 109 | (18.4) | 0.019 † |
Current drinking status | 623 | (68.8) | 426 | (71.7) | 0.235 † |
Living alone | 172 | (19.0) | 112 | (18.9) | 0.942 † |
State of emergency | 570 | (63.0) | 374 | (63.0) | 0.994 † |
Household instability | 374 | (41.3) | 214 | (36.0) | 0.040 † |
Medical history | 425 | (47.0) | 214 | (36.0) | <0.001 † |
Medication | 255 | (28.2) | 246 | (41.4) | <0.001 † |
Occupation | 782 | (86.4) | 509 | (85.7) | 0.694 † |
Self-rated health | 748 | (82.7) | 508 | (85.5) | 0.140 † |
Median (range) | |||||
Habitual exercise (MET·min/week) | 990 | 0–17,496 | 1799 | 0–19,278 | <0.001 †† |
Habitual Exercise (n = 1499) | ||||||
---|---|---|---|---|---|---|
Crude OR | 95%CI | Adjusted OR | 95%CI | |||
Perception | 2.62 | 2.06 | 3.32 | 2.41 | 1.89 | 3.08 |
Age (in years) | ||||||
20–39 | 1.06 | 0.84 | 1.33 | 1.18 | 0.92 | 1.52 |
40–64 | 1.00 | 1.00 | ||||
≥65 | 1.22 | 0.86 | 1.73 | 0.94 | 0.64 | 1.37 |
Women | 0.71 | 0.57 | 0.88 | 0.63 | 0.49 | 0.80 |
1-year weight change (kg) | ||||||
≤−3 | 1.10 | 0.83 | 1.46 | 1.00 | 0.74 | 1.34 |
Nearly unchanged | 1.00 | 1.00 | ||||
≥+3 | 1.73 | 1.11 | 2.71 | 1.64 | 1.03 | 2.62 |
FFS (points) | ||||||
0–11 | 1.39 | 1.07 | 1.80 | 1.33 | 1.02 | 1.75 |
12–16 | 1.00 | 1.00 | ||||
≥17 | 0.71 | 0.54 | 0.92 | 0.76 | 0.57 | 1.00 |
Current smoking status | 0.89 | 0.69 | 1.15 | 0.93 | 0.70 | 1.23 |
State of emergency | 1.14 | 0.91 | 1.42 | 1.16 | 0.92 | 1.46 |
Household instability | 1.18 | 0.95 | 1.47 | 1.09 | 0.86 | 1.37 |
Medical history | 0.76 | 0.61 | 0.95 | 0.83 | 0.65 | 1.06 |
Medication | 1.23 | 0.98 | 1.55 | 1.03 | 0.80 | 1.34 |
Habitual Exercise (n = 1072) | ||||||
---|---|---|---|---|---|---|
Crude OR | 95%CI | Adjusted OR | 95%CI | |||
Perception | 2.50 | 1.91 | 3.27 | 2.30 | 1.74 | 3.04 |
Age (in years) | ||||||
20–39 | 1.05 | 0.79 | 1.39 | 1.17 | 0.86 | 1.58 |
40–64 | 1.00 | 1.00 | ||||
≥65 | 1.13 | 0.74 | 1.74 | 0.77 | 0.48 | 1.24 |
Women | 0.68 | 0.52 | 0.89 | 0.65 | 0.49 | 0.87 |
1-year weight change (kg) | ||||||
≤−3 | 1.00 | 0.72 | 1.37 | 0.91 | 0.65 | 1.28 |
Nearly unchanged | 1.00 | 1.00 | ||||
≥+3 | 1.94 | 1.10 | 3.41 | 1.81 | 1.01 | 3.25 |
FFS (points) | ||||||
0–11 | 1.29 | 0.94 | 1.77 | 1.24 | 0.90 | 1.73 |
12–16 | 1.00 | 1.00 | ||||
≥17 | 0.64 | 0.46 | 0.89 | 0.69 | 0.49 | 0.97 |
Current smoking status | 1.00 | 0.73 | 1.39 | 1.05 | 0.74 | 1.49 |
State of emergency | 1.26 | 0.96 | 1.65 | 1.32 | 1.00 | 1.75 |
Household instability | 1.22 | 0.93 | 1.59 | 1.11 | 0.84 | 1.47 |
Medical history | 0.78 | 0.60 | 1.02 | 0.83 | 0.62 | 1.12 |
Medication | 1.21 | 0.92 | 1.59 | 1.06 | 0.77 | 1.44 |
Habitual Exercise | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
State of Non-Emergency (n = 555) | State of Emergency (n = 944) | |||||||||||
Crude OR | 95%CI | Adjusted OR | 95%CI | Crude OR | 95%CI | Adjusted OR | 95%CI | |||||
Perception | 2.29 | 1.57 | 3.34 | 2.01 | 1.34 | 3.01 | 2.86 | 2.10 | 3.88 | 2.69 | 1.97 | 3.69 |
Age (in years) | ||||||||||||
20–39 | 1.15 | 0.79 | 1.66 | 1.22 | 0.82 | 1.83 | 1.01 | 0.75 | 1.35 | 1.16 | 0.84 | 1.60 |
40–64 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
≥65 | 1.44 | 0.80 | 2.62 | 1.29 | 0.68 | 2.42 | 1.10 | 0.71 | 1.70 | 0.78 | 0.48 | 1.25 |
Women | 0.74 | 0.52 | 1.06 | 0.65 | 0.44 | 0.96 | 0.68 | 0.52 | 0.90 | 0.62 | 0.45 | 0.84 |
1-year weight change (kg) | ||||||||||||
≤−3 | 1.55 | 0.96 | 2.50 | 1.33 | 0.80 | 2.20 | 0.91 | 0.64 | 1.29 | 0.88 | 0.61 | 1.26 |
Nearly unchanged | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
≥+3 | 1.65 | 0.83 | 3.30 | 1.48 | 0.72 | 3.05 | 1.80 | 1.00 | 3.26 | 1.82 | 0.98 | 3.37 |
FFS (points) | ||||||||||||
0–11 | 1.40 | 0.92 | 2.13 | 1.34 | 0.87 | 2.08 | 1.38 | 0.99 | 1.92 | 1.32 | 0.94 | 1.87 |
12–16 | 1.00 | 1.00 | 1.00 | 1.00 | ||||||||
≥17 | 0.80 | 0.52 | 1.24 | 0.84 | 0.54 | 1.33 | 0.65 | 0.47 | 0.92 | 0.71 | 0.50 | 1.01 |
Current smoking status | 0.86 | 0.57 | 1.32 | 0.96 | 0.60 | 1.52 | 0.90 | 0.65 | 1.26 | 0.90 | 0.63 | 1.28 |
Household instability | 1.23 | 0.86 | 1.75 | 1.12 | 0.77 | 1.62 | 1.14 | 0.86 | 1.51 | 1.08 | 0.80 | 1.45 |
Medical history | 0.82 | 0.58 | 1.17 | 0.93 | 0.62 | 1.40 | 0.72 | 0.55 | 0.95 | 0.78 | 0.57 | 1.07 |
Medication | 1.24 | 0.85 | 1.81 | 1.03 | 0.67 | 1.59 | 1.22 | 0.91 | 1.64 | 1.06 | 0.76 | 1.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishimoto, D.; Kodama, S.; Nishio, I.; Makizako, H.; KU-OHL Project Team. Association between the Perception of Behavior Change and Habitual Exercise during COVID-19: A Cross-Sectional Online Survey in Japan. Int. J. Environ. Res. Public Health 2023, 20, 356. https://doi.org/10.3390/ijerph20010356
Nishimoto D, Kodama S, Nishio I, Makizako H, KU-OHL Project Team. Association between the Perception of Behavior Change and Habitual Exercise during COVID-19: A Cross-Sectional Online Survey in Japan. International Journal of Environmental Research and Public Health. 2023; 20(1):356. https://doi.org/10.3390/ijerph20010356
Chicago/Turabian StyleNishimoto, Daisaku, Shimpei Kodama, Ikuko Nishio, Hyuma Makizako, and KU-OHL Project Team. 2023. "Association between the Perception of Behavior Change and Habitual Exercise during COVID-19: A Cross-Sectional Online Survey in Japan" International Journal of Environmental Research and Public Health 20, no. 1: 356. https://doi.org/10.3390/ijerph20010356
APA StyleNishimoto, D., Kodama, S., Nishio, I., Makizako, H., & KU-OHL Project Team. (2023). Association between the Perception of Behavior Change and Habitual Exercise during COVID-19: A Cross-Sectional Online Survey in Japan. International Journal of Environmental Research and Public Health, 20(1), 356. https://doi.org/10.3390/ijerph20010356