Effective Absorption of Dichloromethane Using Carboxyl-Functionalized Ionic Liquids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of ILs
2.3. Characterization of ILs
2.4. Apparatus and Procedure of Gas Absorption
2.5. VLE Experiments
2.6. Computational Methods
3. Results and Discussion
3.1. DCM Capture with Carboxyl-Functionalized ILs
3.1.1. Effect of IL Structure on Absorption Capacity
3.1.2. Effect of Temperature and Gas Concentration of DCM on the Absorption Capacity
3.1.3. Absorption-Desorption Cycles of [P66614][Gly]
3.2. VLE of ILs and DCM
3.2.1. Reliability of Experimental Equipment
3.2.2. Vapor Pressure Data of DCM + ILs Binary System
3.3. Mechanism of DCM Absorption
3.3.1. FT-IR and 1H-NMR Analysis
3.3.2. Model and Calculation Section
Effect of Anion and Cation Structures on DCM Absorption
Interaction Energy Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dominguez, C.M.; Rodriguez, V.; Montero, E.; Romero, A.; Santos, A. Abatement of dichloromethane using persulfate activated by alkali: A kinetic study. Sep. Purif. Technol. 2020, 241, 116679. [Google Scholar] [CrossRef]
- Águeda, V.I.; Crittenden, B.D.; Delgado, J.A.; Tennison, S.R. Effect of channel geometry, degree of activation, relative humidity and temperature on the performance of binderless activated carbon monoliths in the removal of dichloromethane from air. Sep. Purif. Technol. 2011, 78, 154–163. [Google Scholar] [CrossRef]
- Jović, S.A.; Laxminarayan, Y.; Keurentjes, J.; Schouten, J.; van der Schaaf, J. Adsorptive water removal from dichloromethane and vapor-phase regeneration of a molecular sieve 3A packed bed. Ind. Eng. Chem. Res. 2017, 56, 5042–5054. [Google Scholar] [CrossRef] [PubMed]
- Shestakova, M.; Sillanpaa, M. Removal of dichloromethane from ground and wastewater: A review. Chemosphere 2013, 93, 1258–1267. [Google Scholar] [CrossRef]
- Hossaini, R.; Chipperfield, M.P.; Montzka, S.A.; Leeson, A.A.; Dhomse, S.S.; Pyle, J.A. The increasing threat to stratospheric ozone from dichloromethane. Nat. Commun. 2017, 8, 15962. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, X.; Wang, Y.; Kong, F.; Zhou, R. New insight into the design of highly dispersed Pt supported CeO2–TiO2 catalysts with superior activity for VOCs low-temperature removal. Green. Energy. Environ. 2022, in press. [CrossRef]
- Dekant, W.; Jean, P.; Arts, J. Evaluation of the carcinogenicity of dichloromethane in rats, mice, hamsters and humans. Regul. Toxicol. Pharm. 2021, 120, 104858. [Google Scholar] [CrossRef]
- Shim, W.G.; Lee, J.W.; Moon, H. Adsorption of carbon tetrachloride and chloroform on activated carbon at (300.15, 310.15, 320.15, and 330.15) K. J. Chem. Eng. Data. 2003, 48, 286–290. [Google Scholar] [CrossRef]
- Bedane, A.H.; Guo, T.X.; Eić, M.; Xiao, H. Adsorption of volatile organic compounds on peanut shell activated carbon. Can. J. Chem. Eng. 2019, 97, 238–246. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Y.; Zheng, S.; Hashisho, Z. Adsorption of volatile organic compounds onto natural porous minerals. J. Hazard. Mater. 2019, 364, 317–324. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, E.; Khapre, A.; Bordoloi, N.; Kumar, S. Sorption of volatile organic compounds on non-activated biochar. Bioresour. Technol. 2020, 297, 122469. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, J.; Sun, T.; Yu, F.; Li, C. The Absorption Performance of Ionic Liquids–PEG200 Complex Absorbent for VOCs. Energies 2021, 14, 3592. [Google Scholar] [CrossRef]
- Fahri, F.; Bacha, K.; Chiki, F.F.; Mbakidi, J.-P.; Panda, S.; Bouquillon, S.; Fourmentin, S. Air pollution: New bio-based ionic liquids absorb both hydrophobic and hydrophilic volatile organic compounds with high efficiency. Environ. Chem. Lett. 2020, 18, 1403–1411. [Google Scholar] [CrossRef]
- Gui, C.; Li, G.; Zhu, R.; Lei, Z.; Dong, Y. Capturing VOCs in the pharmaceutical industry with ionic liquids. Chem. Eng. Sci. 2022, 252, 117504. [Google Scholar] [CrossRef]
- Mu, M.L.; Zhang, X.F.; Yu, G.Q.; Xu, R.N.; Liu, N.; Wang, N.; Chen, B.H.; Dai, C.N. Effective absorption of dichloromethane using deep eutectic solvents. J. Hazard. Mater. 2022, 439, 129666. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Li, H.; Li, C. A review and perspective of recent research in biological treatment applied in removal of chlorinated volatile organic compounds from waste air. Chemosphere 2020, 250, 126338. [Google Scholar] [CrossRef]
- Hadjoudj, R.; Monnier, H.; Roizard, C.; Lapicque, F. Absorption of chlorinated VOCs in high-boiling solvents: Determination of Henry’s law constants and infinite dilution activity coefficients. Ind. Eng. Chem. Res. 2004, 43, 2238–2246. [Google Scholar] [CrossRef]
- Biard, P.F.; Coudon, A.; Couvert, A.; Giraudet, S. A simple and timesaving method for the mass-transfer assessment of solvents used in physical absorption. Chem. Eng. J. 2016, 290, 302–311. [Google Scholar] [CrossRef]
- Mu, T.; Han, B. Structures and thermodynamic properties of ionic liquids. In Structures and Interactions of Ionic Liquids; Springer: Berlin/Heidelberg, Germany, 2014; Volume 151, pp. 107–139. [Google Scholar]
- Huang, Y.; Chen, Z.; Crosthwaite, J.M.; Aki, S.N.; Brennecke, J.F. Thermal stability of ionic liquids in nitrogen and air environments. J. Chem. Thermodyn. 2021, 161, 106560. [Google Scholar] [CrossRef]
- Xu, C.; Cheng, Z. Thermal Stability of Ionic Liquids: Current Status and Prospects for Future Development. Processes 2021, 9, 337. [Google Scholar] [CrossRef]
- Rodriguez Castillo, A.S.; Biard, P.F.; Guihéneuf, S.; Paquin, L.; Amrane, A.; Couvert, A. Assessment of VOC absorption in hydrophobic ionic liquids: Measurement of partition and diffusion coefficients and simulation of a packed column. Chem. Eng. J. 2019, 360, 1416–1426. [Google Scholar] [CrossRef]
- Wu, W.L.; Li, T.; Gao, H.S.; Shang, D.W.; Tu, W.H.; Wang, B.Q.; Zhang, X.P. Efficient absorption of dichloromethane using imidazolium based ionic liquids. Chin. J. Process. Eng. 2019, 19, 173. [Google Scholar]
- Shi, Q.B.; Wang, K.X.; Wang, M.J.; Li, T.; Ren, B.Z.; Bai, Y.E.; Zhang, X.P. Efficient recovery of dichloromethane from tail gas by 1-Alkyl-2-ethylimidazole Ethyl Sulfate and 1-Ethylpyridine Ethyl Sulfate. Ind. Eng. Chem. Res. 2022, 61, 12699–12709. [Google Scholar] [CrossRef]
- Wu, Z.X.; Shi, S.S.; Zhan, G.X.; Chang, F.; Bai, Y.G.; Zhang, X.P.; Wu, J.C.S.; Zeng, S.J. Ionic liquid screening for dichloromethane absorption by multi-scale simulations. Sep. Purif. Technol. 2021, 275, 119187. [Google Scholar] [CrossRef]
- Goodrich, B.F.; de la Fuente, J.C.; Gurkan, B.E.; Zadigian, D.J.; Price, E.A.; Huang, Y.; Brennecke, J.F. Experimental measurements of amine-functionalized anion-tethered ionic liquids with carbon dioxide. Ind. Eng. Chem. Res. 2011, 50, 111–118. [Google Scholar] [CrossRef]
- Bai, Y.; Yan, R.; Tu, W.; Qian, J.; Gao, H.; Zhang, X.; Zhang, S. Selective separation of methacrylic acid and acetic acid from aqueous solution using carboxyl-functionalized ionic liquids. ACS Sustain. Chem. Eng. 2018, 6, 1215–1224. [Google Scholar] [CrossRef]
- Chen, Q.W.; Ni, S.N.; Ai, G.H.; Zhang, T.; Sun, X.Q. A recovery strategy of Sm, Co for waste SmCo magnets by fatty acid based ionic liquids. Miner. Eng. 2020, 158, 106581. [Google Scholar] [CrossRef]
- Chen, M.; Dai, C.; Yu, G.; Liu, N.; Xu, R.; Wang, N.; Chen, B. Highly efficient absorption of methyl tert-butyl ether with ionic liquids. Sep. Purif. Technol. 2022, 282, 120108. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Chem. Phys. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Binkley, J.; Pople, J.; Hehre, W. Extended basis set studies of hydrocarbon molecular orbital energies. Chem. Phys. Lett. 1975, 36, 1–5. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef] [PubMed]
- Mu, M.L.; Zhang, X.F.; Yu, G.Q.; Sun, C.Y.; Xu, R.N.; Liu, N.; Wang, N.; Chen, B.H.; Dai, C.N. Deep removal of chlorobenzene based volatile organic compounds from exhaust gas with ionic liquids. Sep. Purif. Technol. 2022, 298, 121610. [Google Scholar] [CrossRef]
- Boys, S.F.; Bernardi, F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 1970, 19, 553–566. [Google Scholar] [CrossRef]
- Tong, J.; Zhao, Y.; Huo, F.; Guo, Y.; Liang, X.; von Solms, N.; He, H. The dynamic behavior and intrinsic mechanism of CO2 absorption by amino acid ionic liquids. Phys. Chem. Chem. Phys. 2021, 23, 3246–3255. [Google Scholar] [CrossRef]
- Chermiti, I.; Hidouri, N.; Brahim, A.B. Effect of a falling gas-liquid absorption film temperature on entropy generation. Heat. Mass. Transfer. 2013, 49, 1101–1108. [Google Scholar] [CrossRef]
- Nepomnyashchy, A.; Simanovskii, I.; Boeck, T.; Golovin, A.; Braverman, L.; Thess, A. Convective instabilities in layered systems. In Interfacial Fluid Dynamics and Transport Processes; Springer: Berlin/Heidelberg, Germany, 2003; Volume 68, pp. 21–44. [Google Scholar]
- Wang, W.; Ma, X.; Grimes, S.; Cai, H.; Zhang, M. Study on the absorbability, regeneration characteristics and thermal stability of ionic liquids for VOCs removal. Chem. Eng. J. 2017, 328, 353–359. [Google Scholar] [CrossRef]
- Tian, S.; Hou, Y.; Wu, W.; Ren, S.; Qian, J. Absorption of SO2 at high temperatures by ionic liquids and the absorption mechanism. Bull. Korean Chem. Soc. 2014, 35, 2791–2796. [Google Scholar] [CrossRef]
- Apelblat, A.; Wisniak, J.; Tamir, A. Vapor-liquid equilibriums in the dichloromethane-chlorobromomethane-dibromomethane system and its binaries. J. Chem. Eng. Data. 1981, 26, 144–147. [Google Scholar] [CrossRef]
- Zhao, J.; Jiang, X.C.; Li, C.X.; Wang, Z.H. Vapor pressure measurement for binary and ternary systems containing a phosphoric ionic liquid. Fluid. Phase. Equilib. 2006, 247, 190–198. [Google Scholar] [CrossRef]
- Dai, Y.F.; Qu, Y.X.; Wang, S.; Wang, J.D. Measurement, correlation, and prediction of vapor pressure for binary and ternary systems containing an ionic liquid 1,3-dimethylimidazolium methylsulfate. Fluid. Phase. Equilib. 2015, 385, 219–226. [Google Scholar] [CrossRef]
- Cha, S.; Kim, D. Change of hydrogen bonding structure in ionic liquid mixtures by anion type. J. Chem. Phys. 2018, 148, 193827. [Google Scholar] [PubMed]
- Ding, F.; He, X.; Luo, X.; Lin, W.; Chen, K.; Li, H.; Wang, C. Highly efficient CO2 capture by carbonyl-containing ionic liquids through Lewis acid-base and cooperative C-H∙∙∙O hydrogen bonding interaction strengthened by the anion. Chem. Commun. 2014, 50, 15041–15044. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.Q.; Jiang, Y.F.; Cheng, J.; Lei, Z.G. Structural effect on the vapor-liquid equilibrium of toluene-ionic liquid systems. Chem. Eng. Sci. 2019, 198, 1–15. [Google Scholar] [CrossRef]
- Dong, K.; Zhang, S.; Wang, D.; Yao, X. Hydrogen bonds in imidazolium ionic liquids. J. Phys. Chem. A 2006, 110, 9775–9782. [Google Scholar] [CrossRef]
- Ma, B.Q.; Gao, S.; Yi, T.; Yan, C.H.; Xu, G.X. A dimer structure {[Cu(phen)2Cl][OH]·6H2O}2 constructed through C-H⋯Cl hydrogen bondings and π-π interactions. Inorg. Chem. Commun. 2000, 3, 93–95. [Google Scholar] [CrossRef]
- Bondi, A. van der Waals Volumes and Radii. J. Chem. Phys. 1964, 68, 441–451. [Google Scholar] [CrossRef]
Binary System | α12 | g12–g22 | g21–g11 | ARD | rRMSD |
---|---|---|---|---|---|
J·mol−1 | J·mol−1 | ||||
DCM + [N1888][Ac] | 0.0686 | −23,396.2 | 13,497.93 | 0.0081 | 0.6620 |
DCM + [N1888][FA] | 0.9900 | 210.1503 | −264.229 | 0.0105 | 0.7840 |
DCM + [N1888][Gly] | 0.9900 | 274.86 | −342.058 | 0.0121 | 0.8150 |
DCM + [P66614][Gly] | 0.9900 | 358.2333 | −422.142 | 0.0152 | 1.0900 |
IL-DCM | Atomic Number | Bond Distance (Å) | Bond Angle (deg) | ΔE/(kJ/mol) |
---|---|---|---|---|
[N1888][Ac]-DCM | 88C-92H···84O | 2.14 | 149.39 | −55.37 |
88C-92H···83O | 2.68 | 107.17 | ||
56C-59H∙∙∙90Cl | 2.87 | 128.22 | ||
[N1888][FA]-DCM | 85C-88H···83O | 2.18 | 147.53 | −58.58 |
32C-36H···86Cl | 2.82 | 162.71 | ||
56C-59H···86Cl | 2.87 | 129.49 | ||
[N1888][Gly]-DCM | 90C-93H···84O | 2.10 | 152.83 | −62.24 |
90C-93H···85O | 2.69 | 109.85 | ||
32C-36H···91Cl | 2.81 | 161.45 | ||
56C-59H···91Cl | 2.87 | 128.35 | ||
[P66614][Gly]-DCM | 111C-115H···106O | 1.91 | 171.15 | −78.28 |
3C-36H···113Cl | 2.89 | 162.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhang, M.; Zeng, S.; Nie, Y.; Li, T.; Ren, B.; Bai, Y.; Zhang, X. Effective Absorption of Dichloromethane Using Carboxyl-Functionalized Ionic Liquids. Int. J. Environ. Res. Public Health 2023, 20, 5787. https://doi.org/10.3390/ijerph20105787
Wang M, Zhang M, Zeng S, Nie Y, Li T, Ren B, Bai Y, Zhang X. Effective Absorption of Dichloromethane Using Carboxyl-Functionalized Ionic Liquids. International Journal of Environmental Research and Public Health. 2023; 20(10):5787. https://doi.org/10.3390/ijerph20105787
Chicago/Turabian StyleWang, Mengjun, Manman Zhang, Shaojuan Zeng, Yi Nie, Tao Li, Baozeng Ren, Yinge Bai, and Xiangping Zhang. 2023. "Effective Absorption of Dichloromethane Using Carboxyl-Functionalized Ionic Liquids" International Journal of Environmental Research and Public Health 20, no. 10: 5787. https://doi.org/10.3390/ijerph20105787
APA StyleWang, M., Zhang, M., Zeng, S., Nie, Y., Li, T., Ren, B., Bai, Y., & Zhang, X. (2023). Effective Absorption of Dichloromethane Using Carboxyl-Functionalized Ionic Liquids. International Journal of Environmental Research and Public Health, 20(10), 5787. https://doi.org/10.3390/ijerph20105787