Individualized Remotely Supervised Motor Activity Programs Promote Rehabilitation Goal Achievement, Motor Functioning, and Physical Activity of People with Rett Syndrome—A Single-Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Issues
2.2. Experimental Design
2.3. Participants
2.4. Procedure
2.5. Outcome Measures
2.5.1. Goal Attainment Scaling (GAS)
2.5.2. Rett Syndrome Motor Evaluation Scale (RESMES)
2.5.3. Modified Bouchard Activity Record (mBAR)
2.6. Statistical Analyses
3. Results
3.1. Goals Attainment
3.2. Motor Functioning
3.3. MBAR Physical Activity Level
3.4. Correlation between Variables
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fombonne, E.; Simmons, H.; Ford, T.; Meltzer, H.; Goodman, R. Prevalence of Pervasive Developmental Disorders in the British Nationwide Survey of Child Mental Health. Int. Rev. Psychiatry 2003, 15, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Skjeldal, O.H.; von Tetzchner, S.; Aspelund, F.; Aas Herder, G.; Lofterød, B. Rett Syndrome: Geographic Variation in Prevalence in Norway. Brain Dev. 1997, 19, 258–261. [Google Scholar] [CrossRef] [PubMed]
- Hagberg, B.; Anvret, M.; Wahlstrom, J.; Wahlström, J. Rett Syndrome-Clinical and Biological Aspects: Studies on 130 Swedish Females; Cambridge University Press: London, UK, 1993; ISBN 0521412838. [Google Scholar]
- Stahlhut, M.; Downs, J.; Leonard, H.; Bisgaard, A.-M.; Nordmark, E. Building the Repertoire of Measures of Walking in Rett Syndrome. Disabil. Rehabil. 2017, 39, 1926–1931. [Google Scholar] [CrossRef] [PubMed]
- Hagberg, B. Clinical Manifestations and Stages of Rett Syndrome. Ment. Retard Dev. Disabil. Res. Rev. 2002, 8, 61–65. [Google Scholar] [CrossRef]
- Neul, J.L.; Kaufmann, W.E.; Glaze, D.G.; Christodoulou, J.; Clarke, A.J.; Bahi-Buisson, N.; Leonard, H.; Bailey, M.E.S.; Schanen, N.C.; Zappella, M.; et al. Rett Syndrome: Revised Diagnostic Criteria and Nomenclature. Ann. Neurol. 2010, 68, 944–950. [Google Scholar] [CrossRef] [Green Version]
- Katz, D.M.; Bird, A.; Coenraads, M.; Gray, S.J.; Menon, D.U.; Philpot, B.D.; Tarquinio, D.C. Rett Syndrome: Crossing the Threshold to Clinical Translation. Trends Neurosci. 2016, 39, 100–113. [Google Scholar] [CrossRef] [Green Version]
- Downs, J.; Stahlhut, M.; Wong, K.; Syhler, B.; Bisgaard, A.M.; Jacoby, P.; Leonard, H. Validating the Rett Syndrome Gross Motor Scale. PLoS ONE 2016, 11, e0147555. [Google Scholar] [CrossRef] [Green Version]
- Lotan, M.; Ben-Zeev, B. Rett Syndrome. A Review with Emphasis on Clinical Characteristics and Intervention. Sci. World J. 2006, 6, 1517–1541. [Google Scholar] [CrossRef]
- Monteiro, C.D.M.; Savelsbergh, G.; Smorenburg, A.; Graciani, Z.; Torriani-Pasin, C.; de Abreu, L.C.; Valenti, V.; Kok, F. Quantification of Functional Abilities in Rett Syndrome: A Comparison between Stages III and IV. Neuropsychiatr. Dis. Treat. 2014, 10, 1213. [Google Scholar] [CrossRef] [Green Version]
- Humphreys, P.; Barrowman, N. The Incidence and Evolution of Parkinsonian Rigidity in Rett Syndrome: A Pilot Study. Can. J. Neurol. Sci. J. Can. Des Sci. Neurol. 2016, 43, 567–573. [Google Scholar] [CrossRef]
- Smeets, E.E.; Schrander-Stumpel, C.T.R.M. Rett Syndrome. In Management of Genetic Syndromes, 3rd ed.; John Wiley and Sons: Maastricht, The Netherlands, 2010; pp. 677–691. ISBN 9780470191415. [Google Scholar]
- Romano, A.; di Rosa, G.; Tisano, A.; Fabio, R.A.; Lotan, M. Effects of a Remotely Supervised Motor Rehabilitation Program for Individuals with Rett Syndrome at Home. Disabil. Rehabil. 2021, 44, 5898–5908. [Google Scholar] [CrossRef] [PubMed]
- Cooley, W.C.; McAllister, J.W. Building Medical Homes: Improvement Strategies in Primary Care for Children with Special Health Care Needs. Pediatrics 2004, 113, 1499–1506. [Google Scholar] [CrossRef] [PubMed]
- Bly, L. Baby Treatment Based on NDT Principles; Therapy Skill Builders: Tucson, AZ, USA, 1999; ISBN 978-0-761-64450-7. [Google Scholar]
- Gitlin, L.N.; Belle, S.H.; Burgio, L.D.; Czaja, S.J.; Mahoney, D.; Gallagher-Thompson, D.; Burns, R.; Hauck, W.W.; Zhang, S.; Schulz, R.; et al. Effect of Multicomponent Interventions on Caregiver Burden and Depression: The REACH Multisite Initiative at 6-Month Follow-Up. Psychol. Aging 2003, 18, 361–374. [Google Scholar] [CrossRef] [Green Version]
- Rickards, A.L.; Walstab, J.E.; Wright-Rossi, R.A.; Simpson, J.; Reddihough, D.S. One-Year Follow-up of the Outcome of a Randomized Controlled Trial of a Home-Based Intervention Programme for Children with Autism and Developmental Delay and Their Families. Child Care Health Dev. 2009, 35, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Ashworth, N.L.; Chad, K.E.; Harrison, E.L.; Reeder, B.A.; Marshall, S.C. Home versus Center Based Physical Activity Programs in Older Adults. Cochrane Database Syst. Rev. 2005, 1, CD004017. [Google Scholar] [CrossRef] [PubMed]
- Lotan, M.; Ippolito, E.; Favetta, M.; Romano, A. Skype Supervised, Individualized, Home-Based Rehabilitation Programs for Individuals with Rett Syndrome and Their Families—Parental Satisfaction and Point of View. Front. Psychol. 2021, 12, 3995. [Google Scholar] [CrossRef]
- Zwilling, M.; Romano, A.; Favetta, M.; Ippolito, E.; Lotan, M. Impact of a Remotely Supervised Motor Rehabilitation Program on Maternal Well-Being during the COVID-19 Italian Lockdown. Front. Psychol. 2022, 13, 419. [Google Scholar] [CrossRef]
- Romano, A.; Ippolito, E.; Risoli, C.; Malerba, E.; Favetta, M.; Sancesario, A.; Lotan, M.; Moran, D.S. Intensive Postural and Motor Activity Program Reduces Scoliosis Progression in People with Rett Syndrome. J. Clin. Med. 2022, 11, 559. [Google Scholar] [CrossRef]
- Fabio, R.A.; Semino, M.; Giannatiempo, S.; Caprì, T.; Iannizzotto, G.; Nucita, A. Comparing Advanced with Basic Telerehabilitation Technologies for Patients with Rett Syndrome—A Pilot Study on Behavioral Parameters. Int. J. Environ. Res. Public Health 2022, 19, 507. [Google Scholar] [CrossRef]
- Dovigo, L.; Caprì, T.; Iannizzotto, G.; Nucita, A.; Semino, M.; Giannatiempo, S.; Zocca, L.; Fabio, R.A. Social and Cognitive Interactions through an Interactive School Service for RTT Patients at the COVID-19 Time. Front. Psychol. 2021, 12, 2417. [Google Scholar] [CrossRef]
- Siebes, R.C.; Wijnroks, L.; Ketelaar, M.; van Schie, P.E.M.; Gorter, J.W.; Vermeer, A. Parent Participation in Paediatric Rehabilitation Treatment Centres in the Netherlands: A Parents’ Viewpoint. Child Care Health Dev. 2007, 33, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Institute for Patient- and Family-Centered Care Advancing the Practice of Patient- and Family-Centered Care in Hospitals—How to Get Started; Bethesda: Rockville, MD, USA, 2016.
- King, S.; Teplicky, R.; King, G.; Rosenbaum, P. Family-Centered Service for Children with Cerebral Palsy and Their Families: A Review of the Literature. Semin. Pediatr. Neurol. 2004, 11, 78–86. [Google Scholar] [CrossRef]
- Bamm, E.L.; Rosenbaum, P. Family-Centered Theory: Origins, Development, Barriers, and Supports to Implementation in Rehabilitation Medicine. Arch. Phys. Med. Rehabil. 2008, 89, 1618–1624. [Google Scholar] [CrossRef] [PubMed]
- Caro, P.; Derevensky, J.L. Family-Focused Intervention Model: Implementation and Research Findings. Topics Early Child Spec. Educ. 1991, 11, 66–91. [Google Scholar] [CrossRef]
- Law, M.; Darrah, J.; Pollock, N.; King, G.; Rosenbaum, P.; Russell, D.; Palisano, R.; Harris, S.; Armstrong, R.; Watt, J. Family-Centred Functional Therapy for Children with Cerebral Palsy. Phys. Occup. Ther. Pediatr. 1998, 18, 83–102. [Google Scholar] [CrossRef]
- Reason, P.; Bradbury, H. Handbook of Action Research, Concise Paperback ed.; Reason, P., Bradbury, H., Eds.; SAGE Publications: London, UK, 2006; ISBN 9781412920308. [Google Scholar]
- Ozanne, J.L.; Saatcioglu, B. Participatory Action Research. J. Consum. Res. 2008, 35, 423–439. [Google Scholar] [CrossRef] [Green Version]
- Fabio, R.A.; Martinazzoli, C.; Antonietti, A. Development and Standardization of the “Rars”(Rett Assessment Rating Scale). Life Span Disabil. 2005, 8, 257–281. [Google Scholar]
- Romano, A.; Caprì, T.; Semino, M.; Bizzego, I.; Di Rosa, G.; Fabio, R.A. Gross Motor, Physical Activity and Musculoskeletal Disorder Evaluation Tools for Rett Syndrome: A Systematic Review. Dev. Neurorehabil. 2020, 23, 485–501. [Google Scholar] [CrossRef]
- Bovend’Eerdt, T.J.H.; Botell, R.E.; Wade, D.T. Writing SMART Rehabilitation Goals and Achieving Goal Attainment Scaling: A Practical Guide. Clin. Rehabil. 2009, 23, 352–361. [Google Scholar] [CrossRef]
- Turner-Stokes, L. Goal Attainment Scaling (GAS) in Rehabilitation: A Practical Guide. Clin. Rehabil. 2009, 23, 362–370. [Google Scholar] [CrossRef]
- Mailloux, Z.; May-Benson, T.A.; Summers, C.A.; Miller, L.J.; Brett-Green, B.; Burke, J.P.; Cohn, E.S.; Koomar, J.A.; Parham, L.D.; Roley, S.S.; et al. Goal Attainment Scaling as a Measure of Meaningful Outcomes for Children with Sensory Integration Disorders. Am. J. Occup. Ther. 2007, 61, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Rushton, P.W.; Miller, W.C. Goal Attainment Scaling in the Rehabilitation of Patients with Lower-Extremity Amputations: A Pilot Study. Arch. Phys. Med. Rehabil. 2002, 83, 771–775. [Google Scholar] [CrossRef] [PubMed]
- King, G.A.; McDougall, J.; Palisano, R.J.; Gritzan, J.; Tucker, M.A. Goal Attainment Scaling. Phys. Occup. Ther. Pediatr. 2000, 19, 31–52. [Google Scholar] [CrossRef]
- Kiresuk, T.J.; Sherman, R.E. Goal Attainment Scaling: A General Method for Evaluating Comprehensive Community Mental Health Programs. Community Ment. Health J. 1968, 4, 443–453. [Google Scholar] [CrossRef] [PubMed]
- Rodocanachi Roidi, M.L.; Isaias, I.U.; Cozzi, F.; Grange, F.; Scotti, F.M.; Gestra, V.F.; Gandini, A.; Ripamonti, E. Motor Function in Rett Syndrome: Comparing Clinical and Parental Assessments. Dev. Med. Child Neurol. 2019, 61, 957–963. [Google Scholar] [CrossRef] [PubMed]
- Rodocanachi Roidi, M.L.; Isaias, I.U.; Cozzi, F.; Grange, F.; Scotti, F.M.; Gestra, V.F.; Gandini, A.; Ripamonti, E. A New Scale to Evaluate Motor Function in Rett Syndrome: Validation and Psychometric Properties. Pediatr. Neurol. 2019, 100, 80–86. [Google Scholar] [CrossRef]
- Lor, L.; Hill, K.; Jacoby, P.; Leonard, H.; Downs, J. A Validation Study of a Modified Bouchard Activity Record That Extends the Concept of ‘Uptime’ to Rett Syndrome. Dev. Med. Child Neurol. 2015, 57, 1137–1142. [Google Scholar] [CrossRef] [Green Version]
- Tomczak, M.; Tomczak, E. The Need to Report Effect Size Estimates Revisited. An Overview of Some Recommended Measures of Effect Size. Trends Sport Sci. 2014, 1, 19–25. [Google Scholar]
- King, B.M.; Rosopa, P.; Minium, E.W. Statistical Reasoning in the Behavioral Sciences, 7th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018; ISBN 9780470134870. [Google Scholar]
- Kinney, A.R.; Eakman, A.M.; Graham, J.E. Novel Effect Size Interpretation Guidelines and an Evaluation of Statistical Power in Rehabilitation Research. Arch. Phys. Med. Rehabil. 2020, 101, 2219–2226. [Google Scholar] [CrossRef]
- Armstrong, R.A. When to Use the Bonferroni Correction. Ophthalmic Physiol. Opt. 2014, 34, 502–508. [Google Scholar] [CrossRef]
- Lotan, M.; Downs, J.; Elefant, C. A Pilot Study Delivering Physiotherapy Support for Rett Syndrome Using a Telehealth Framework Suitable for COVID-19 Lockdown. Dev. Neurorehabil. 2021, 24, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Downs, J.; Parkinson, S.; Ranelli, S.; Leonard, H.; Diener, P.; Lotan, M. Perspectives on Hand Function in Girls and Women with Rett Syndrome. Dev. Neurorehabil. 2014, 17, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, K.; Viken, A.; Von Tetzchner, S. Rett Syndrome and Ageing: A Case Study. Disabil. Rehabil. 2001, 23, 160–166. [Google Scholar] [CrossRef]
- Bumin, G.; Uyanik, M.; Yilmaz, I.; Kayihan, H.; Topçu, M.; Topc¸u, M.; Topc¸u, M.; Topc¸u, M.; Kayihan, L.; Topc¸u, M. Hydrotherapy for Rett Syndrome. J. Rehabil. Med. 2003, 35, 44–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, M.W.; Laverick, D.H.; Lewis, M. Brief Report: Fostering Environmental Control in a Young Child with Rett Syndrome: A Case Study. J. Autism. Dev. Disord. 1995, 25, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Piazza, C.C.; Anderson, C.; Fisher, W. Teaching self-feeding skills to patients with rett syndrome. Dev. Med. Child Neurol. 2008, 35, 991–996. [Google Scholar] [CrossRef] [PubMed]
- Fabio, R.A.; Giannatiempo, S.; Caprì, T.; Semino, M. Repeated Motor Training on Attention Reaching Skills and Stereotypies in Rett Syndrome. Mov. Disord. Clin. Pract. 2022, 9, 637–646. [Google Scholar] [CrossRef]
- Stahlhut, M.; Esbensen, B.A.; Larsen, J.L.; Bisgaard, A.M.; Downs, J.; Nordmark, E. Facilitators and Barriers of Participation in “Uptime” Activities in Girls and Women with Rett Syndrome: Perspectives from Parents and Professionals. Qual. Health Res. 2019, 29, 609–619. [Google Scholar] [CrossRef]
- Barr, M.; Shields, N. Identifying the Barriers and Facilitators to Participation in Physical Activity for Children with Down Syndrome. J. Intellect. Disabil. Res. 2011, 55, 1020–1033. [Google Scholar] [CrossRef]
- Bossink, L.W.M.; van der Putten, A.A.; Vlaskamp, C. Understanding Low Levels of Physical Activity in People with Intellectual Disabilities: A Systematic Review to Identify Barriers and Facilitators. Res. Dev. Disabil. 2017, 68, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Stahlhut, M.; Downs, J.; Wong, K.; Bisgaard, A.M.; Nordmark, E. Feasibility and Effectiveness of an Individualized 12-Week “Uptime” Participation (U-PART) Intervention in Girls and Women with Rett Syndrome. Phys. Ther. 2020, 100, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Downs, J.; Blackmore, A.M.; Wong, K.; Buckley, N.; Lotan, M.; Elefant, C.; Leonard, H.; Stahlhut, M. Can Telehealth Increase Physical Activity in Individuals with Rett Syndrome? A Multicentre Randomized Controlled Trial. Dev. Med. Child Neurol. 2022. [Google Scholar] [CrossRef] [PubMed]
- Lotan, M.; Merrick, J.; Carmeli, E. Managing Scoliosis in a Young Child with Rett Syndrome: A Case Study. Sci. World J. 2005, 5, 264–273. [Google Scholar] [CrossRef] [PubMed]
- Lotan, M.; Merrick, J.; Kandel, I.; Morad, M. Aging in Persons with Rett Syndrome: An Updated Review. Sci. World J. 2010, 10, 778–787. [Google Scholar] [CrossRef] [PubMed]
- Lotan, M.; Stahlhut, M.; Romano, A.; Downs, J.; Elefant, C. Family-Centered Telehealth Supporting Motor Skills and Activity in Individuals with Rett Syndrome. In Assistive Technologies for Assessment and Recovery of Neurological Impairments; Stasolla, F., Ed.; IGI Global: Hershey, PA, USA, 2022; pp. 147–171. [Google Scholar]
- Lotan, M.; Gootman, A. Regaining Walking Ability in Individuals with Rett Syndrome: A Case Study. Int. J. Disabil. Hum. Dev. 2012, 11, 163–169. [Google Scholar] [CrossRef]
- Lotan, M.; Hanks, S. Physical Therapy Intervention for Individuals with Rett Syndrome. Sci. World J. 2006, 6, 1314–1338. [Google Scholar] [CrossRef]
- Lotan, M.; Merrick, J. Rett Syndrome: Therapeutic Interventions; Nova Science Publishers Inc.: Beijing, China, 2011; ISBN 978-1-61728-080-1. [Google Scholar]
- Romero-Galisteo, R.P.; González-Sánchez, M.; Costa, L.; Brandão, R.; Ramalhete, C.; Leão, C.; Jacobsohn, L. Outcome Measurement Instruments in Rett Syndrome: A Systematic Review. Eur. J. Paediatr. Neurol. 2022, 39, 79–87. [Google Scholar] [CrossRef]
n = 40 | Age (Years) | RARS Scores | ||||||
---|---|---|---|---|---|---|---|---|
Cognition | Sensoriality | Motricity | Emotion | Autonomy | RTT Characteristics | Total | ||
Mean (SD) | 15.7 (9.7) | 15.2 (3.9) | 3.3 (1.1) | 10.0 (2.6) | 3.8 (1.2) | 11.0 (1.7) | 24.2 (3.8) | 67.4 (10.0) |
Median | 13.3 | 15.3 | 3.0 | 10.0 | 3.5 | 11.8 | 24.0 | 67.8 |
Range | 2.8–40.3 | 9.0–25.0 | 2.0–6.0 | 5.0–15.5 | 2.0–7.0 | 4.5–12.0 | 15.0–33.0 | 45.5–82.5 |
Evaluation Session | Goal Area | Motor Function | Range of Motion | Hand Functioning | Physical Fitness | Total | |
---|---|---|---|---|---|---|---|
Amount (%) | 126 (71.6%) | 28 (15.9%) | 15 (8.5%) | 7 (4.0%) | 176 (100%) | ||
T3 | Gas scores | −2 | 5 (4.1%) | 0 (0%) | 0 (0%) | 1 (14.2%) | 6 (3.4%) |
−1 | 14 (11.1%) | 6 (21.4%) | 2 (13.3%) | 3 (42.9%) | 25 (14.2%) | ||
0 | 39 (30.9%) | 3 (10.7%) | 7 (46.7%) | 1 (14.2%) | 50 (28.4%) | ||
1 | 43 (34.1%) | 18 (64.3%) | 2 (13.3%) | 2 (28.6%) | 65 (36.9%) | ||
2 | 25 (19.8%) | 1 (3.6%) | 4 (26.7%) | 0 (0%) | 30 (17.1%) | ||
T4 | Gas scores | −2 | 4 (3.2%) | 3 (10.7%) | 0 (0%) | 2 (28.6%) | 13 (7.4%) |
−1 | 20 (15.8%) | 6 (21.4%) | 2 (13.3%) | 2 (28.6%) | 38 (21.6%) | ||
0 | 39 (30.9%) | 4 (14.4%) | 5 (33.3%) | 2 (28.6%) | 52 (29.5%) | ||
1 | 36 (28.6%) | 13 (46.4%) | 3 (20.0%) | 1 (14.2%) | 55 (31.2%) | ||
2 | 27 (21.4%) | 2 (7.1%) | 5 (33.3%) | 0 (0%) | 34 (19.3%) |
Evaluation Session | ||||||
---|---|---|---|---|---|---|
T1 | T2 | T3 | T4 | |||
RESMES | Standing | Mean (SD) | 3.1 (3.9) | 3.1 (3.9) | 2.6 (3.4) | 2.8 (3.6) |
Median | 1 | 1 | 0 | 0 | ||
Range | 0–12 | 0–12 | 0–12 | 0–12 | ||
Sitting | Mean (SD) | 1.8 (3.2) | 1.7 (3.1) | 1.2 (2.3) | 1.2 (2.1) | |
Median | 0 | 0 | 0 | 0 | ||
Range | 0–12 | 0–12 | 0–10 | 0–10 | ||
Transfer | Mean (SD) | 14.5 (7.6) | 14.5 (7.6) | 14.0 (7.4) | 13.9 (7.5) | |
Median | 16 | 16 | 15 | 14.5 | ||
Range | 0–26 | 0–26 | 0–26 | 0–27 | ||
Walking | Mean (SD) | 7.9 (7.0) | 7.9 (7.0) | 7.2 (6.8) | 7.0 (6.9) | |
Median | 6 | 6 | 5 | 5 | ||
Range | 0–18 | 0–18 | 0–18 | 0–18 | ||
Run | Mean (SD) | 3.8 (0.8) | 3.8 (0.8) | 3.8 (0.8) | 3.7 (1.0) | |
Median | 4 | 4 | 4 | 4 | ||
Range | 0–4 | 0–4 | 0–4 | 0–4 | ||
Stairs | Mean (SD) | 6.5 (2.0) | 6.4 (2.0) | 5.9 (2.3) | 5.9 (2.2) | |
Median | 7 | 7 | 6 | 6 | ||
Range | 0–8 | 0–8 | 0–8 | 0–8 | ||
Total | Mean (SD) | 37.6 (21.6) | 37.4 (21.6) | 34.6 (20.5) | 34.6 (20.5) | |
Median | 33 | 32.5 | 29 | 29 | ||
Range | 0–80 | 0–80 | 0–74 | 0–74 | ||
mBAR | Mean (SD) | 98.2 (27.5) | 98.5 (26.1) | 107.5 (26.7) | 100.0 (27.5) | |
Median | 100 | 101 | 107 | 100 | ||
Range | 52–168 | 51–150 | 51–167 | 51–155 |
RESMES | mBAR | ||||||||
---|---|---|---|---|---|---|---|---|---|
Standing | Sitting | Transfer | Walking | Run | Stairs | Total | |||
Friedman test | 0.002 * (0.127) | 0.002 * (0.124) | ˂0.001 * (0.225) | ˂0.001 * (0.303) | 0.733 | ˂0.001 * (0.304) | ˂0.001 * (0.753) §§ | ˂0.001 * (0.205) | |
Wilcoxon signed-rank test | T1 vs. T2 | 1.000 | 0.180 | 0.317 | 0.480 | 1.000 | 0.317 | 0.059 | 0.084 |
T1 vs. T3 | 0.017 * (0.101) ↑ | 0.017 * (0.034) ↑ | 0.002 * (0.090) ↑ | 0.001 * (0.213) ↑ | 0.317 | 0.001 * (0.111) ↑ | ˂0.001 * (0.683) §§↑ | ˂0.001 * (0.720) §§↑ | |
T1 vs. T4 | 0.060 | 0.027 * (0.045) ↑ | 0.001 * (0.159) ↑ | 0.001 * (0.265) | 0.414 | 0.001 * (0.111) ↑ | ˂0.001 * (0.768) §§↑ | 0.380 | |
T2 vs. T3 | 0.009 * (0.100) ↑ | 0.027 * (0.026) ↑ | 0.002 * (0.090) ↑ | ˂0.001 * (0.239) ↑ | 0.317 | 0.001 * (0.111) ↑ | ˂0.001 * (0.726) §§↑ | ˂0.001 * (0.728) §§↑ | |
T2 vs. T4 | 0.076 | 0.049 * (0.034) ↑ | 0.002 * (0.147) ↑ | 0.001 * (0.263) ↑ | 0.414 | 0.001 * (0.111) ↑ | ˂0.001 * (0.726) §§↑ | 0.591 | |
T3 vs. T4 | 0.210 | 0.581 | 0.479 | 0.341 | 0.564 | 0.480 | 0.461 | 0.010 * (0.470) §↓ | |
∆T2–T1 vs. ∆T3–T2 | 0.009 * (0.100) ↑ | 0.107 | 0.003 * (0.080) ↑ | ˂0.001 * (0.238) ↑ | 0.317 | 0.001 * (0.111) ↑ | ˂0.001 * (0.635) §§↑ | ˂0.001 * (0.829) §§↑ | |
∆T3–T2 vs. ∆T4–T3 | 0.008 * (0.123) ↓ | 0.028 * (0.038) ↓ | 0.070 | 0.025 * (0.155) ↓ | 1.000 | 0.005 * (0.107) ↓ | ˂0.001 * (0.539) §↓ | ˂0.001 * (0.718) §§↓ | |
∆T2–T1 vs. ∆T4–T3 | 0.174 | 0.671 | 0.599 | 0.446 | 0.564 | 0.408 | 0.614 | 0.009 * (0.440) §↑ |
Participants Age | RARS T1 | RESMES T1 | mBAR T1 | |
---|---|---|---|---|
Participants age | / | 0.650 (−0.074) | 0.168 (0.222) | 0.102 (−0.262) |
RARS T1 | 0.650 (−0.074) | / | 0.019 (0.368) * | 0.083 (−0.277) |
RESMES T1 | 0.168 (0.222) | 0.019 (0.368) * | / | ˂0.001 (−0.695) * |
mBAR T1 | 0.102 (−0.262) | 0.083 (−0.277) | ˂0.001 (−0.695) * | / |
RESMES ∆T2–T1 | 0.121 (0.249) | 0.380 (−0.142) | 0.884 (0.024) | 0.871 (0.026) |
RESMES ∆T3–T2 | 0.640 (−0.076) | 0.005 (−0.440) * | ˂0.001 (−0.531) * | 0.116 (0.253) |
RESMES ∆T4–T3 | 0.984 (0.003) | 0.482 (0.115) | 0.578 (0.091) | 0.910 (0.018) |
mBAR ∆T2–T1 | 0.791 (0.043) | 0.737 (−0.055) | 0.910 (−0.019) | 0.122 (−0.249) |
mBAR ∆T3–T2 | 0.217 (0.199) | 0.495 (−0.111) | 0.920 (0.016) | 0.712 (−0.06) |
mBAR ∆T4–T3 | 0.611 (−0.083) | 0.924 (0.016) | 0.414 (−0.133) | 0.359 (−0.149) |
GAS T-score T3 | 0.318 (0.162) | 0.347 (−0.153) | 0.916 (−0.017) | 0.458 (−0.121) |
GAS T-score T4 | 0.414 (0.133) | 0.412 (−0.133) | 0.450 (0.123) | 0.117 (−0.252) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romano, A.; Ippolito, E.; Favetta, M.; Lotan, M.; Moran, D.S. Individualized Remotely Supervised Motor Activity Programs Promote Rehabilitation Goal Achievement, Motor Functioning, and Physical Activity of People with Rett Syndrome—A Single-Cohort Study. Int. J. Environ. Res. Public Health 2023, 20, 659. https://doi.org/10.3390/ijerph20010659
Romano A, Ippolito E, Favetta M, Lotan M, Moran DS. Individualized Remotely Supervised Motor Activity Programs Promote Rehabilitation Goal Achievement, Motor Functioning, and Physical Activity of People with Rett Syndrome—A Single-Cohort Study. International Journal of Environmental Research and Public Health. 2023; 20(1):659. https://doi.org/10.3390/ijerph20010659
Chicago/Turabian StyleRomano, Alberto, Elena Ippolito, Martina Favetta, Meir Lotan, and Daniel Sender Moran. 2023. "Individualized Remotely Supervised Motor Activity Programs Promote Rehabilitation Goal Achievement, Motor Functioning, and Physical Activity of People with Rett Syndrome—A Single-Cohort Study" International Journal of Environmental Research and Public Health 20, no. 1: 659. https://doi.org/10.3390/ijerph20010659