Effects of Combined Upper and Lower Limb Plyometric Training Interventions on Physical Fitness in Athletes: A Systematic Review with Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Search
2.2. Eligibility Criteria
2.3. Study Selection and Data Collection Process
2.4. Data Items
- Muscle power (e.g., medicine ball throw (MBT), countermovement jump without (CMJ) or with arm wing (CMJa));
- Muscle strength (e.g., chess/leg press);
- Linear sprint speed (e.g., 10 m);
- Agility (e.g., Illinois Test);
- Flexibility (sit and reach test);
- Balance (static/dynamic).
2.5. Methodological Quality Assessment
2.6. Summary Measures
2.7. Synthesis of Results and Risk of Bias across Studies
2.8. Additional Analyses
3. Results
3.1. Study Selection
3.2. Methodological Quality of the Included Studies
3.3. Population Characteristics
3.4. Intervention Characteristics
3.5. Meta-Analysis Results
3.5.1. Effect of ULLPT on Upper and Lower Body Muscle Power
3.5.2. Effect of ULLPT on Linear Sprint Speed
3.5.3. Effect of ULLPT on Upper and Lower Body Muscle Strength
3.5.4. Effect of ULLPT on Agility
3.5.5. Effect of ULLPT on Flexibility
3.5.6. Effect of ULLPT on Balance
3.6. Additional Meta-Analyses
3.7. Adverse Effects
4. Discussion
4.1. Effect of ULLPT on Upper and Lower Body Muscle Power
4.2. Effect of ULLPT on Upper and Lower Body Muscle Strength
4.3. Effect of ULLPT on Linear Sprint Speed
4.4. Effect of ULLPT on Agility
4.5. Effect of ULLPT on Flexibility
4.6. Effect of ULLPT on Balance
4.7. Additional Analysis
5. Limitations
6. Practical Applications
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, B.; Sun, H.; Bai, W.; Li, H.; Wang, Y.; Xiong, H.; Wang, N. Data Analysis of Soccer Athletes’ Physical Fitness Test Based on Multi-View Clustering. J. Phys. Conf. Ser. 2018, 1060, 012024. [Google Scholar] [CrossRef]
- Baar, K. Using Molecular Biology to Maximize Concurrent Training. Sport Med. 2014, 44, 117–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bompa, T.O.; Carrera, M.C. Periodization Training for Sports; Human Kinetics: Champaign, IL, USA, 2005. [Google Scholar]
- Prieske, O.; Muehlbauer, T.; Granacher, U. The Role of Trunk Muscle Strength for Physical Fitness and Athletic Performance in Trained Individuals: A Systematic Review and Meta-Analysis. Sport. Med. 2016, 46, 401–419. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Fernandez, J.; Sanz-Rivas, D.; Mendez-Villanueva, A. A Review of the Activity Profile and Physiological Demands of Tennis Match Play. Strength Cond. J. 2009, 31, 15–26. [Google Scholar] [CrossRef]
- Bompa, T.O.; Haff, G.G. Periodization. Theory and Methodology of Training; Human Kinetics: Champaign, IL, USA, 2018. [Google Scholar]
- Carter, C.W.; Micheli, L.J. Training the Child Athlete: Physical Fitness, Health and Injury. Br. J. Sports Med. 2011, 45, 880–885. [Google Scholar] [CrossRef]
- Hirsch, A.; Bieleke, M.; Schüler, J.; Wolff, W. Implicit Theories about Athletic Ability Modulate the Effects of If-Then Planning on Performance in a Standardized Endurance Task. Int. J. Environ. Res. Public Health. 2020, 17, 2576. [Google Scholar] [CrossRef] [Green Version]
- Ebben, W.P.; Kindler, A.G.; Chirdon, K.A.; Jenkins, N.C.; Polichnowski, A.J.; Ng, A.V. The Effect of High-Load vs. High-Repetition Training on Endurance Performance. J. Strength Cond. Res. 2004, 18, 513–517. [Google Scholar] [CrossRef]
- Sander, A.; Keiner, M.; Wirth, K.; Schmidtbleicher, D. Influence of a 2-Year Strength Training Programme on Power Performance in Elite Youth Soccer Players. Eur. J. Sport Sci. 2013, 13, 445–451. [Google Scholar] [CrossRef]
- Rønnestad, B.R.; Hansen, J.; Hollan, I.; Ellefsen, S. Strength training improves performance and pedaling characteristics in elite cyclists. Scand. J. Med. Sci. Sports 2015, 25, e89–e98. [Google Scholar] [CrossRef]
- Markovic, G.; Mikulic, P. Neuro-Musculoskeletal and Performance Adaptations to Lower-Extremity Plyometric Training. Sport Med. 2010, 40, 859–895. [Google Scholar] [CrossRef]
- Clark, M.; Lucett, S.; Kirkendall, D.T. Plyometric Training Concepts for Performance Enhancement raining Concepts. Natl. Acad. Sport Med. 2016, 24, 207–226. Available online: https://downloads.lww.com/wolterskluwer_vitalstream_com/sample-content/9780781768030_NASM/samples/Chapter08.pdf (accessed on 18 October 2022).
- Hewett, T.E.; Stroupe, A.L.; Nance, T.A.; Noyes, F.R. Plyometric Training in Female Athletes: Decreased Impact Forces and Increased Hamstring Torques. Am. J. Sports Med. 1996, 24, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Potach, D. Plyometric and Speed Training. NSCA’s Essentials of Personal Training, 1st ed.; Chapter 17; Human Kinetics: Champaign, IL, USA, 2004; pp. 425–458. Available online: https://www.researchgate.net/publication/322040348 (accessed on 18 October 2022).
- Bal, B.S.; Singh, S.; Dhesi, S.S.; Singh, M. Effects of 6-Week Plyometric Training on Biochemical and Physical Fitness Parameters of Indian Jumpers. J. Phys. Educ. Sport Manag. 2012, 3, 35–40. [Google Scholar] [CrossRef]
- Davies, G.; Riemann, B.L.; Manske, R. Current Concepts of Plyometric Exercise. Int. J. Sports Phys. Ther. 2015, 10, 760–786. [Google Scholar]
- Oxfeldt, M.; Overgaard, K.; Hvid, L.G.; Dalgas, U. Effects of Plyometric Training on Jumping, Sprint Performance, and Lower Body Muscle Strength in Healthy Adults: A Systematic Review and Meta-analyses. Scand. J. Med. Sci. Sports. 2019, 29, 1453–1465. [Google Scholar] [CrossRef]
- Makanuk, H.; Sacewicz, T. Effects of plyometric training on maximal power output and jumping ability. Hum Mov. 2010, 11, 17–22. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Garcia-Hermoso, A.; Moran, J.; Chaabene, H.; Negra, Y.; Scanlan, A.T. The Effects of Plyometric Jump Training on Physical Fitness Attributes in Basketball Players: A Meta-Analysis. J. Sport Health Sci. 2021, 11, 656–670. [Google Scholar] [CrossRef]
- Ramírez-dela Cruz, M.; Bravo-Sánchez, A.; Esteban-García, P.; Jiménez, F.; Abián-Vicén, J. Effects of Plyometric Training on Lower Body Muscle Architecture, Tendon Structure, Stiffness and Physical Performance: A Systematic Review and Meta-Analysis. Sport. Med.-Open 2022, 8, 1–29. [Google Scholar] [CrossRef]
- Sole, S.; Ramírez-Campillo, R.; Andrade, D.C.; Sanchez-Sanchez, J. Plyometric Jump Training Effects on the Physical Fitness of Individual-Sport Athletes: A Systematic Review with Meta-Analysis. PeerJ. 2021, 9, e11004. [Google Scholar] [CrossRef]
- Meylan, C.; Malatesta, D. Effects of In-Season Plyometric Training within Soccer Practice on Explosive Actions of Young Players. J. Strength Cond. Res. 2009, 23, 2605–2613. [Google Scholar] [CrossRef]
- Stojanović, E.; McMaster, V.R.D.T.; Milanović, Z. Effect of Plyometric Training on Vertical Jump Performance in Female Athletes: A Systematic Review and Meta-Analysis. Sport. Med. 2017, 47, 975–986. [Google Scholar] [CrossRef] [PubMed]
- Arazi, H.; Asadi, A. The Effect of Aquatic and Land Plyometric Training on Strength, Sprint, and Balance in Young Basketball Players. J. Hum. Sport Exerc. 2011, 6, 101–111. [Google Scholar] [CrossRef]
- Turner, A.M.; Owings, M.; Schwane, J.A. Improvement in Running Economy after 6 Weeks of Plyometric Training. J. Strength Cond. Res. 2003, 17, 60–67. [Google Scholar]
- Gelen, E.; Dede, M.; Bingul, B.M.; Bulgan, C.; Aydin, M. Acute Effects of Static Stretching, Dynamic Exercises, and High Volume Upper Extremity Plyometric Activity on Tennis Serve Performance. J. Sports Sci. Med. 2012, 11, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Carter, A.B.; Kaminski, T.W.; Douex, A.T., Jr.; Knight, C.A.; Richards, J.G. Effects of high volume upper extremity plyometric training on throwing velocity and functional strength ratios of the shoulder rotators in collegiate baseball players. J. Strength Cond. Res. 2007, 21, 208–215. [Google Scholar] [CrossRef] [PubMed]
- Hinshaw, T.J.; Stephenson, M.L.; Sha, Z.; Dai, B. Effect of External Loading on Force and Power Production during Plyometric Push-Ups. J. Strength Cond. Res. 2018, 32, 1099–1108. [Google Scholar] [CrossRef]
- Koch, J.; Riemann, B.L.; Davies, G.J. Ground Reaction Force Patterns in Plyometric Push-Ups. J. Strength Cond. Res. 2012, 26, 2220–2227. [Google Scholar] [CrossRef]
- Canlı, U.; Bayru, M. The Effect of Lower and Upper Extremity Plyometric Exercise Program on Maximal Strength and Body Fat Ratio of Young Basketball Players. Beden Eğitimi Ve Spor Bilim. Derg. 2020, 14, 374–390. Available online: https://dergipark.org.tr/en/download/article-file/1170388 (accessed on 25 October 2022).
- Hammami, M.; Ramirez-Campillo, R.; Gaamouri, N.; Aloui, G.; Shephard, R.J.; Chelly, M.S. Effects of a Combined Upper- and Lower-Limb Plyometric Training Program on High-Intensity Actions in Female U14 Handball Players. Pediatr. Exerc. Sci. 2019, 31, 465–472. [Google Scholar] [CrossRef]
- Sánchez, M.; Sanchez-Sanchez, J.; Nakamura, F.Y.; Clemente, F.M.; Romero-Moraleda, B.; Ramirez-Campillo, R. Effects of Plyometric Jump Training in Female Soccer Player’s Physical Fitness: A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health. 2020, 17, 8911. [Google Scholar] [CrossRef]
- Ramachandran, A.K.; Singh, U.; Ramirez-Campillo, R.; Clemente, F.M.; Afonso, J.; Granacher, U. Effects of Plyometric Jump Training on Balance Performance in Healthy Participants: A Systematic Review with Meta-Analysis. Front. Physiol. 2021, 12, 1760. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; García-de-Alcaraz, A.; Chaabene, H.; Moran, J.; Negra, Y.; Granacher, U. Effects of Plyometric Jump Training on Physical Fitness in Amateur and Professional Volleyball: A Meta-Analysis. Front. Physiol. 2021, 12, 636140. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Campillo, R.; Sanchez-Sanchez, J.; Romero-Moraleda, B.; Yanci, J.; García-Hermoso, A.; Manuel Clemente, F. Effects of Plyometric Jump Training in Female Soccer Player’s Vertical Jump Height: A Systematic Review with Meta-Analysis. J. Sports Sci. 2020, 38, 1475–1487. [Google Scholar] [CrossRef] [PubMed]
- Singla, D.; Hussain, M.E.; Moiz, J.A. Effect of Upper Body Plyometric Training on Physical Performance in Healthy Individuals: A Systematic Review. Phys. Ther. Sport. 2018, 29, 51–60. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating Guidance for Reporting Systematic Reviews: Development of the PRISMA 2020 Statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Álvarez, C.; García-Hermoso, A.; Ramírez-Vélez, R.; Gentil, P.; Asadi, A.; Chaabene, H.; Moran, J.; Meylan, C.; García-de-Alcaraz, A.; et al. Methodological Characteristics and Future Directions for Plyometric Jump Training Research: A Scoping Review. Sport. Med. 2018, 48, 1059–1081. [Google Scholar] [CrossRef]
- Vetrovsky, T.; Steffl, M.; Stastny, P.; Tufano, J.J. The Efficacy and Safety of Lower -Limb Plyometric Training in Older Adults: A Systematic Review. Sport. Med. 2019, 49, 113–131. [Google Scholar] [CrossRef] [Green Version]
- Eraslan, L.; Castelein, B.; Spanhove, V.; Orhan, C.; Duzgun, I.; Cools, A. Effect of Plyometric Training on Sport Performance in Adolescent Overhead Athletes: A Systematic Review. Sports Health 2021, 13, 37–44. [Google Scholar] [CrossRef]
- Moseley, A.M.; Rahman, P.; Wells, G.A.; Zadro, J.R.; Sherrington, C.; Toupin-April, K.; Brosseau, L. Agreement between the Cochrane Risk of Bias Tool and Physiotherapy Evidence Database (PEDro) Scale: A Meta-Epidemiological Study of Randomized Controlled Trials of Physical Therapy Interventions. PLoS ONE 2019, 14, e222770. [Google Scholar] [CrossRef] [Green Version]
- Harris, R.J.; Deeks, J.J.; Altman, D.G.; Bradburn, M.J. Metan: Fixed- and Random-Effects Meta-Analysis. Stata J. 2008, 8, 3–28. [Google Scholar] [CrossRef] [Green Version]
- Kontopantelis, E.; Springate, D.A.; Reeves, D. A Re-Analysis of the Cochrane Library Data: The Dangers of Unobserved Heterogeneity in Meta-Analyses. PLoS ONE 2013, 8, e69930. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, J.P.; Deeks, J.J.; Altman, D.G. Special topics in statistics. In Cochrane Handbook for Systematic Reviews of Interventions; The Cochrane Collaboration, Higgins, J.P., Green, S., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Higgins, J.P.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Egger, M.; Smith, G.D.; Schneider, M.; Minder, C. Bias in Meta-Analysis Detected by a Simple, Graphical Test. Br. Med. J. 1997, 315, 629–634. [Google Scholar] [CrossRef] [PubMed]
- Moran, J.; Sandercock, G.; Ramirez-Campillo, R.; Clark, C.C.T.; Fernandes, J.F.T.; Drury, B. A meta-analysis of resistance training in female youth: Its effect on muscular strength, and shortcomings in the literature. Sports Med. 2018, 48, 1661–1671. [Google Scholar] [CrossRef] [Green Version]
- Moran, J.; Clark, C.C.T.; Ramirez-Campillo, R.; Davies, M.J.; Drury, B. A Meta-Analysis of Plyometric Training in Female Youth: Its Efficacy and Shortcomings in the Literature. J. Strength Cond. Res. 2019, 33, 1996–2008. [Google Scholar] [CrossRef]
- Nowakowska, M.; Zatoń, M.; Wierzbicka-Damska, I. Effects of Plyometric Training on Lower and Upper Extremity Power in Karate Practitioners. J. Combat Sport. Martial Arts. 2017, 2, 89–93. [Google Scholar] [CrossRef]
- Santos, E.J.A.M.; Janeira, M.A.A.S. The Effects of Plyometric Training Followed by Detraining and Reduced Training Periods on Explosive Strength in Adolescent Male Basketball Players. J. Strength Cond. Res. 2011, 25, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Sharma1, D.; Narinder, K.M. Effectiveness of Plyometric Training in the Improvement of Sports Specific Skills of Basketball Players. Indian J. Physiother. Occup. Ther. 2012, 6, 77–82. Available online: https://www.researchgate.net/profile/Lori-Maria-Walton-2/publication/256018953_Socio-Economic_Barriers_to_Maternal_Health_in_Bangladeshi_Women/links/542d88920cf29bbc126d39e4/Socio-Economic-Barriers-to-Maternal-Health-in-Bangladeshi-Women.pdf#page=81 (accessed on 12 September 2022).
- Sadeghi, H.; Nik, H.N.; Darchini, M.A.; Mohammadi, R. The Effect of Six- Week Plyometric and Core Stability Exercises on Performance of Male Athlete, 11-14 Years Old. Adv. Environ. Biol. 2013, 7, 1195–1201. Available online: https://go.gale.com/ps/i.do?id=GALE%7CA346926590&sid=googleScholar&v=2.1&it=r&linkaccess=abs&issn=19950756&p=AONE&sw=w&userGroupName=anon%7Ef68594f3 (accessed on 12 September 2022).
- Behringer, M.; Neuerburg, S.; Matthews, M.; Mester, J. Effects of Two Different Resistance-Training Programs on Mean Tennis-Serve Velocity in Adolescents. Pediatr. Exerc. Sci. 2013, 25, 370–384. [Google Scholar] [CrossRef] [PubMed]
- Chelly, M.S.; Hermassi, S.; Aouadi, R.; Shephard, R. Effects of 8-Week in-Season Plyometric Training on Upper and Lower Limb Performance of Elite Adolescent Handball Players. J. Strength Cond. Res. 2014, 28, 1401–1410. [Google Scholar] [CrossRef] [PubMed]
- Pereira, A.; Costa, A.M.; Santos, P.; Figueiredo, T.; João, P.V. Training Strategy of Explosive Strength in Young Female Volleyball Players. Med. 2015, 51, 126–131. [Google Scholar] [CrossRef]
- Ramírez-Campillo, R.; Vergara-Pedreros, M.; Henríquez-Olguín, C.; Martínez-Salazar, C.; Alvarez, C.; Nakamura, F.Y.; De La Fuente, C.I.; Caniuqueo, A.; Alonso-Martinez, A.M.; Izquierdo, M. Effects of Plyometric Training on Maximal-Intensity Exercise and Endurance in Male and Female Soccer Players. J. Sports Sci. 2016, 34, 687–693. [Google Scholar] [CrossRef]
- Hall, E.; Bishop, D.C.; Gee, T.I. Effect of Plyometric Training on Handspring Vault Performance and Functional Power in Youth Female Gymnasts. PLoS ONE 2016, 11, e148790. [Google Scholar] [CrossRef] [Green Version]
- Karadenizli, Z.I. The Effects of Plyometric Training on Balance, Anaerobic Power and Physical Fitness Parameters in Handball. Anthropology 2016, 24, 751–761. [Google Scholar] [CrossRef]
- Uzun, A.; Karakoc, O. The Effects of Ten Weekly Plyometric Training of Judokas on Anaerobic Power. J. Educ. Train. Stud. 2017, 5, 52. [Google Scholar] [CrossRef] [Green Version]
- Idrizovic, K.; Sekulic, D.; Uljevic, O.; Spasic, M.; Gjinovci, B.; João, P.V.; Sattler, T. The Effects of 3-Month Skill-Based and Plyometric Conditioning on Fitness Parameters in Junior Female Volleyball Players. Pediatr. Exerc. Sci. 2018, 30, 353–363. [Google Scholar] [CrossRef]
- Hammami, M.; Gaamouri, N.; Suzuki, K.; Shephard, R.J.; Chelly, M.S. Effects of Upper and Lower Limb Plyometric Training Program on Components of Physical Performance in Young Female Handball Players. Front. Physiol. 2020, 11, 1028. [Google Scholar] [CrossRef]
- Kurniawan, C.; Setijono, H.; Hidayah, T.; Hadi, H.; Sugiharto, S. The Effect Plyometric Training with Active-Passive Recovery for 8 Weeks on Performance Physical Abilities Male Judo Athletes. Pedagog. Phys. Cult. Sport. 2021, 25, 361–366. [Google Scholar] [CrossRef]
- De Leite, M.A.F.J.; Sasaki, J.E.; Lourenço, C.L.M.; Zanetti, H.R.; da Mota, G.R.; Mendes, E.L. Using the medicine ball throw test to predict upper limb muscle power: Validity evidence. Rev. Bras. Cineantropometria Desempenho Hum. 2020, 22, e63286. [Google Scholar] [CrossRef]
- de Villarreal, E.S.S.; Kellis, E.; Kraemer, W.J.; Izquierdo, M. Determining variables of plyometric training for improving vertical jump height performance: A meta-analysis. J. Strength Cond. Res. 2009, 23, 495–506. [Google Scholar] [CrossRef] [PubMed]
- Pienaar, C.; Coetzee, B. Changes in selected physical, motor performance and anthropometric components of university-level rugby players after one microcycle of a combined rugby conditioning and plyometric training program. J. Strength Cond. Res. 2013, 27, 398–415. [Google Scholar] [CrossRef] [PubMed]
- Gambetta, V. Roundtable: Practical considerations for utilizing plyometrics. Part 2. Strength Cond. J. 1986, 8, 14–24. Available online: https://journals.lww.com/nsca-scj/Citation/1986/08000/Practical_considerations_for_utilizing.2.aspx (accessed on 7 September 2022).
- Ignjatovic, A.M.; Markovic, Z.M.; Radovanovic, D.S. Effects of 12-week medicine ball training on muscle strength and power in young female handball players. J. Strength Cond. Res. 2012, 26, 2166–2173. [Google Scholar] [CrossRef]
- Palao, J.M.; Femia, P.; Ureña, A. Effect of eight weeks of upper-body plyometric training during the competitive season on professional female volleyball players. J. Sports Med. Phys. Fitness. 2017, 58, 1423–1431. [Google Scholar] [CrossRef]
- Singla, D.; Hussain, M.E. Adaptations of the upper body to plyometric training in cricket players of different age groups. J. Sport Rehabil. 2019, 29, 697–706. [Google Scholar] [CrossRef]
- Kons, R.L.; Ache-Dias, J.; Detanico, D.; Barth, J.; Dal Pupo, J. Is Vertical Jump Height an Indicator of Athletes’ Power Output in Different Sport Modalities? J. Strength Cond. Res. 2018, 32, 708–715. [Google Scholar] [CrossRef]
- Buckthorpe, M.; Morris, J.; Folland, J.P. Validity of vertical jump measurement devices. J. Sports Sci. 2012, 30, 63–69. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Andrade, D.C.; Nikolaidis, P.T.; Moran, J.; Clemente, F.M.; Chaabene, H.; Comfort, P. Effects of plyometric jump training on vertical jump height of volleyball players: A systematic review with meta-analysis of randomized-controlled trial. J. Sport. Sci. Med. 2020, 19, 489–499. [Google Scholar]
- Sahin, H.M. Relationships between acceleration, agility, and jumping ability in female volleyball players. Eur. J. Exp. Biol. 2014, 4, 303–308. [Google Scholar]
- Maffiuletti, N.A.; Dugnani, S.; Folz, M.A.T.T.E.O.; Di Pierno, E.R.M.A.N.O.; Mauro, F. Effect of combined electrostimulation and plyometric training on vertical jump height. Med. Sci. Sports Exerc. 2002, 34, 1638–1644. [Google Scholar] [CrossRef] [PubMed]
- Thomas, K.; French, D.; Philip, P.R. The effect of two plyometric training techniques on muscular power and agility in youth soccer players. J. Strength Cond. Res. 2009, 23, 332–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slimani, M.; Chamari, K.; Miarka, B.; Del Vecchio, F.B.; Chéour, F. Effects of plyometric training on physical fitness in team sport athletes: A systematic review. J. Hum Kinet. 2016, 53, 231–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grgic, J.; Schoenfeld, B.J.; Mikulic, P. Effects of Plyometric vs. Resistance Training on Skeletal Muscle Hypertrophy: A Review. J. Sport Heal. Sci. 2021, 10, 530–536. [Google Scholar] [CrossRef]
- Ramírez-Campillo, R.; Meylan, C.; Álvarez, C.; Henríquez-Olguín, C.; Martínez, C.; Cañas-Jamett, R.; Andrade, D.C.; Izquierdo, M. Effects of in-season low-volume high-intensity plyometric training on explosive actions and endurance of young soccer players. J. Strength Cond. Res. 2014, 28, 1335–1342. [Google Scholar] [CrossRef] [Green Version]
- Flanagan, E.P.; Comyns, T.M. The use of contact time and the reactive strength index to optimize fast stretch-shortening cycle training. Strength Cond. J. 2008, 30, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Mroczek, D.; Maćkała, K.; Kawczynski, A.; Superlak, E.; Chmura, P.; Sewery Niak, T.; Chmura, J. Effects of volleyball plyometric intervention program on vertical jumping ability in male volleyball players. J. Sport. Med. Phys. Fit. 2018, 58, 1611–1617. [Google Scholar] [CrossRef]
- Herrero, J.A.; Izquierdo, M.; Maffiuletti, N.A. Electrostimulation and plyometric training effects on jumping and sprint time. Int. J. Sports Med. 2006, 27, 533–539. [Google Scholar] [CrossRef]
- Luebbers, P.E.; Potteiger, J.A.; Hulver, M.W. Effects of plyometric training and recovery on vertical jump performance and anaerobic power. J. Strength Cond. Res. 2003, 17, 704–709. [Google Scholar]
- Whitehead, M.T.; Scheett, T.P.; McGuigan, M.R.; Martin, A.V. A com-parison of the effects of short-term plyometric and resistance training on lower body muscular performance. J. Strength Cond. Res. 2018, 32, 2743–2749. [Google Scholar] [CrossRef]
- Behrens, M.; Mau-Moeller, A.; Bruhn, S. Effect of plyometric training on neural and mechanical properties of the knee extensor muscles. Int. J. Sports Med. 2014, 35, 101–119. [Google Scholar] [CrossRef] [PubMed]
- De Villarreal, E.S.S.; Requena, B.; Newton, R.U. Does Plyometric Training Improve Strength Performance? A Meta-Analysis. J. Sci. Med. Sport. 2010, 13, 513–522. [Google Scholar] [CrossRef] [PubMed]
- Häkkinen, A.; Häkkinen, K.; Hannonen, P. Effects of strength training on neuromuscular function and disease activity in patients with recent-onset inflammatory arthritis. Scand. J. Rheumato. 1994, 23, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Ioannides, C.; Apostolidis, A.; Hadjicharalambous, M.; Zaras, N. Effect of a 6-week plyometric training on power, muscle strength, and rate of force development in young competitive karate athletes. J. Phys. Educ. Sport. 2020, 20, 1740–1746. [Google Scholar] [CrossRef]
- Fathi, A.; Hammami, R.; Moran, J.; Borji, R.; Sahli, S.; Rebai, H. Effect of a 16-Week Combined Strength and Plyometric Training Program Followed by a Detraining Period on Athletic Performance in Pubertal Volleyball Players. J. Strength Cond. Res. 2019, 33, 2117–2127. [Google Scholar] [CrossRef] [Green Version]
- Morin, J.; Bourdin, M.; Edouard, P.; Peyrot, N.; Morin, J.; Bourdin, M.; Edouard, P.; Peyrot, N.; Samozino, P. Mechanical Determinants of 100-m Sprint Running Performance. Eur. J. Appl. Physiol. 2012, 112, 3921–3930. [Google Scholar] [CrossRef] [Green Version]
- Bishop, D.J.; Girard, O. Determinants of Team-Sport Performance: Implications for Altitude Training by Team-Sport Athletes. Br. J. Sports Med. 2013, 47, i17–i21. [Google Scholar] [CrossRef] [Green Version]
- Van de Hoef, P.A.; Brauers, J.J.; van Smeden, M.; Backx, F.J.G.; Brink, M.S. The Effects of Lower-Extremity Plyometric Training on Soccer-Specific Outcomes in Adult Male Soccer Players: A Systematic Review and Meta-Analysis. Int. J. Sports Physiol. Perform. 2020, 15, 3–17. [Google Scholar] [CrossRef]
- Kotzamanidis, C. Effect of Plyometric Training on Running Performance and Vertical Jumping in Prepubertal Boys. J. Strength Cond. Res. 2006, 20, 441–445. [Google Scholar] [CrossRef]
- Thapa, R.K.; Lum, D.; Moran, J.; Ramirez-Campillo, R. Effects of Complex Training on Sprint, Jump, and Change of Direction Ability of Soccer Players: A Systematic Review and Meta-Analysis. Front. Psychol. 2021, 11, 627869. [Google Scholar] [CrossRef] [PubMed]
- Pardos-Mainer, E.; Lozano, D.; Torrontegui-Duarte, M.; Cartón-Llorente, A.; Roso-Moliner, A. Effects of Strength vs. Plyometric Training Programs on Vertical Jumping, Linear Sprint and Change of Direction Speed Performance in Female Soccer Players: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health. 2021, 18, 401. [Google Scholar] [CrossRef] [PubMed]
- Asadi, A.; Arazi, H.; Young, W.B.; de Villarreal, E.S. The Effects of Plyometric Training on Change-of-Direction Ability: A Meta-Analysis. Int. J. Sports Physiol. Perform. 2016, 11, 563–573. [Google Scholar] [CrossRef] [Green Version]
- Young, W.; McLean, B.; Ardagna, J. Relationship between Strength Qualities and Sprinting Performance. J. Sports Med. Phys. Fitness. 1995, 35, 13–19. [Google Scholar]
- Sheppard, J.M.; Young, W.B. Agility literature review: Classification, training and testing. J. Sport Sci. 2006, 24, 919–932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, W.B.; Dawson, B.; Henry, G.J. Agility and Change-of-Direction Speed Are Independent Skills: Implications for Training for Agility in Invasion Sports. Int. J. Sport. Sci. Coach. 2015, 10, 159–169. [Google Scholar] [CrossRef]
- Beck, S.; Taube, W.; Gruber, M.; Amtage, F.; Gollhofer, A.; Schubert, M. Task-Specific Changes in Motor Evoked Potentials of Lower Limb Muscles after Different Training Interventions. Brain Res. 2007, 1179, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Young, W.B.; James, R.; Montgomery, I. Is muscle power related to running speed with changes of direction? J. Sport. Med. Phys. Fit. 2002, 42, 282–288. [Google Scholar] [PubMed]
- Young, W.; Farrow, D. A review of agility: Practical applications for strength and conditioning. Strength Cond. J. 2006, 28, 24–29. [Google Scholar] [CrossRef]
- Asadi, A. Effects of In-Season Short-Term Plyometric Training on Jumping and Agility Performance of Basketball Players. Sport Sci. Health 2013, 9, 133–137. [Google Scholar] [CrossRef]
- Fernandez-Fernandez, J.; De Villarreal, E.S.; Sanz-Rivas, D.; Moya, M. The effects of 8-week plyometric training on physical performance in young tennis players. Pediatr. Exerc. Sci. 2016, 28, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.F.; Clemente, F.M.; Lima, R.; Nikolaidis, P.T.; Rosemann, T.; Knechtle, B. The Effect of Plyometric Training in Volleyball Players: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 2960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neves da Silva, V.F.; Aguiar, S.D.S.; Sousa, C.V.; Sotero, R.D.C.; Filho, J.M.S.; Oliveira, I.; Mota, M.R.; Simões, H.G.; Sales, M.M. Effects of short-term plyometric training on physical fitness parameters in female futsal athletes. J. Phys. Ther. Sci. 2017, 29, 783–788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sáez De Villarreal, E.; Molina, J.G.; De Castro-Maqueda, G.; Gutiérrez-Manzanedo, J.V. Effects of Plyometric, Strength and Change of Direction Training on High-School Basketball Player’s Physical Fitness. J. Hum. Kinet. 2021, 78, 175–186. [Google Scholar] [CrossRef] [PubMed]
- Afyon, Y.A. The Effect of Core and Plyometric Exercises on Soccer Players. Anthropologist 2014, 18, 927–932. [Google Scholar] [CrossRef]
- O’ Sullivan K, McAuliffe S, Deburca N: The effects of eccentric training on lower limb flexibility: A systematic review. Br. J. Sports Med. 2012, 46, 838–845. [CrossRef]
- Malisoux, L.; Francaux, M.; Nielens, H.; Theisen, D. Stretch-shortening cycle exercises: An effective training paradigm to enhance power output of human single muscle fibers. J. Appl Physiol. 2006, 100, 771–779. [Google Scholar] [CrossRef] [Green Version]
- Skaggs, J.R.; Joiner, E.R.A.; Pace, J.L.; Atc, M.S.; Skaggs, D.L. Is Flexibility Associated with Improved Sprint and Jump Performance? Ann. Sports Med. Res. 2015, 2, 1–5. Available online: https://www.semanticscholar.org/paper/Is-Flexibility-Associated-with-Improved-Sprint-and-Skaggs-Joiner/28e90b978fe6f8e72b53bd7e0caea580ce653720 (accessed on 7 September 2022).
- Yamaguchi, T.; Ishii, K. Effects of static stretching for 30 seconds and dynamic stretching on leg extension power. J. Strength Cond. Res. 2005, 19, 677–683. [Google Scholar] [CrossRef] [Green Version]
- Sugiura, Y.; Sakuma, K.; Sakuraba, K.; Sato, Y. Prevention of Hamstring Injuries in Collegiate Sprinters. Orthop. J. Sport. Med. 2017, 5, 1524. [Google Scholar] [CrossRef]
- Witvrouw, E.; Danneels, L.; Asselman, P.; D’Have, T.; Cambier, D. Muscle flexibility as a risk factor for devel-oping muscle injuries in male professional soccer players.A prospective study. Am. J. Sports Med. 2003, 31, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Faigenbaum, A.D.; Farrell, A.C.; Radler, T.; Zbojovsky, D.; Chu, D.A.; Ratamess, N.A.; Hoffman, J.R. “Plyo Play”: A Novel Program of Short Bouts of Moderate and High Intensity Exercise Improves Physical Fitness in Elementary School Children. Phys Educ. 2009, 66, 37–44. Available online: https://www.proquest.com/openview/7077dd18d9dba71a981c4fe8e849b310/1?pq-origsite=gscholar&cbl=35035 (accessed on 7 December 2022).
- Meszler, B.; Váczi, M. Effects of Short-Term in-Season Plyometric Training in Adolescent Female Basketball Players. Physiol. Int. 2019, 106, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Arazi, H.; Coetzee, B.; Asadi, A. Comparative effect of land-and aquatic-based plyometric training on jumping ability and agility of young basketball players. South African, J. Res. Sport. Phys. Educ. Recreat. 2012, 34, 1–14. Available online: https://www.redalyc.org/pdf/3010/301023484012.pdf (accessed on 7 December 2022).
- Boccolini, G.; Brazzit, A.; Bonfanti, L.; Alberti, G. Using Balance Training to Improve the Performance of Youth Basketball Players. Sport Sci. Health 2013, 9, 37–42. [Google Scholar] [CrossRef] [Green Version]
- Brachman, A.; Kamieniarz, A.; Michalska, J.; Pawłowski, M.; Słomka, K.J.; Juras, G. Balance training programs in athletes-A systematic review. J. Hum. Kinet. 2017, 58, 45–64. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, D.G. Rationale for Training Programs to Reduce Anterior Cruciate Ligament Injuries in Australian Football. J. Orthop. Sports Phys. Ther. 2001, 31, 645–654. [Google Scholar] [CrossRef]
- Hewett, T.E.; Paterno, M.V.; Myer, G.D. Strategies for Enhancing Proprioception and Neuromuscular Control of the Knee. Clin. Orthop. Relat. Res. 2002, 402, 76–94. [Google Scholar] [CrossRef]
- Bouteraa, I.; Negra, Y.; Shephard, R.J.; Chelly, M.S. Effects of Combined Balance and Plyometric Training on Athletic Performance in Female Basketball Players. J. Strength Cond. Res. 2020, 34, 1967–1973. [Google Scholar] [CrossRef]
- Lu, Z.; Zhou, L.; Gong, W.; Chuang, S.; Wang, S.; Guo, Z.; Bao, D.; Zhang, L.; Zhou, J. The Effect of 6-Week Combined Balance and Plyometric Training on Dynamic Balance and Quickness Performance of Elite Badminton Players. Int. J. Environ. Res. Public Health 2022, 19, 1605. [Google Scholar] [CrossRef]
- Ramirez-Campillo, R.; Alvarez, C.; García-Pinillos, F.; Sanchez-Sanchez, J.; Yanci, J.; Castillo, D.; Loturco, I.; Chaabene, H.; Moran, J.; Izquierdo, M. Optimal reactive strength index: Is it an accurate variable to optimize plyometric training effects on measures of physical fitness in young soccer players? J. Strength Cond. Res. 2018, 32, 885–893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez-Campillo, R.; Moran, J.; Drury, B.; Williams, M.; Keogh, J.W.; Chaabene, H.; Granacher, U. Effects of equal volume but different plyometric jump training intensities on components of physical fitness in physically active young males. J. Strength Cond. Res. 2021, 35, 1916–1923. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altman, D.G.; Royston, P. The Cost of Dichotomising Continuous Variables. Br. Med. J. 2006, 332, 1080. [Google Scholar] [CrossRef] [Green Version]
- Buga, S.; Gencer, Y.G. The Effect of Plyometric Training Performed on Different Surfaces on Some Performance Parameters. Prog. Nutr. 2022, 24, e2022072. [Google Scholar] [CrossRef]
Category | Inclusion Criteria | Exclusion Criteria |
---|---|---|
Population | Athletes, with no restrictions on their sport activity, sex, or age. | Athletes with health problems (e.g., injuries, recent surgery). |
Intervention | A ULLPT program, defined as combined upper-limb plyometrics (medicine ball exercises, push-ups, and chess press) and lower-limb plyometrics (unilateral or bilateral bounds, jumps, hops, and/or skips) (Not less than 2 weeks). | Plyometric training combined with other forms of training (e.g., resistance training, sprint training) or single limb plyometrics. |
Comparator | Active control group. | Absence of active control group |
Outcome | At least one measure related to physical fitness (e.g., power, sprint, strength) before and after the training intervention. | Lack of baseline and/or follow-up data. |
Study design | Randomized Controlled Trials. | Non-Randomized Controlled Trials. |
PEDro Scale Items * | No. 1 | No. 2 | No. 3 | No. 4 | No. 5 | No. 6 | No. 7 | No. 8 | No. 9 | No. 10 | No. 11 | Total (from a Possible Maximal of 10) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Santos and Janeira, 2011 [52] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Sharma and Multani, 2012 [53] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 4 |
Sadeghi et al., 2013 [54] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 4 |
Behringer et al., 2013 [55] | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Chelly et al., 2014 [56] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Pereira et al., 2015 [57] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 1 | 5 |
Ramírez-Campillo et al., 2016 [58] | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 7 |
Hall et al., 2016 [59] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Karadenizli, 2016 [60] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Uzun and Karakoc, 2017 [61] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Idrizovic et al., 2018 [62] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Nowakowska et al., 2017 [51] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 3 |
Hammami et al., 2019 [32] | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 7 |
Hammami et al., 2020 [63] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Canlı and Bayru, 2020 [31] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 1 | 5 |
Kurniawan et al., 2021 [64] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
References | Athletes | N | Gender | Age | Body Mass | Height | SPT | Fitness |
---|---|---|---|---|---|---|---|---|
Santos and Janeira, 2011 (2ULLPT/week) [52] | Basketball players | 14 | M | 15.0 | 62.6 | 172 | No | NR |
Santos and Janeira, 2011 (1ULLPT/week) [52] | 7 | |||||||
Sharma and Multani, 2012 [53] | Basketball players | 20 | M | 12–20 | NR | NR | NR | NR |
Sadeghi et al., 2013 [54] | Swimmer | 12 | F | 12.23 | 41.92 | 144.53 | NR | NR |
Behringer et al., 2013 [55] | Tennis players | 10 | M | 15.5 | 65.2 | 177 | NR | Normal-moderate |
Chelly et al., 2014 [56] | Handball players | 12 | M | 17.1 | 80.1 | 181 | NR | Moderate |
Pereira et al., 2015 [57] | Volleyball players | 10 | F | 14.0 | 52.0 | 160 | No | Moderate |
Ramírez-Campillo et al., 2016 [58] | Soccer players | 19/21 | F/M | 22.4/20.4 | 60.7/68.4 | 161/171 | No | Moderate |
Hall et al., 2016 [59] | Gymnasts | 10 | F | 12.5 | 40.5 | 146 | NR | Moderate |
Karadenizli, 2016 [60] | Handball players | 14 | F | 15.64 | 54.41 | 161 | NR | Moderate |
Uzun and Karakoc, 2017 [61] | Judokas | 15 | M | 21.40 | 71.26 | 176 | NR | NR |
Idrizovic et al., 2018 [62] | Volleyball players | 13 | F | 16.6 | 59.4 | 173 | No | High |
Hammami et al., 2019 [32] | Handball players | 21 | F | 13.5 | 42.6 | 142 | NR | Moderate |
Hammami et al., 2020 [63] | Handball players | 17 | F | 15.8 | 64.2 | 166 | Yes | High |
Canlı and Bayru, 2020 [31] | Basketball players | 15 | M | 14.7 | 67.6 | 174 | NR | Moderate |
Kurniawan et al., 2021 (active recovery) [64] | Judokas | 11 | M | 21.8 | 71.1 | 170 | NR | Normal |
Kurniawan et al., 2021 (passive recovery) [64] | 11 | 21.7 | 63.8 | 171 |
References | Freq | Dur | Time | Int | Training Protocol | RBSE (s) | RBR (s) | RBTS (h) | Surf | TP | PO | Rep | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Upper Limb | Lower Limb | ||||||||||||
Santos and Janeira, 2011 [52] (2 ULLPT/week) | 2 | 10 | NR | NR | MB exercises (chest/pullover pass, power drop, squat toss, seated backward throw, backward throw) 2–4 sets × 6–10 reps | Rim/squat/tuck/side/box-to-box jump, depth jump with or without 180-degree turn, single- arm alternate-leg bound, hurdle/two-foot ankle hop, zigzag drill, alternate leg push-off, lateral jump over cone, cone hops with COD sprint 2–4 sets × 5–15 reps | 60–240 | 15–90 | NR | NR | IS | C | No |
Santos and Janeira, 2011 [52] (1 ULLPT/week) | 1 | 16 | NR | NR | MB exercises (pullover pass, power drop) 4 sets × 10 reps | Depth jump 180-degree turn, hurdle hops, cone hops with COD sprint, multiple box-to-box jumps 4 sets × 6–10 reps | 60–240 | 15–90 | 144 | NR | IS | V.T | NO |
Sharma and Multani, 2012 [53] | 3 | 4 | NR | Low, moderate and high * | MB exercises (back toss, overhead /side/squat/start-throw, over back toss), push-ups 2 sets × 5 reps | Squat/tuck/depth jump, jump to box, bounding with rings, single leg lateral hops 2 sets × 40 ground contacts | NR | NR | NR | Polo | NR | V.I.T | No |
Sadeghi et al., 2013 [54] | 2 | 6 | NR | Low, moderate and high * | No detailed description | No detailed description | NR | NR | NR | NR | NR | V.I | No |
Behringer et al., 2013 [55] | 2 | 10 | 45 min | NR | Push-ups with and without clapping hands, MB chest pass, two-hand overhead throw with and without upper body rotation 3–4 sets × 10–15 reps | rope skipping/lateral barrier hop (single-and double-leg), box hopping (clock- and counter-clockwise; single- and double-leg), cycled split squat jump, countermovement jump, countermovement jump to box, 3–4 sets × 10–15 reps | 20–60 | 0–1 | 55–78 | NR | NR | C | Yes |
Chelly et al., 2014 [56] | 2 | 8 | 30 min | Max | Dynamic push-up 3–4 sets × 10–12 reps | Hurdle/dop jumps 4–10 sets × 10 reps | NR | NR | 48 | NR | IS | C | Yes |
Pereira et al., 2015 [57] | 2 | 8 | 20 min | Max | Unilateral MBT, MBT 2 sets × 6 reps | Bilateral jump (with or without bending knees), unilateral jump (with the dominant leg on the floor) 3–5 sets × 10–25 reps | 120 | NR | 48 | NR | IS | V.I | No |
Ramírez-Campillo et al., 2016 [58] | 2 | 6 | 30 min | Max | MBT 3 sets × 8 reps | Cyclic and acyclic horizontal and vertical jumps, with left, right and both legs 2 sets × 5 reps | 60 | 15 | 72 | Grass | IS | V | Yes |
Hall et al., 2016 [59] | 2 | 6 | 40 min | Max | Chest pass, single-arm/sit-up MBT, inverted clap push-ups, push-up on and off raised surface 2–4 sets × 1–5 reps | Tuck/split/squat jump, jump over barrier, (15/30 cm), multiple box-to-box jumps, single leg bounding, jump to/from Box (30 cm), standing long jump, handstand/shoulder shrug hops, alternate leg push- off, bounce to handstands against wall 1–4 sets × 1–6 reps | 60 | NR | NR | Concrete | NR | C | No |
Karadenizli et al., 2016 [60] | 2 | 10 | NR | Max | Overhead passing with MB, sit-up, overhead throwing with handball ball 2–4 sets × 10 reps | Forward/side to side skipping over cone with or without MB, side to side ankle hops/skipping, slalom running and sprint, double leg front jump over hurdle, standing vertical-jump and reach, double/single leg forward- jump over hurdle, horizontal jump and sprint, Single leg diagonal/forward/lateral-jump 2–4 sets × 3–15 reps | 60–180 | NR | 48–120 | NR | IS | V.T | No |
Uzun and Karakoc, 2017 [61] | 3 | 10 | 20 min | Max | No detailed description | No detailed description | NR | NR | NR | NR | NR | V.I | No |
Idrizovic et al., 2018 [62] | 2 | 12 | 20–30 min | Max | MB press, MB alternating throw, chest pass, push-ups, jumping spider (from knees), overarm throws 2–4 sets × 2–5 reps | Stiff knee leg hops, vertical/tuck jumps, lateral/diagonal jumps, broad jumps, obstacle/box drop 3–5 sets × 1–5 reps | 120–300 | NR | 168 | Wood | PS | V.T.I | No |
Hammami et al., 2019 [32] | 2 | 9 | NR | Low, moderate and high * | Dynamic push-up 10 sets × 6–8 reps | hurdle jump, stretched leg jump, lateral hurdle jump 10 sets × 6–8 reps | 90 | NR | 48 | NR | NR | V.T.I | Yes |
Hammami et al., 2020 [63] | 2 | 10 | NR | Max | Push-up 10 sets × 6 reps | Horizontal/stretched leg/hurdle jump, lateral hurdle jump 2–3 sets × 6 reps | 30–60 | NA | 48 | NR | IS | V.T.I | Yes |
Canlı and Bayru, 2020 [31] | 2 | 9 | 30–35 min | Max | Shoulder/overhead press, MBT, bench press with theraband, push-up, side shuffle with chest press, step-up, ladder with MB, burpee | Box/broad/squat/lateral box/jumps, Jumping lunges, Front to back hurdle hop, skater hoop | 120–180 | 25–30 | 72 | NR | IS | V.T | No |
Kurniawan et al., 2021 [64] | 3 | 8 | NR | NR | No detailed description | No detailed description | NR | NR | NR | NR | NR | NR | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, N.; Soh, K.G.; Zaremohzzabieh, Z.; Abdullah, B.; Salleh, K.M.; Huang, D. Effects of Combined Upper and Lower Limb Plyometric Training Interventions on Physical Fitness in Athletes: A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 482. https://doi.org/10.3390/ijerph20010482
Deng N, Soh KG, Zaremohzzabieh Z, Abdullah B, Salleh KM, Huang D. Effects of Combined Upper and Lower Limb Plyometric Training Interventions on Physical Fitness in Athletes: A Systematic Review with Meta-Analysis. International Journal of Environmental Research and Public Health. 2023; 20(1):482. https://doi.org/10.3390/ijerph20010482
Chicago/Turabian StyleDeng, Nuannuan, Kim Geok Soh, Zeinab Zaremohzzabieh, Borhannudin Abdullah, Kamariah Md Salleh, and Dandan Huang. 2023. "Effects of Combined Upper and Lower Limb Plyometric Training Interventions on Physical Fitness in Athletes: A Systematic Review with Meta-Analysis" International Journal of Environmental Research and Public Health 20, no. 1: 482. https://doi.org/10.3390/ijerph20010482
APA StyleDeng, N., Soh, K. G., Zaremohzzabieh, Z., Abdullah, B., Salleh, K. M., & Huang, D. (2023). Effects of Combined Upper and Lower Limb Plyometric Training Interventions on Physical Fitness in Athletes: A Systematic Review with Meta-Analysis. International Journal of Environmental Research and Public Health, 20(1), 482. https://doi.org/10.3390/ijerph20010482