Spinel LiMn2O4 as a Capacitive Deionization Electrode Material with High Desalination Capacity: Experiment and Simulation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Preparation of Electrodes
2.4. Electrochemical Tests
2.5. Capacitive Deionization Experiments
2.6. Simulation Method
3. Results and Discussion
3.1. Enhanced Ion Transfer by LIB Materials
3.2. Structure and Morphology
3.3. Electrochemical Behaviors
3.4. Desalination Performances
3.5. Simulation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baghbanzadeh, M.; Rana, D.; Lan, C.Q.; Matsuura, T. Zero thermal input membrane distillation, a zero-waste and sustainable solution for freshwater shortage. Appl. Energy 2017, 187, 910–928. [Google Scholar] [CrossRef]
- Hanikel, N.; Prevot, M.S.; Yaghi, O.M. MOF water harvesters. Nat. Nanotechnol. 2020, 15, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Ihsanullah, I.; Atieh, M.A.; Sajid, M.; Nazal, M.K. Desalination and environment: A critical analysis of impacts, mitigation strategies, and greener desalination technologies. Sci. Total Environ. 2021, 780, 146585. [Google Scholar] [CrossRef] [PubMed]
- Desai, D.; Beh, E.S.; Sahu, S.; Vedharathinam, V.; van Overmeere, Q.; de Lannoy, C.F.; Jose, A.P.; Volkel, A.R.; Rivest, J.B. Electrochemical Desalination of Seawater and Hypersaline Brines with Coupled Electricity Storage. ACS Energy Lett. 2018, 3, 375–379. [Google Scholar] [CrossRef]
- Nassrullah, H.; Anis, S.F.; Hashaikeh, R.; Hilal, N. Energy for desalination: A state-of-the-art review. Desalination 2020, 491, 114596. [Google Scholar] [CrossRef]
- Choi, J.; Dorji, P.; Shon, H.K.; Hong, S. Applications of capacitive deionization: Desalination, softening, selective removal, and energy efficiency. Desalination 2019, 449, 118–130. [Google Scholar] [CrossRef]
- Tang, W.W.; Liang, J.; He, D.; Gong, J.L.; Tang, L.; Liu, Z.F.; Wang, D.B.; Zeng, G.M. Various cell architectures of capacitive deionization: Recent advances and future trends. Water Res. 2019, 150, 225–251. [Google Scholar] [CrossRef]
- Liu, Y.; Nie, C.Y.; Liu, X.J.; Xu, X.T.; Sun, Z.; Pan, L.K. Review on carbon-based composite materials for capacitive deionization. Rsc. Adv. 2015, 5, 15205–15225. [Google Scholar] [CrossRef]
- Li, Q.; Zheng, Y.; Xiao, D.J.; Or, T.; Gao, R.; Li, Z.Q.; Feng, M.; Shui, L.L.; Zhou, G.F.; Wang, X.; et al. Faradaic Electrodes Open a New Era for Capacitive Deionization. Adv. Sci. 2020, 7, 2002213. [Google Scholar] [CrossRef]
- Uwayid, R.; Seraphim, N.M.; Guyes, E.N.; Eisenberg, D.; Suss, M.E. Characterizing and mitigating the degradation of oxidized cathodes during capacitive deionization cycling. Carbon 2021, 173, 1105–1114. [Google Scholar] [CrossRef]
- Baroud, T.N.; Giannelis, E.P. High salt capacity and high removal rate capacitive deionization enabled by hierarchical porous carbons. Carbon 2018, 139, 614–625. [Google Scholar] [CrossRef]
- Li, Y.J.; Liu, Y.; Wang, M.; Xu, X.T.; Lu, T.; Sun, C.Q.; Pan, L.K. Phosphorus-doped 3D carbon nanofiber aerogels derived from bacterial-cellulose for highly-efficient capacitive deionization. Carbon 2018, 130, 377–383. [Google Scholar] [CrossRef]
- Yu, F.; Wang, L.; Wang, Y.; Shen, X.J.; Cheng, Y.J.; Ma, J. Faradaic reactions in capacitive deionization for desalination and ion separation. J. Mater. Chem. A 2019, 7, 15999–16027. [Google Scholar] [CrossRef]
- Lee, J.; Kim, S.; Kim, C.; Yoon, J. Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci. 2014, 7, 3683–3689. [Google Scholar] [CrossRef]
- Huang, Y.X.; Chen, F.M.; Guo, L.; Yang, H.Y. Ultrahigh performance of a novel electrochemical deionization system based on a NaTi2(PO4)3/rGO nanocomposite. J. Mater. Chem. A 2017, 5, 18157–18165. [Google Scholar] [CrossRef]
- Chang, J.J.; Duan, F.; Su, C.L.; Li, Y.P.; Cao, H.B. Removal of chloride ions using a bismuth electrode in capacitive deionization (CDI). Environ. Sci.-Wat. Res. Technol. 2020, 6, 373–382. [Google Scholar] [CrossRef]
- Elisadiki, J.; King’ondu, C.K. Performance of ion intercalation materials in capacitive deionization/electrochemical deionization: A review. J. Electroanal. Chem. 2020, 878, 114588. [Google Scholar] [CrossRef]
- Hong, S.Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N.S.; Lee, K.T. Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 2013, 6, 2067–2081. [Google Scholar] [CrossRef]
- Spingler, F.B.; Naumann, M.; Jossen, A. Capacity Recovery Effect in Commercial LiFePO4/Graphite Cells. J. Electrochem. Soc. 2020, 167, 040526. [Google Scholar] [CrossRef]
- Duh, Y.S.; Liu, X.Z.; Jiang, X.P.; Kao, C.S.; Gong, L.Z.; Shi, R.H. Thermal kinetics on exothermic reactions of a commercial LiCoO2 18650 lithium-ion battery and its components used in electric vehicles: A review. J. Energy Storage 2020, 30, 101422. [Google Scholar] [CrossRef]
- Mu, C.L.; Huang, M.; Zhu, H.L.; Qi, Y.X.; Wang, Y.X.; Li, T.; Bai, Y.J. Promoting the electrochemical performance of commercial LiMn2O4 by hydrothermal modification with poly (vinylidene fluoride). Mater. Today Sustain. 2022, 18, 100128. [Google Scholar] [CrossRef]
- Zhang, H.R.; Zhang, J.J.; Ma, J.; Xu, G.J.; Dong, T.T.; Cui, G.L. Polymer Electrolytes for High Energy Density Ternary Cathode Material-Based Lithium Batteries. Electrochem. Energy Rev. 2019, 2, 128–148. [Google Scholar] [CrossRef]
- Abou-Rjeily, J.; Bezza, I.; Laziz, N.A.; Autret-Lambert, C.; Sougrati, M.T.; Ghamouss, F. High-rate cyclability and stability of LiMn2O4 cathode materials for lithium-ion batteries from low-cost natural beta-MnO2. Energy Storage Mater. 2020, 26, 423–432. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, X.; Zhang, S.; Wang, J.; Huang, Q.; Yu, N.; Zhu, Y.; Fu, L.; Wang, F.; Chen, Y.; et al. Three-dimensional ordered porous electrode materials for electrochemical energy storage. NPG Asia Mater. 2019, 11, 12. [Google Scholar] [CrossRef] [Green Version]
- Haq, O.U.; Choi, J.H.; Lee, Y.S. Synthesis of ion-exchange polyaniline-carbon composite electrodes for capacitive deionization. Desalination 2020, 479, 114308. [Google Scholar] [CrossRef]
- Wang, C.Y.; Chen, L.; Liu, S.S.; Zhu, L. Nitrite desorption from activated carbon fiber during capacitive deionization (CDI) and membrane capacitive deionization (MCDI). Colloids Surf. A-Physicochem. Eng. Asp. 2018, 559, 392–400. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Wang, Y.; Wang, R.G.; Wu, Y.F.; Xu, S.C.; Wang, J.X. Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes. Desalination 2013, 324, 127–133. [Google Scholar] [CrossRef]
- Sun, C.W.; Rajasekhara, S.; Goodenough, J.B.; Zhou, F. Monodisperse Porous LiFePO4 Microspheres for a High Power Li-Ion Battery Cathode. J. Am. Chem. Soc. 2011, 133, 2132–2135. [Google Scholar] [CrossRef]
- Sing, K.S.W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Yang, C.X.; Deng, Y.F.; Gao, M.; Yang, X.F.; Qin, X.S.; Chen, G.H. High-rate and long-life performance of a truncated spinel cathode material with off-stoichiometric composition at elevated temperature. Electrochim. Acta 2017, 225, 198–206. [Google Scholar] [CrossRef]
- Liu, M.; Ao, H.; Jin, Y.; Hou, Z.; Zhang, X.; Zhu, Y.; Qian, Y. Aqueous rechargeable sodium ion batteries: Developments and prospects. Mater. Today Energy 2020, 17, 21. [Google Scholar] [CrossRef]
- Wang, Y.-g.; Xia, Y.-y. A new concept hybrid electrochemical surpercapacitor: Carbon/LiMn2O4 aqueous system. Electrochem. Commun. 2005, 7, 1138–1142. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Yue, Z.S.; Li, H.B. Na0.71CoO2 promoted sodium uptake via faradaic reaction for highly efficient capacitive deionization. Sep. Purif. Technol. 2020, 234, 10. [Google Scholar] [CrossRef]
- Yue, Z.S.; Gao, T.; Li, H.B. Robust synthesis of carbon@Na4Ti9O20 core-shell nanotubes for hybrid capacitive deionization with enhanced performance. Desalination 2019, 449, 69–77. [Google Scholar] [CrossRef]
- Cao, J.L.; Wang, Y.; Wang, L.; Yu, F.; Ma, J. Na3V2(PO4)3@C as Faradaic Electrodes in Capacitive Deionization for High-Performance Desalination. Nano Lett. 2019, 19, 823–828. [Google Scholar] [CrossRef]
- Kim, S.; Lee, J.; Kim, C.; Yoon, J. Na2FeP2O7 as a Novel Material for Hybrid Capacitive Deionization. Electrochim. Acta 2016, 203, 265–271. [Google Scholar] [CrossRef]
- Liu, Z.Z.; Xi, W.; Li, H.B. The feasibility of hollow echinus-like NiCo2O4 nanocrystals for hybrid capacitive deionization. Environ. Sci.-Wat. Res. Technol. 2020, 6, 283–289. [Google Scholar] [CrossRef]
- Srimuk, P.; Lee, J.; Fleischmann, S.; Choudhury, S.; Presser, V. Faradaic deionization of brackish and sea water via pseudocapacitive cation and anion intercalation into few layered molybdenum disulfide. J. Mater. Chem. A 2017, 5, 15640–15649. [Google Scholar] [CrossRef]
- Wang, X.; Guo, L.; Leong, Z.Y.; Mo, R.; Sun, L.; Yang, H.Y. Ar plasma modification of 2D MXene Ti3C2Tx nanosheets for efficient capacitive desalination. Flatchem 2018, 8, 17–24. [Google Scholar]
- Tsai, Y.C.; Doong, R.A. Hierarchically ordered mesoporous carbons and silver nanoparticles as asymmetric electrodes for highly efficient capacitive deionization. Desalination 2016, 398, 171–179. [Google Scholar] [CrossRef]
- Seader, J.D.; Henley, E.J.; Roper, D.K. Separation Process Principles; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Wu, W.; Wang, L.; Li, Y.; Zhang, F.; Lin, L.; Niu, S.; Chenet, D.; Zhang, X.; Hao, Y.; Heinz, T.F. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 2014, 514, 470–474. [Google Scholar] [CrossRef] [PubMed]
Electrode Materials | Applied Voltage (V) | Initial Salinity | CDI Capacity (mg·g−1) | Reference |
---|---|---|---|---|
Na4Mn9O18||AC | 1.2 | 50 mM | 31.2 | [14] |
Na0.71CoO2||Ag/rGO | 1.4 | 500 mg·L−1 | 31 | [33] |
Na4Ti9O20/C||AC | 1.4 | 500 μS·cm−1 | 80.56 | [34] |
Na3V2(PO4)3/C||AC | 1.0 | 100 mM | 137.2 | [35] |
Na2FeP2O7/C||AC | 1.2 | 100 mM | 32.6 | [36] |
NiCo2O4||AC | 1.2 | 1000 μS·cm−1 | 44.3 | [37] |
MoS2/CNT||MoS2/CNT | 0.8 | 500 mM | 25 | [38] |
Ar-modified Ti3C2Tx||AC | 1.2 | 500 mg·L−1 | 26.8 | [39] |
AC||Bi | 1.2 | 500 mg·L−1 | 55.52 | [16] |
mesoporous carbon||Ag | 1.2 | 1 mM | 20.82 | [40] |
spinel LiMn2O4||AC | 1.0 | 20 mM | 159.49 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Li, K.; Alhassan, S.I.; Cao, Y.; Deng, H.; Tan, S.; Wang, H.; Tang, C.; Chai, L. Spinel LiMn2O4 as a Capacitive Deionization Electrode Material with High Desalination Capacity: Experiment and Simulation. Int. J. Environ. Res. Public Health 2023, 20, 517. https://doi.org/10.3390/ijerph20010517
Jiang Y, Li K, Alhassan SI, Cao Y, Deng H, Tan S, Wang H, Tang C, Chai L. Spinel LiMn2O4 as a Capacitive Deionization Electrode Material with High Desalination Capacity: Experiment and Simulation. International Journal of Environmental Research and Public Health. 2023; 20(1):517. https://doi.org/10.3390/ijerph20010517
Chicago/Turabian StyleJiang, Yuxin, Ken Li, Sikpaam Issaka Alhassan, Yiyun Cao, Haoyu Deng, Shan Tan, Haiying Wang, Chongjian Tang, and Liyuan Chai. 2023. "Spinel LiMn2O4 as a Capacitive Deionization Electrode Material with High Desalination Capacity: Experiment and Simulation" International Journal of Environmental Research and Public Health 20, no. 1: 517. https://doi.org/10.3390/ijerph20010517
APA StyleJiang, Y., Li, K., Alhassan, S. I., Cao, Y., Deng, H., Tan, S., Wang, H., Tang, C., & Chai, L. (2023). Spinel LiMn2O4 as a Capacitive Deionization Electrode Material with High Desalination Capacity: Experiment and Simulation. International Journal of Environmental Research and Public Health, 20(1), 517. https://doi.org/10.3390/ijerph20010517