Environmental Exposure Science and Human Health
1. Introduction
2. Adverse Outcomes of Environmental Pollutants in Young Children
2.1. Xenobiotic Chemical Damage to the Maternal–Fetal Unit
2.2. Pollutants in Breast Milk
2.3. Maternal Smoking in Pre- and Postnatal Life
3. Anthropogenic Chemical Pollution
4. Endocrine Disruptor Chemicals (EDCs)
- Bisphenol A (BPA), which occurs in some food storage containers;
- Dioxin, which is mainly produced during production processes involving the burning of specific substances and in the initial stages of waste combustion;
- Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS), which are used in non-stick coatings;
- Phthalates, which are used to make plastics more pliable;
- Polychlorinated biphenyls (PCBs), which are mainly present in transformers and lubricants;
- Triclosan, which is found in many antibacterial products;
- Pesticides used in agriculture (e.g., organochlorine, organophosphate and carbamate pesticides);
- Polybrominated diphenyl ethers, which are mixtures of chemicals that are added to a wide variety of products to make them less flammable.
5. Gene–Environment Interactions
Funding
Conflicts of Interest
References
- Prüss-Üstün Annette Wolf, J.; Corvalán Carlos, F.; Bos, R.; Neira, M. Preventing Disease through Healthy Environments: A Global Assessment of the Burden of Disease from Environmental Risks; World Health Organization: Geneva, Switzerland, 2016; pp. 1–147. Available online: https://apps.who.int/iris/handle/10665/204585 (accessed on 10 October 2019).
- AlMulla, A.A.; Berekaa, M.; Saifullah; Dahlawi, S. Human Exposure Assessment to Air Pollutants in AC Filters from Agricultural, Industrial, and Residential Areas. Atmosphere 2022, 13, 1899. [Google Scholar] [CrossRef]
- Layton, D.W.; Beamer, P.I. Migration of Contaminated Soil and Airborne Particulates to Indoor Dust. Environ. Sci. Technol. 2009, 43, 8199–8205. [Google Scholar] [CrossRef]
- Ibanez, Y.; Le Bot, B.; Glorennec, P. House-Dust Metal Content and Bioaccessibility: A Review. Eur. J. Mineral. 2010, 22, 629–637. [Google Scholar] [CrossRef]
- Lucattini, L.; Poma, G.; Covaci, A.; de Boer, J.; Lamoree, M.H.; Leonards, P.E.G. A Review of Semi-Volatile Organic Compounds (SVOCs) in the Indoor Environment: Occurrence in Consumer Products, Indoor Air and Dust. Chemosphere 2018, 201, 466–482. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, T.M.S.U.; Ching, Y.C.; Kadokami, K. An Overview of Organic Contaminants in Indoor Dust, Their Health Impact, Geographical Distribution and Recent Extraction/Analysis Methods. Environ. Geochem. Health 2021, 44, 677–713. [Google Scholar] [CrossRef] [PubMed]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef]
- Shi, X.; Zheng, Y.; Cui, H.; Zhang, Y.; Jiang, M. Exposure to outdoor and indoor air pollution and risk of overweight and obesity across different life periods: A review. Ecotoxicol. Environ. Saf. 2022, 242, 113893. [Google Scholar] [CrossRef]
- Irigaray, P.; Newby, J.A.; Clapp, R.; Hardell, L.; Howard, V.; Montagnier, L.; Epstein, S.; Belpomme, D. Lifestyle-related factors and environmental agents causing cancer: An overview. Biomed. Pharmacother. 2007, 61, 640–658. [Google Scholar] [CrossRef]
- Núñez-Sánchez, M.Á.; Jiménez-Méndez, A.; Suárez-Cortés, M.; Martínez-Sánchez, M.A.; Sánchez-Solís, M.; Blanco-Carnero, J.E.; Ruiz-Alcaraz, A.J.; Ramos-Molina, B. Inherited Epigenetic Hallmarks of Childhood Obesity Derived from Prenatal Exposure to Obesogens. Int. J. Environ. Res. Public Health 2023, 20, 4711. [Google Scholar] [CrossRef]
- Landrigan, P.J.; Etzel, R.A. Textbook of Children’s Environmental Health; Oxford University Press: Oxford, UK, 2013. [Google Scholar]
- Steliarova-Foucher, E.; Colombet, M.; Ries, L.A.G.; Moreno, F.; Dolya, A.; Bray, F.; Hesseling, P.; Shin, H.Y.; Stiller, C.A. International incidence of childhood cancer, 2001–2010: A population-based registry study. Lancet Oncol. 2017, 18, 719–731. [Google Scholar] [CrossRef]
- Gentilini, P.; Di Ciaula, A.; Ridolfi, R. Epidemiological burden and causal factors of childhood cancer: Too many uncertainties. Epidemiol. Prev. 2018, 42, 104. [Google Scholar] [PubMed]
- Ma, D.; Lu, Y.; Liang, Y.; Ruan, T.; Li, J.; Zhao, C.; Wang, Y.; Jiang, G. A Critical Review on Transplacental Transfer of Per- and Polyfluoroalkyl Substances: Prenatal Exposure Levels, Characteristics, and Mechanisms. Environ. Sci. Technol. 2022, 56, 6014–6026. [Google Scholar] [CrossRef] [PubMed]
- Skogen, J.C.; Overland, S. The fetal origins of adult disease: A narrative review of the epidemiological literature. JRSM Short Rep. 2012, 3, 59. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Chen, Z.; Zhou, L.F.; Huang, S.X. Air pollutants and early origins of respiratory diseases. Chronic Dis. Transl. Med. 2018, 4, 75–94. [Google Scholar] [CrossRef] [PubMed]
- Gauderman, W.J.; Urman, R.; Avol, E.; Berhane, K.; McConnell, R.; Rappaport, E.; Chang, R.; Lurmann, F.; Gilliland, F. Association of improved air quality with lung development in children. N. Engl. J. Med. 2015, 372, 905–913. [Google Scholar] [CrossRef]
- WHO. More than 90% of the World’s Children Breathe Toxic Air Everyday; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Barr, D.B.; Bishop, A.; Needham, L.L. Concentrations of xenobiotic chemicals in the maternal-fetal unit. Reprod. Toxicol. 2007, 23, 260–266. [Google Scholar] [CrossRef]
- Ross, E.J.; Graham, D.L.; Money, K.M.; Stanwood, G.D. Developmental consequences of fetal exposure to drugs: What we know and what we still must learn. Neuropsychopharmacology 2015, 40, 61–87. [Google Scholar] [CrossRef]
- Crinnion, W.J. Maternal levels of xenobiotics that affect fetal development and childhood health. Altern. Med. Rev. 2009, 14, 212–222. [Google Scholar]
- Pemathilaka, R.L.; Reynolds, D.E.; Hashemi, N.N. Drug transport across the human placenta: Review of placenta-on-a-chip and previous approaches. Interface Focus 2019, 9, 20190031. [Google Scholar] [CrossRef]
- Florescu, A.; Ferrence, R.; Einarson, T.R.; Selby, P.; Kramer, M.; Woodruff, S.; Grossman, L.; Rankin, A.; Jacqz-Aigrain, E.; Koren, G. Reference values for hair cotinine as a biomarker of active and passive smoking in women of reproductive age, pregnant women, children, and neonates: Systematic review and meta-analysis. Ther. Drug Monit. 2007, 29, 437–446. [Google Scholar] [CrossRef]
- Ritz, B.; Wilhelm, M. Ambient air pollution and adverse birth outcomes. Methodologic issues in an emerging field. Basic Clin. Pharm. Toxicol. 2008, 102, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Grippo, A.; Zhang, J.; Chu, L.; Guo, Y.; Qiao, L.; Zhang, J.; Myneni, A.A.; Mu, L. Air pollution exposure during pregnancy and spontaneous abortion and stillbirth. Rev. Environ. Health. 2018, 33, 247–264. [Google Scholar] [CrossRef]
- Woodruff, T.J.; Darrow, L.A.; Parker, J.D. Air pollution and postneonatal infant mortality in the United States, 1999–2002. Environ. Health Perspect. 2008, 116, 110–115. [Google Scholar] [CrossRef]
- Lavezzi, A.M. Toxic Effect of Cigarette Smoke on Brainstem Nicotinic Receptor Expression: Primary Cause of Sudden Unexplained Perinatal Death. Toxics 2018, 6, 63. [Google Scholar] [CrossRef]
- Konkel, L. Mother’s Milk and the Environment: Might Chemical Exposures Impair Lactation? Environ. Health Perspect. 2017, 125, A17. [Google Scholar] [CrossRef]
- Grosse, Y.; Lajoie, P.; Billard, M.; Krewski, D.; Rice, J.; Baan, R.A.; Cogliano, V.; Bird, M.; Zielinski, J.M. Development of a database on tumors and tumor sites in humans and in experimental animals for ‘Group 1 agents identified through volume 109 of the IARC Monographs. J. Toxicol. Environ. Health B Crit. Rev. 2019, 22, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Greingor, J.L.; Tosi, J.M.; Ruhlmann, S.; Aussedat, M. Acute carbon monoxide intoxication during pregnancy. One case report and review of the literature. Emerg. Med. J. 2001, 18, 399–401. [Google Scholar] [CrossRef]
- Levin, E.D.; Slotkin, T.A. Developmental neurotoxicity of nicotine. In Handbook of Developmental Neurotoxicology; Slikker, W., Chang, L.W., Eds.; Academic Press: San Diego, CA, USA, 1998; pp. 587–615. [Google Scholar]
- Blumenthal, I. Carbon monoxide poisoning. J. R. Soc. Med. 2001, 94, 270–272. [Google Scholar] [CrossRef]
- Napierala, M.; Mazela, J.; Merritt, T.A.; Florek, E. Tobacco smoking and breastfeeding: Effect on the lactation process, breast milk composition and infant development. A critical review. Environ. Res. 2016, 151, 321–338. [Google Scholar] [CrossRef]
- Primo, C.C.; Ruel, P.B.; Brotto, L.D.; Garcia, T.R.; Lima, E.F. Effects of maternal nicotine on breastfeeding infants. Rev. Paul. Pediatr. 2013, 31, 392–397. [Google Scholar] [CrossRef]
- van Rossem, L.; Smit, H.A.; Armand, M.; Bernard, J.Y.; Bisgaard, H.; Bønnelykke, K.; Bruun, S.; Heude, B.; Husby, S.; Kyhl, H.B.; et al. Breast milk n-3 long-chain polyunsaturated fatty acids and blood pressure: An individual participant meta-analysis. Eur. J. Nutr. 2021, 60, 989–998. [Google Scholar] [CrossRef]
- Laurberg, P.; Nøhr, S.B.; Pedersen, K.M.; Fuglsang, E. Iodine nutrition in breast-fed infants is impaired by maternal smoking. J. Clin. Endocrinol. Metab. 2004, 89, 181–187. [Google Scholar] [CrossRef]
- Naidu, R.; Biswa, B.; Willett, I.R.; Cribb, J.; Kumar Singh, B.; Paul Nathanail, C.; Coulon, F.; Semple, K.T.; Jones, K.C.; Barclay, A.; et al. Chemical pollution: A growing peril and potential catastrophic risk to humanity. Environ. Int. 2021, 156, 106616. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Bab, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef] [PubMed]
- Klaine, S.J.; Alvare, P.J.J.; Batley, G.E.; Fernandes, T.F.; Handy, R.D.; Lyon, D.Y.; Mahendra, S.; McLaughlin, M.J.; Lead, J.R. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 2008, 27, 1825–1851. [Google Scholar] [CrossRef] [PubMed]
- Gatti, A.M.; Montanari, S. Nanopathology: The Health Impact of Nanoparticles; Pan Stanford Publishing Pte. Ltd.: Singapore, 2008; pp. 287–290. [Google Scholar]
- Anjum, S.; Ishaque, S.; Fatima, H.; Farooq, W.; Hano, C.; Abbasi, B.H.; Anjum, I. Emerging Applications of Nanotechnology in Healthcare Systems: Grand Challenges and Perspectives. Pharmaceuticals 2021, 14, 707. [Google Scholar] [CrossRef]
- Gore, A.C.; Chappell, V.A.; Fenton, S.E.; Flaws, J.A.; Nadal, A.; Prins, G.S.; Toppari, J.; Zoeller, R.T. Executive Summary to EDC-2: The Endocrine Society’s Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr. Rev. 2015, 36, 593–602. [Google Scholar] [CrossRef]
- Kahn, L.G.; Philippat, C.; Nakayama, S.F.; Slama, R.; Trasande, L. Endocrine-disrupting chemicals: Implications for human health. Lancet Diabetes Endocrinol. 2020, 8, 703–718. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Ji, K. Identification of combinations of endocrine disrupting chemicals in household chemical products that require mixture toxicity testing. Ecotoxicol. Environ. Saf. 2022, 240, 113677. [Google Scholar] [CrossRef]
- Zhou, F.; Ren, J.; Lu, X.; Ma, S.; Wu, C. Gene-Environment Interaction: A Variable Selection Perspective. Methods Mol. Biol. 2021, 2212, 191–223. [Google Scholar]
- Simonds, N.I.; Ghazarian, A.A.; Pimentel, C.B.; Schully, S.D.; Ellison, G.L.; Gillanders, E.M.; Mechanic, L.E. Review of the Gene-Environment Interaction Literature in Cancer: What Do We Know? Genet. Epidemiol. 2016, 40, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Committee on Human and Environmental Exposure Science in the 21st Century; Board on Environmental Studies and Toxicology; Division on Earth and Life Studies; National Research Council. Exposure Science in the 21st Century: A Vision and a Strategy; National Academies Press: Washington, DC, USA, 2012. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lavezzi, A.M.; Ramos-Molina, B. Environmental Exposure Science and Human Health. Int. J. Environ. Res. Public Health 2023, 20, 5764. https://doi.org/10.3390/ijerph20105764
Lavezzi AM, Ramos-Molina B. Environmental Exposure Science and Human Health. International Journal of Environmental Research and Public Health. 2023; 20(10):5764. https://doi.org/10.3390/ijerph20105764
Chicago/Turabian StyleLavezzi, Anna M., and Bruno Ramos-Molina. 2023. "Environmental Exposure Science and Human Health" International Journal of Environmental Research and Public Health 20, no. 10: 5764. https://doi.org/10.3390/ijerph20105764
APA StyleLavezzi, A. M., & Ramos-Molina, B. (2023). Environmental Exposure Science and Human Health. International Journal of Environmental Research and Public Health, 20(10), 5764. https://doi.org/10.3390/ijerph20105764