Harmful Alcohol Use and Associated Socio-Structural Factors among Female Sex Workers Initiating HIV Pre-Exposure Prophylaxis in Dar es Salaam, Tanzania
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Procedures
2.3. Instruments and Measures
2.3.1. The Survey Questionnaire
2.3.2. Outcome: Alcohol Use Assessment
2.3.3. Socio-Structural Factors and Other Covariates
2.4. Data Analysis
2.5. Ethical Considerations
3. Results
3.1. Socio-Demographic and Sex Work-Related Characteristics
3.2. Socio-Structural Factors
3.3. Alcohol and Drug Use
3.4. Factors Associated with Harmful Alcohol Use
3.5. Socio-Structural Factors Independently Associated with Harmful Alcohol Use
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Global Status Report on Alcohol and Health 2018; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Bloomfield, K. Understanding the alcohol-harm paradox: What next? Lancet Public Health 2020, 5, e300–e301. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Li, X.; Stanton, B. Alcohol use among female sex workers and male clients: An integrative review of global literature. Alcohol Alcohol. 2010, 45, 188–199. [Google Scholar] [CrossRef] [PubMed]
- Lancaster, K.E.; Hetrick, A.; Jaquet, A.; Adedimeji, A.; Atwoli, L.; Colby, D.J.; Mayor, A.M.; Parcesepe, A.; Syvertsen, J. Substance use and universal access to HIV testing and treatment in sub-Saharan Africa: Implications and research priorities. J. Virus Erad. 2018, 4 (Suppl. 2), 26–32. [Google Scholar] [CrossRef] [PubMed]
- Roth, E.A.; Benoit, C.; Jansson, M.; Hallsgrimdottir, H. Public Drinking Venues as Risk Environments: Commercial Sex, Alcohol and Violence in a Large Informal Settlement in Nairobi, Kenya. Hum. Ecol. 2017, 45, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Roberts, E.; Ma, H.; Bhattacharjee, P.; Musyoki, H.K.; Gichangi, P.; Avery, L.; Musimbi, J.; Tsang, J.; Kaosa, S.; Kioko, J.; et al. Low program access despite high burden of sexual, structural, and reproductive health vulnerabilities among young women who sell sex in Mombasa, Kenya. BMC Public Health 2020, 20, 806. [Google Scholar] [CrossRef]
- Leddy, A.M.; Underwood, C.; Decker, M.R.; Mbwambo, J.; Likindikoki, S.; Galai, N.; Kerrigan, D. Adapting the Risk Environment Framework to Understand Substance Use, Gender-Based Violence, and HIV Risk Behaviors Among Female Sex Workers in Tanzania. AIDS Behav. 2018, 22, 3296–3306. [Google Scholar] [CrossRef]
- Malama, K.; Sagaon-Teyssier, L.; Parker, R.; Tichacek, A.; Sharkey, T.; Kilembe, W.; Inambao, M.; Price, M.A.; Spire, B.; Allen, S. Factors associated with alcohol use before sex among HIV-negative female sex workers in Zambia. Int. J. STD AIDS 2020, 31, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Amogne, M.D.; Agardh, A.; Abate, E.; Ahmed, J.; Asamoah, B.O. Determinants and consequences of heavy episodic drinking among female sex workers in Ethiopia: A respondent-driven sampling study. PLoS ONE 2021, 16, e0252432. [Google Scholar] [CrossRef]
- Kibuuka, H.N.; Rono, K.; Maganga, L.; Millard, M.; Sekiziyivu, A.; Maboko, L.; Shaffer, D.; Valenzuela, A.; Michael, N.; Robb, M. Pattern of HIV risk behavior in a cohort of high risk women in East Africa. Retrovirology 2012, 9 (Suppl. 2), 124. [Google Scholar] [CrossRef][Green Version]
- Vu, L.; Tun, W.; Apicella, L.; Casalini, C.; Makyao, N.; Tsang, S.; Michael, D.; Koppenhaver, T.; Mlanga, E. Community-based antiretroviral therapy (ART) delivery for female sex workers in Tanzania: Intervention model and baseline findings. AIDS Care 2019, 32, 729–734. [Google Scholar] [CrossRef]
- Mmbaga, E.J.; Makayo, N.; Leshabari, M.T.; Leyna, G.H.; Karonda, P.; Ndayongeje, J.; Welty, S.; Said, C.; Mboya, I. Integrated Bio-Behavioural Survey among Female Sex Workers in Dar Es Salaam, 2017; National Aids Control Programme, Minstry of Health, Community Developement, Gender, Elders and Children: Dar es Salaam, Tanzania, 2018; p. 72. [Google Scholar]
- Pithey, A.; Parry, C. Descriptive systematic review of Sub-Saharan African studies on the association between alcohol use and HIV infection. SAHARA J. 2009, 6, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Kalichman, S.C.; Simbayi, L.C.; Kaufman, M.; Cain, D.; Jooste, S. Alcohol use and sexual risks for HIV/AIDS in sub-Saharan Africa: Systematic review of empirical findings. Prev. Sci. 2007, 8, 141–151. [Google Scholar] [CrossRef] [PubMed]
- Shuper, P.A.; Neuman, M.; Kanteres, F.; Baliunas, D.; Joharchi, N.; Rehm, J. Causal Considerations on Alcohol and HIV/AIDS—A Systematic Review. Alcohol Alcohol. 2010, 45, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Rehm, J.; Probst, C.; Shield, K.D.; Shuper, P.A. Does alcohol use have a causal effect on HIV incidence and disease progression? A review of the literature and a modeling strategy for quantifying the effect. Popul. Health Metr. 2017, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Chersich, M.F.; Bosire, W.; King’ola, N.; Temmerman, M.; Luchters, S. Effects of hazardous and harmful alcohol use on HIV incidence and sexual behaviour: A cohort study of Kenyan female sex workers. Glob. Health 2014, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Scott-Sheldon, L.A.; Carey, K.B.; Cunningham, K.; Johnson, B.T.; Carey, M.P. Alcohol Use Predicts Sexual Decision-Making: A Systematic Review and Meta-Analysis of the Experimental Literature. AIDS Behav. 2016, 20 (Suppl. 1), 19–39. [Google Scholar] [CrossRef]
- George, W.H.; Blayney, J.A.; Stappenbeck, C.A.; Davis, K.C. The Role of Alcohol-Related Behavioral Risk in the Design of HIV Prevention Interventions in the Era of Antiretrovirals: Alcohol Challenge Studies and Research Agenda. AIDS Behav. 2021, 25, 347–364. [Google Scholar] [CrossRef]
- Berry, M.S.; Johnson, M.W. Does being drunk or high cause HIV sexual risk behavior? A systematic review of drug administration studies. Pharmacol. Biochem. Behav. 2018, 164, 125–138. [Google Scholar] [CrossRef]
- George, W.H. Alcohol and Sexual Health Behavior: “What We Know and How We Know It”. J. Sex Res. 2019, 56, 409–424. [Google Scholar] [CrossRef]
- Grodensky, C.A.; Golin, C.E.; Ochtera, R.D.; Turner, B.J. Systematic review: Effect of alcohol intake on adherence to outpatient medication regimens for chronic diseases. J. Stud. Alcohol Drugs 2012, 73, 899–910. [Google Scholar] [CrossRef]
- Jooste, S.; Mabaso, M.; Taylor, M.; North, A.; Shean, Y.; Simbayi, L.C. Socio-economic differences in the uptake of HIV testing and associated factors in South Africa. BMC Public Health 2021, 21, 1591. [Google Scholar] [CrossRef]
- Fearon, E.; Phillips, A.; Mtetwa, S.; Chabata, S.T.; Mushati, P.; Cambiano, V.; Busza, J.; Napierala, S.; Hensen, B.; Baral, S.; et al. How Can Programs Better Support Female Sex Workers to Avoid HIV Infection in Zimbabwe? A Prevention Cascade Analysis. J. Acquir. Immune Defic. Syndr. 2019, 81, 24–35. [Google Scholar] [CrossRef]
- Kaufman, M.R.; Cornish, F.; Zimmerman, R.S.; Johnson, B.T. Health behavior change models for HIV prevention and AIDS care: Practical recommendations for a multi-level approach. J. Acquir. Immune Defic. Syndr. 2014, 66 (Suppl. 3), 250–258. [Google Scholar] [CrossRef]
- Shannon, K.; Goldenberg, S.M.; Deering, K.N.; Strathdee, S.A. HIV infection among female sex workers in concentrated and high prevalence epidemics: Why a structural determinants framework is needed. Curr. Opin. HIV AIDS 2014, 9, 174. [Google Scholar] [CrossRef]
- Parcesepe, A.M.; L′engle, K.L.; Martin, S.L.; Green, S.; Sinkele, W.; Suchindran, C.; Speizer, I.S.; Mwarogo, P.; Kingola, N. The impact of an alcohol harm reduction intervention on interpersonal violence and engagement in sex work among female sex workers in Mombasa, Kenya: Results from a randomized controlled trial. Drug Alcohol Depend. 2016, 161, 21–28. [Google Scholar] [CrossRef]
- Chersich, M.F.; Luchters, S.M.F.; Malonza, I.M.; Mwarogo, P.; King’ola, N.; Temmerman, M. Heavy episodic drinking among Kenyan female sex workers is associated with unsafe sex, sexual violence and sexually transmitted infections. Int. J. STD AIDS 2007, 18, 764–769. [Google Scholar] [CrossRef]
- WHO. Alcohol Consumption and Sustainable Development: Fact sheet on Sustainable Development Goals (SDGs): Health Targets; WHO Regional Office for Europe: Copenhagen, Denmark, 2020. [Google Scholar]
- WHO. Global Strategy to Reduce the Harmful Use of Alcohol; WHO: Geneva, Switzerland, 2010. [Google Scholar]
- Babor, F.; Biddle-Higgins, J.C.; Saunders, J.B.; Monteiro, M.G. The Alcohol Use Disorders Identification Test (AUDIT): Guidelines for Use in Primary Care, 2nd ed.; The World Health Organization: Geneva, Switzerland, 2001. [Google Scholar]
- Tanzania National Bureau of Statistics. 2022 Population and Housing Census—Preliminary Report in Swahili Language; Tanzania National Bureau of Statistic: Dodoma, Tanzania, 2022. [Google Scholar]
- TACAIDS; ZAC. Tanzania HIV Impact Survey (THIS) 2016-2017: Final Report; Tanzania Commission for AIDS (TACAIDS); Zanzibar AIDS Commission (ZAC): Dar es Salaam, Tanzania, 2018. [Google Scholar]
- Dutta, A.; Barker, C.; Makyao, N. Consensus Estimates on Key Population Size and HIV Prevalence in Tanzania; National AIDS Control Programme (NACP), Ministry of Health and Social Welfare: Dar es Salaam, Tanzania, 2014. [Google Scholar]
- National AIDS Control Programme. National Guidelines for Management of HIV and AIDS; Ministry of Health, Community, Developement, Gender, Elderly and Children, National AIDS Control Programme: Dar es Salaam, Tanzania, 2019; p. 308. [Google Scholar]
- Schonlau, M.; Liebau, E. Respondent-Driven Sampling. Stata J. 2012, 12, 72–93. [Google Scholar] [CrossRef]
- Kerrigan, D.; Mbwambo, J.; Likindikoki, S.; Beckham, S.; Mwampashi, A.; Shembilu, C.; Mantsios, A.; Leddy, A.; Davis, W.; Galai, N. Project Shikamana: Baseline Findings From a Community Empowerment-Based Combination HIV Prevention Trial Among Female Sex Workers in Iringa, Tanzania. J. Acquir. Immune Defic. Syndr. 2017, 74 (Suppl. 1), 60–68. [Google Scholar] [CrossRef] [PubMed]
- University of Oslo. Nettskjema; University of Oslo: Oslo, Norway, 2022. [Google Scholar]
- TSD Service Group. Services for Sensitive Data (TSD); IT Department, University of Oslo: Oslo, Norway, 2022. [Google Scholar]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B. The Patient Health Questionnaire-2: Validity of a two-item depression screener. Med. Care 2003, 41, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Spitzer, R.L.; Williams, J.B.; Monahan, P.O.; Löwe, B. Anxiety disorders in primary care: Prevalence, impairment, comorbidity, and detection. Ann. Intern Med. 2007, 146, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Broadhead, W.E.; Gehlbach, S.H.; De Gruy, F.V.; Kaplan, B.H. The Duke–UNC Functional Social Support Questionnaire: Measurement of Social Support in Family Medicine Patients. Med. Care 1988, 26, 709–723. [Google Scholar] [CrossRef]
- Klein, H.; Washington, T.A. The Pre-Exposure Prophylaxis (PrEP) Stigma Scale: Preliminary findings from a pilot study. Int. Public Health J. 2019, 11, 185–195. [Google Scholar]
- Vissoci, J.R.N.; Hertz, J.; El-Gabri, D.; Andrade Do Nascimento, J.R.; Pestillo De Oliveira, L.; Mmbaga, B.T.; Mvungi, M.; Staton, C.A. Cross-cultural adaptation and psychometric properties of the audit and cage questionnaires in Tanzanian Swahili for a traumatic brain injury population. Alcohol Alcohol. 2018, 53, 112–120. [Google Scholar] [CrossRef]
- Babor, T.F.; Robaina, K. The Alcohol Use Disorders Identification Test (AUDIT): A review of graded severity algorithms and national adaptations. Int. J. Alcohol Drug Res. 2016, 5, 17–24. [Google Scholar] [CrossRef]
- Berger, B.E.; Ferrans, C.E.; Lashley, F.R. Measuring stigma in people with HIV: Psychometric assessment of the HIV stigma scale. Res. Nurs. Health 2001, 24, 518–529. [Google Scholar] [CrossRef]
- Epino, H.M.; Rich, M.L.; Kaigamba, F.; Hakizamungu, M.; Socci, A.R.; Bagiruwigize, E.; Franke, M.F. Reliability and construct validity of three health-related self-report scales in HIV-positive adults in rural Rwanda. AIDS Care 2012, 24, 1576–1583. [Google Scholar] [CrossRef]
- Westreich, D.; Greenland, S. The table 2 fallacy: Presenting and interpreting confounder and modifier coefficients. Am. J. Epidemiol. 2013, 177, 292–298. [Google Scholar] [CrossRef]
- Textor, J.; Hardt, J.; Knüppel, S. DAGitty: A Graphical Tool for Analyzing Causal Diagrams. Epidemiology 2011, 22, 745. [Google Scholar] [CrossRef]
- Muller, C.J.; MacLehose, R.F. Estimating predicted probabilities from logistic regression: Different methods correspond to different target populations. Int. J. Epidemiol. 2014, 43, 962–970. [Google Scholar] [CrossRef]
- Sperandei, S.; Bastos, L.S.; Ribeiro-Alves, M.; Reis, A.; Bastos, F.I. Assessing logistic regression applied to respondent-driven sampling studies: A simulation study with an application to empirical data. Int. J. Soc. Res. Methodol. 2022, 1–15. [Google Scholar] [CrossRef]
- Avery, L.; Rotondi, N.; McKnight, C.; Firestone, M.; Smylie, J.; Rotondi, M. Unweighted regression models perform better than weighted regression techniques for respondent-driven sampling data: Results from a simulation study. BMC Med. Res. Methodol. 2019, 19, 1–13. [Google Scholar] [CrossRef] [PubMed]
- de Meneses-Gaya, C.; Zuardi, A.W.; Loureiro, S.R.; Crippa, J.A.S. Alcohol Use Disorders Identification Test (AUDIT): An updated systematic review of psychometric properties. Psychol. Neurosci. 2009, 2, 83–97. [Google Scholar] [CrossRef]
- Lancaster, K.E.; MacLean, S.A.; Lungu, T.; Mmodzi, P.; Hosseinipour, M.C.; Hershow, R.B.; Powers, K.A.; Pence, B.W.; Hoffman, I.F.; Miller, W.C.; et al. Socioecological Factors Related to Hazardous Alcohol use among Female Sex Workers in Lilongwe, Malawi: A Mixed Methods Study. Subst. Use Misuse 2018, 53, 782–791. [Google Scholar] [CrossRef] [PubMed]
- Weiss, H.A.; Vandepitte, J.; Bukenya, J.N.; Mayanja, Y.; Nakubulwa, S.; Kamali, A.; Seeley, J.; Grosskurth, H. High Levels of Persistent Problem Drinking in Women at High Risk for HIV in Kampala, Uganda: A Prospective Cohort Study. Int. J. Environ. Res. Public Health 2016, 13, 153. [Google Scholar] [CrossRef] [PubMed]
- Deering, K.N.; Amin, A.; Shoveller, J.; Nesbitt, A.; Garcia-Moreno, C.; Duff, P.; Argento, E.; Shannon, K. A Systematic Review of the Correlates of Violence Against Sex Workers. Am. J. Public Health 2014, 104, e42–e54. [Google Scholar] [CrossRef] [PubMed]
- Mirzadeh, M.; Olfatifar, M.; Eslahi, A.V.; Abdoli, A.; Houshmand, E.; Majidiani, H.; Johkool, M.G.; Askari, S.; Hashemipour, S.; Badri, M. Global prevalence of Trichomonas vaginalis among female sex workers: A systematic review and meta-analysis. Parasitol. Res. 2021, 120, 2311–2322. [Google Scholar] [CrossRef]
- Beattie, T.S.; Smilenova, B.; Krishnaratne, S.; Mazzuca, A. Mental health problems among female sex workers in low- and middle-income countries: A systematic review and meta-analysis. PLoS Med. 2020, 17, e1003297. [Google Scholar] [CrossRef]
- WHO Alcohol—Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/alcohol (accessed on 4 June 2022).
- Meier, P.S.; Warde, A.; Holmes, J. All drinking is not equal: How a social practice theory lens could enhance public health research on alcohol and other health behaviours. Addiction 2018, 113, 206–213. [Google Scholar] [CrossRef]
- Bacchus, L.J.; Ranganathan, M.; Watts, C.; Devries, K. Recent intimate partner violence against women and health: A systematic review and meta-analysis of cohort studies. BMJ Open 2018, 8, e019995. [Google Scholar] [CrossRef]
- Wilson, K.S.; Deya, R.; Masese, L.; Simoni, J.M.; Stoep, A.V.; Shafi, J.; Jaoko, W.; Hughes, J.P.; McClelland, R.S. Prevalence and correlates of intimate partner violence in HIV-positive women engaged in transactional sex in Mombasa, Kenya. Int. J. STD AIDS 2015, 27, 1194–1203. [Google Scholar] [CrossRef]
- Miller, A.P.; Pitpitan, E.V.; Nabukalu, D.; Nalugoda, F.; Nakigozi, G.; Kigozi, G.; Grabowski, M.K.; Kennedy, C.E.; Wagman, J.A. Transactional Sex, Alcohol Use and Intimate Partner Violence Against Women in the Rakai Region of Uganda. AIDS Behav. 2021, 25, 1144–1158. [Google Scholar] [CrossRef]
- Leddy, A.M.; Kerrigan, D.; Kennedy, C.E.; Mbwambo, J.; Likindikoki, S.; Underwood, C.R. ‘You already drank my beer, I can decide anything’: Using structuration theory to explore the dynamics of alcohol use, gender-based violence and HIV risk among female sex workers in Tanzania. Cult. Health Sex. 2018, 20, 1409–1423. [Google Scholar] [CrossRef]
- WHO. Violence against Women: Intimate Partner and Sexual Violence against Women: Intimate Partner and Sexual Violence Have Serious Short-and Long-Term Physical, Mental and Sexual and Reproductive Health Problems for Survivors: Fact Sheet; WHO: Geneva, Switzerland, 2014. [Google Scholar]
- Gibbs, A.; Chirwa, E.; Dunkle, K. A Prospective Analysis of the Interrelationship between Physical Intimate Partner Violence and Alcohol Use: A Post-Hoc Analysis of Young Women Involved in the Stepping Stones and Creating Futures Trial in South Africa. J. Interpers. Violence 2022, 38, NP750–NP771. [Google Scholar] [CrossRef]
- Fernandes, A.D. How far up the river? Criminal justice contact and health outcomes. Soc. Curr. 2020, 7, 29–45. [Google Scholar] [CrossRef]
- Sugie, N.F.; Turney, K. Beyond Incarceration: Criminal Justice Contact and Mental Health. Am. Sociol. Rev. 2017, 82, 719–743. [Google Scholar] [CrossRef]
- Shannon, K.; Strathdee, S.A.; Goldenberg, S.M.; Duff, P.; Mwangi, P.; Rusakova, M.; Reza-Paul, S.; Lau, J.; Deering, K.; Pickles, M.R.; et al. Global epidemiology of HIV among female sex workers: Influence of structural determinants. Lancet 2015, 385, 55–71. [Google Scholar] [CrossRef]
- Hendrickson, Z.M.; Leddy, A.M.; Galai, N.; Beckham, S.W.; Davis, W.; Mbwambo, J.K.; Likindikoki, S.; Kerrigan, D.L. Mobility for sex work and recent experiences of gender-based violence among female sex workers in Iringa, Tanzania: A longitudinal analysis. PLoS ONE 2021, 16, e0252728. [Google Scholar] [CrossRef]
- Hendrickson, Z.M.; Leddy, A.M.; Galai, N.; Mbwambo, J.K.; Likindikoki, S.; Kerrigan, D.L. Work-related mobility and experiences of gender-based violence among female sex workers in Iringa, Tanzania: A crosssectional analysis of baseline data from Project Shikamana. BMJ Open 2018, 8, e022621. [Google Scholar] [CrossRef]
- Saggurti, N.; Jain, A.K.; Sebastian, M.P.; Singh, R.; Modugu, H.R.; Halli, S.S.; Verma, R.K. Indicators of Mobility, Socio-Economic Vulnerabilities and HIV Risk Behaviours Among Mobile Female Sex Workers in India. AIDS Behav. 2012, 16, 952–959. [Google Scholar] [CrossRef]
- Carrasco, M.A.; Esser, M.B.; Sparks, A.; Kaufman, M.R. HIV-Alcohol Risk Reduction Interventions in Sub-Saharan Africa: A Systematic Review of the Literature and Recommendations for a Way Forward. AIDS Behav. 2016, 20, 484–503. [Google Scholar] [CrossRef]
- Kerrigan, D.; Donastorg, Y.; Barrington, C.; Perez, M.; Gomez, H.; Mbwambo, J.; Likindikoki, S.; Mantsios, A.; Beckham, S.W.; Leddy, A.; et al. Assessing and Addressing Social Determinants of HIV among Female Sex Workers in the Dominican Republic and Tanzania through Community Empowerment-Based Responses. Curr. HIV/AIDS Rep. 2020, 17, 88–96. [Google Scholar] [CrossRef] [PubMed]
Variable | n | Unweighted Proportion % (95% CI) | Weighted Proportion % (95% CI) |
---|---|---|---|
Age (years) | |||
18–24 | 199 | 42.3 (37.9–46.9) | 46.3 (39.9–52.8) |
25–34 | 226 | 48.1 (43.6–52.6) | 43.4 (37.2–49.9) |
≥35 | 45 | 9.6 (7.2–12.6) | 10.3 (6.3–16.4) |
Marital status | |||
Never married | 361 | 76.8 (72.8–80.4) | 75.8 (69.5–81.2) |
Formerly married/currently/married/cohabiting | 109 | 23.2 (19.6–27.2) | 24.2 (18.8–30.5) |
Highest educational level | |||
No formal/some primary | 28 | 6.0 (4.1–8.5) | 9.7 (5.4–16.9) |
Completed primary | 165 | 35.1 (30.9–39.5) | 36.9 (31.0–43.3) |
Some secondary | 138 | 29.4 (25.4–33.7) | 27.2 (21.8–33.4) |
Completed secondary or above | 139 | 29.6 (25.6–33.9) | 26.1 (21.3–31.6) |
Monthly income from sex work * (TZS †) | |||
<150,000 | 73 | 15.9 (12.9–19.6) | 19.1 (14.3–-25.0) |
150,000–299,999 | 151 | 33.0 (28.8–37.4) | 28.6 (23.3–34.5) |
300,000–449,999 | 144 | 31.4 (27.3–35.9) | 32.8 (26.6–39.6) |
≥450,000 | 90 | 19.7 (16.3–23.6) | 19.5 (14.7–25.5) |
Years since started sex work | |||
<5 | 215 | 45.7 (41.3–50.3) | 53.8 (47.2–60.2) |
≥5 | 255 | 54.3 (49.7–58.7) | 46.2 (39.8–52.8) |
Number of clients/month (vaginal sex) | |||
<10 | 124 | 26.7 (22.8–30.9) | 33.9 (27.7–40.8) |
10–29 | 169 | 36.3 (32.1–40.8) | 35.5 (29.6–42.0) |
≥30 | 172 | 37.0 (32.7–41.5) | 30.5 (25.1–36.6) |
Have other work besides sex work | |||
Yes | 187 | 39.8 (35.4–44.3) | 40.6 (34.4–47.1) |
No | 283 | 60.2 (55.7–64.6) | 59.4 (52.9–65.6) |
Female sex worker stigma score ‡ | |||
<30 | 205 | 44.9 (40.3–49.5) | 44.5 (38.1–51.2) |
≥30 | 252 | 55.1 (50.5–59.7) | 55.5 (50.6–63.6) |
Social support score (DUFSS) §|| | |||
≤3 | 178 | 38.1 (33.8–42.6) | 40.0 (33.5–46.9) |
>3 | 289 | 61.9 (57.4–66.2) | 60.0 (53.1–66.5) |
Gender-based violence last 12 months ¶ | |||
Yes | 241 | 51.5 (47.0–56.0) | 43.7 (37.5–50.2) |
No | 227 | 48.5 (44.0–53.0) | 56.3 (50.0–62.5) |
Arrest/incarceration last 12 months | |||
Yes | 126 | 26.8 (23.0–31.0) | 20.6 (16.1–26.0) |
No | 344 | 73.2 (69.0–77.0) | 79.4 (74.0–83.9) |
Reason for arrest ** | |||
Sex work | 75 | 60.0 (51.1–68.3) | 54.7 (41.0–67.6) |
Other reasons | 50 | 40.0 (31.7–48.9) | 45.4 (32.4–59.0) |
Sex work-related mobility last 6 months | |||
Yes | 179 | 38.1 (33.8–42.6) | 28.4 (23.5–33.8) |
No | 291 | 61.9 (57.4–66.2) | 71.6 (66.2–76.5) |
Lifetime drug use | |||
Yes | 64 | 13.6 (10.8–17.0) | 8.3 (6.0–11.4) |
No | 406 | 86.4 (83.0–89.2) | 91.7 (88.6–94.0) |
Alcohol Use | n | Unweighted Proportion % (95% CI) | Weighted Proportion % (95% CI) |
---|---|---|---|
Reported drinking alcohol the past year | |||
Yes | 405 | 86.2 (82.7–89.0) | 82.1 (75.8–87.0) |
No | 65 | 13.8 (11.0–17.3) | 17.9 (13.0–24.2) |
Drinking at last sexual encounter with a client † | |||
Yes | 296 | 63.1 (58.6–67.4) | 53.6 (47.0–60.2) |
No | 173 * | 36.8 (32.6–41.4) | 46.4 (39.8–53.0) |
Hazardous alcohol use (AUDIT ≥ 8) | |||
Yes | 360 | 76.6 (72.5–80.2) | 69.6 (62.6–75.9) |
No | 110 * | 23.4 (19.8–27.5) | 30.4 (24.1–37.4) |
Harmful alcohol use (AUDIT ≥ 16) | |||
Yes | 230 | 48.9 (44.4–53.5) | 37.3 (31.7–43.4) |
No | 240 * | 51.1 (46.5–55.6) | 62.7 (56.6–68.3) |
Socio-Demographic and Socio-Structural Factors | N | Harmful Alcohol Use: N (%) | p-Value |
---|---|---|---|
Age (years) | 0.48 | ||
18–24 | 199 | 92 (46.2) | |
25–34 | 226 | 113 (50.0) | |
≥35 | 45 | 25 (55.6) | |
Marital status | 0.11 | ||
Never married | 361 | 184 (51.0) | |
Formerly married/currently married/cohabiting | 109 | 46 (42.2) | |
Highest educational attainment | 0.73 | ||
No formal/some primary | 28 | 15 (53.6) | |
Completed primary | 165 | 81 (49.1) | |
Some secondary | 138 | 71 (51.5) | |
Completed secondary or above | 139 | 63 (45.3) | |
Monthly income from sex work (TZS *) | 0.34 | ||
<150,000 | 73 | 30 (41.1) | |
150,000–299,999 | 151 | 75 (49.7) | |
300,000–449,999 | 144 | 78 (54.2) | |
≥450,000 | 90 | 44 (48.9) | |
Years since started sex work | <0.01 | ||
<5 | 215 | 86 (40.0) | |
≥5 | 255 | 144 (56.5) | |
Number of clients month (vaginal sex) | 0.01 | ||
<10 | 124 | 46 (37.1) | |
10–29 | 169 | 88 (52.1) | |
≥30 | 172 | 93 (54.1) | |
Have other work besides sex work | |||
Yes | 187 | 81 (43.3) | 0.05 |
No | 283 | 149 (52.7) | |
Female sex worker stigma score | |||
<30 | 205 | 110 (53.7) | 0.11 |
≥30 | 252 | 116 (46.0) | |
Social support (DUFSS †) | 0.48 | ||
≤3 | 178 | 91 (51.1) | |
>3 | 289 | 138 (47.7) | |
Gender-based violence last 12 months | <0.01 | ||
Yes | 241 | 145 (60.2) | |
No | 227 | 84 (37.0) | |
Arrest/incarceration last 12 months | <0.01 | ||
Yes | 126 | 89 (70.6) | |
No | 344 | 141 (41.0) | |
Sex work-related mobility last 6 months | <0.01 | ||
Yes | 179 | 106 (59.2) | |
No | 291 | 124 (42.6) | |
Lifetime drug use | <0.01 | ||
Yes | 64 | 43 (67.2) | |
No | 406 | 187 (46.1) |
Independent Variable | Crude PR (95% CI) | Adjusted PR (95% CI) | p-Value for APR |
---|---|---|---|
Arrest/Incarceration last 12 months * | 1.72 (1.45–2.04) | 1.55 (1.27–1.84) | <0.01 |
Gender based-violence last 12 months † | 1.63 (1.33–1.98) | 1.31 (1.06–1.56) | <0.01 |
Sex work related mobility last 6 months ‡ | 1.39 (1.16–1.66) | 1.36 (1.11–1.61) | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lichtwarck, H.O.; Kazaura, M.R.; Moen, K.; Mmbaga, E.J. Harmful Alcohol Use and Associated Socio-Structural Factors among Female Sex Workers Initiating HIV Pre-Exposure Prophylaxis in Dar es Salaam, Tanzania. Int. J. Environ. Res. Public Health 2023, 20, 698. https://doi.org/10.3390/ijerph20010698
Lichtwarck HO, Kazaura MR, Moen K, Mmbaga EJ. Harmful Alcohol Use and Associated Socio-Structural Factors among Female Sex Workers Initiating HIV Pre-Exposure Prophylaxis in Dar es Salaam, Tanzania. International Journal of Environmental Research and Public Health. 2023; 20(1):698. https://doi.org/10.3390/ijerph20010698
Chicago/Turabian StyleLichtwarck, Hanne Ochieng, Method Rwelengera Kazaura, Kåre Moen, and Elia John Mmbaga. 2023. "Harmful Alcohol Use and Associated Socio-Structural Factors among Female Sex Workers Initiating HIV Pre-Exposure Prophylaxis in Dar es Salaam, Tanzania" International Journal of Environmental Research and Public Health 20, no. 1: 698. https://doi.org/10.3390/ijerph20010698
APA StyleLichtwarck, H. O., Kazaura, M. R., Moen, K., & Mmbaga, E. J. (2023). Harmful Alcohol Use and Associated Socio-Structural Factors among Female Sex Workers Initiating HIV Pre-Exposure Prophylaxis in Dar es Salaam, Tanzania. International Journal of Environmental Research and Public Health, 20(1), 698. https://doi.org/10.3390/ijerph20010698