Multiscale Geographically Weighted Regression in the Investigation of Local COVID-19 Anomalies Based on Population Age Structure in Poland
Abstract
:1. Introduction
- Analysis of the interrelationships between the three variables that are most commonly used to describe the course of the COVID-19 pandemic worldwide—the number of confirmed COVID-19 deaths, the number of COVID-19 vaccine doses administered, and the number of confirmed SARS-CoV-2 cases.
- Analysis of the influence of demographic factors described by the age structure and gender breakdown of the population over the course of the COVID-19 pandemic.
- Identification of the local anomalies over the course of the COVID-19 pandemic.
2. Materials and Methods
2.1. Study Area
2.2. Data Source and Processing
2.3. Research Method
3. Results
3.1. Null Hypothesis
3.2. Influence Analysis with MGWR
3.3. Local R2 Estimates
3.4. Residual Spatial Autocorrelation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pogue, K.; Jensen, J.L.; Stancil, C.K.; Ferguson, D.G.; Hughes, S.J.; Mello, E.J.; Burgess, R.; Berges, B.K.; Quaye, A.; Poole, B.D. Influences on Attitudes Regarding Potential COVID-19 Vaccination in the United States. Vaccines 2020, 8, 582. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.; Ho, R.C. Immediate Psychological Responses and Associated Factors during the Initial Stage of the 2019 Coronavirus Disease (COVID-19) Epidemic among the General Population in China. Int. J. Environ. Res. Public Health 2020, 17, 1729. [Google Scholar] [CrossRef] [PubMed]
- Linton, N.M.; Kobayashi, T.; Yang, Y.; Hayashi, K.; Akhmetzhanov, A.R.; Jung, S.M.; Yuan, B.; Kinoshita, R.; Nishiura, H. Incubation Period and Other Epidemiological Characteristics of 2019 Novel Coronavirus Infections with Right Truncation: A Statistical Analysis of Publicly Available Case Data. J. Clin. Med. 2020, 9, 538. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, Z.F. Impact of the COVID-19 Pandemic on Mental Health and Quality of Life among Local Residents in Liaoning Province, China: A Cross-Sectional Study. Int. J. Environ. Res. Public Health 2020, 17, 2381. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, R.; Sheikh, A.B.; Upadhyay, S.; Singh, M.; Kottewar, S.; Mir, H.; Barrett, E.; Pal, S. COVID-19 Vaccine Acceptance among Health Care Workers in the United States. Vaccines 2021, 9, 119. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Ma, X.; Di, Q. Mental Health Problems during the COVID-19 Pandemics and the Mitigation Effects of Exercise: A Longitudinal Study of College Students in China. Int. J. Environ. Res. Public Health 2020, 17, 3722. [Google Scholar] [CrossRef]
- Marom, P.; Zalcman, B.G.; Dankner, R. Association between Self-Classification of COVID-19 Risk Levels and Adverse Lifestyle Changes among Physically Active Older Adults Following the Coronavirus Outbreak. Int. J. Environ. Res. Public Health 2022, 19, 7039. [Google Scholar] [CrossRef]
- Solomou, I.; Constantinidou, F. Prevalence and Predictors of Anxiety and Depression Symptoms during the COVID-19 Pandemic and Compliance with Precautionary Measures: Age and Sex Matter. Int. J. Environ. Res. Public Health 2020, 17, 4924. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Navarro-Jiménez, E.; Jimenez, M.; Hormeño-Holgado, A.; Martinez-Gonzalez, M.B.; Benitez-Agudelo, J.C.; Perez-Palencia, N.; Laborde-Cárdenas, C.C.; Tornero-Aguilera, J.F. Impact of COVID-19 Pandemic in Public Mental Health: An Extensive Narrative Review. Sustainability 2021, 13, 3221. [Google Scholar] [CrossRef]
- Meyer, J.; McDowell, C.; Lansing, J.; Brower, C.; Smith, L.; Tully, M.; Herring, M. Changes in Physical Activity and Sedentary Behavior in Response to COVID-19 and Their Associations with Mental Health in 3052 Us Adults. Int. J. Environ. Res. Public Health 2020, 17, 6469. [Google Scholar] [CrossRef]
- Li, S.; Wang, Y.; Xue, J.; Zhao, N.; Zhu, T. The Impact of COVID-19 Epidemic Declaration on Psychological Consequences: A Study on Active Weibo Users. Int. J. Environ. Res. Public Health 2020, 17, 2032. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Oliver, J.; García-Fernández, J.; Azzouzi, S.; Stratton, C.; Paulina Muñoz-Velasco, L.; Wang, K.; Fourtassi, M.; Hong, B.-Y.; Cooper, R.; Balikuddembe, J.K.; et al. The Impact of the COVID-19 Pandemic on Healthy Lifestyle Behaviors and Perceived Mental and Physical Health of People Living with Non-Communicable Diseases: An International Cross-Sectional Survey. Int. J. Environ. Res. Public Health 2022, 19, 8023. [Google Scholar] [CrossRef]
- Kilani, H.A.; Bataineh, M.F.; Al-Nawayseh, A.; Atiyat, K.; Obeid, O.; Abu-Hilal, M.M.; Mansi, T.; Al-Kilani, M.; Al-Kitani, M.; El-Saleh, M.; et al. Healthy Lifestyle Behaviors Are Major Predictors of Mental Wellbeing during COVID-19 Pandemic Confinement: A Study on Adult Arabs in Higher Educational Institutions. PLoS ONE 2020, 15, e0243524. [Google Scholar] [CrossRef] [PubMed]
- Novita, S.; Andriani, D.; Erika; Lipowski, M.; Lipowska, M. Anxiety towards COVID-19, Fear of Negative Appearance, Healthy Lifestyle, and Their Relationship with Well-Being during the Pandemic: A Cross-Cultural Study between Indonesia and Poland. Int. J. Environ. Res. Public Health 2022, 19, 7525. [Google Scholar] [CrossRef]
- Bentlage, E.; Ammar, A.; How, D.; Ahmed, M.; Trabelsi, K.; Chtourou, H.; Brach, M. Practical Recommendations for Maintaining Active Lifestyle during the COVID-19 Pandemic: A Systematic Literature Review. Int. J. Environ. Res. Public Health 2020, 17, 6265. [Google Scholar] [CrossRef]
- Gualano, M.R.; Lo Moro, G.; Voglino, G.; Bert, F.; Siliquini, R. Effects of COVID-19 Lockdown on Mental Health and Sleep Disturbances in Italy. Int. J. Environ. Res. Public Health 2020, 17, 4779. [Google Scholar] [CrossRef]
- Blake, H.; Bermingham, F.; Johnson, G.; Tabner, A. Mitigating the Psychological Impact of COVID-19 on Healthcare Workers: A Digital Learning Package. Int. J. Environ. Res. Public Health 2020, 17, 2997. [Google Scholar] [CrossRef]
- Mazza, C.; Ricci, E.; Biondi, S.; Colasanti, M.; Ferracuti, S.; Napoli, C.; Roma, P. A Nationwide Survey of Psychological Distress among Italian People during the COVID-19 Pandemic: Immediate Psychological Responses and Associated Factors. Int. J. Environ. Res. Public Health 2020, 17, 3165. [Google Scholar] [CrossRef]
- Stanton, R.; To, Q.G.; Khalesi, S.; Williams, S.L.; Alley, S.J.; Thwaite, T.L.; Fenning, A.S.; Vandelanotte, C. Depression, Anxiety and Stress during COVID-19: Associations with Changes in Physical Activity, Sleep, Tobacco and Alcohol Use in Australian Adults. Int. J. Environ. Res. Public Health 2020, 17, 4065. [Google Scholar] [CrossRef]
- Lesser, I.A.; Nienhuis, C.P. The Impact of COVID-19 on Physical Activity Behavior and Well-Being of Canadians. Int. J. Environ. Res. Public Health 2020, 17, 3899. [Google Scholar] [CrossRef]
- Castañeda-Babarro, A.; Coca, A.; Arbillaga-Etxarri, A.; Gutiérrez-Santamaría, B. Physical Activity Change during COVID-19 Confinement. Int. J. Environ. Res. Public Health 2020, 17, 6878. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Maeda, N.; Hirado, D.; Shirakawa, T.; Urabe, Y. Physical Activity Changes and Its Risk Factors among Community-Dwelling Japanese Older Adults during the COVID-19 Epidemic: Associations with Subjective Well-Being and Health-Related Quality of Life. Int. J. Environ. Res. Public Health 2020, 17, 6591. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Liu, J.; Liu, M. Effect of COVID-19 Vaccines on Reducing the Risk of Long COVID in the Real World: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 12422. [Google Scholar] [CrossRef] [PubMed]
- Sallam, M.; Dababseh, D.; Eid, H.; Hasan, H.; Taim, D.; Al-Mahzoum, K.; Al-Haidar, A.; Yaseen, A.; Ababneh, N.A.; Assaf, A.; et al. Low COVID-19 Vaccine Acceptance Is Correlated with Conspiracy Beliefs among University Students in Jordan. Int. J. Environ. Res. Public Health 2021, 18, 2407. [Google Scholar] [CrossRef] [PubMed]
- Hudson, A.; Montelpare, W.J. Predictors of Vaccine Hesitancy: Implications for COVID-19 Public Health Messaging. Int. J. Environ. Res. Public Health 2021, 18, 8054. [Google Scholar] [CrossRef]
- Ledda, C.; Costantino, C.; Cuccia, M.; Maltezou, H.C.; Rapisarda, V. Attitudes of Healthcare Personnel towards Vaccinations before and during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2021, 18, 2703. [Google Scholar] [CrossRef]
- Barda, N.; Dagan, N.; Cohen, C.; Hernán, M.A.; Lipsitch, M.; Kohane, I.S.; Reis, B.Y.; Balicer, R.D. Effectiveness of a Third Dose of the BNT162b2 MRNA COVID-19 Vaccine for Preventing Severe Outcomes in Israel: An Observational Study. Lancet 2021, 398, 2093–2100. [Google Scholar] [CrossRef] [PubMed]
- Moore, S.; Hill, E.M.; Tildesley, M.J.; Dyson, L.; Keeling, M.J. Vaccination and Non-Pharmaceutical Interventions for COVID-19: A Mathematical Modelling Study. Lancet Infect. Dis. 2021, 21, 793–802. [Google Scholar] [CrossRef]
- Fiolet, T.; Kherabi, Y.; MacDonald, C.J.; Ghosn, J.; Peiffer-Smadja, N. Comparing COVID-19 Vaccines for Their Characteristics, Efficacy and Effectiveness against SARS-CoV-2 and Variants of Concern: A Narrative Review. Clin. Microbiol. Infect. 2022, 28, 202–221. [Google Scholar] [CrossRef]
- Vellappally, S.; Naik, S.; Alsadon, O.; Abdullah Al-Kheraif, A.; Alayadi, H.; Jaber Alsiwat, A.; Kumar, A.; Hashem, M.; Varghese, N.; George Thomas, N.; et al. Perception of COVID-19 Booster Dose Vaccine among Healthcare Workers in India and Saudi Arabia. Int. J. Environ. Res. Public Health 2022, 19, 8942. [Google Scholar] [CrossRef]
- Soares, P.; Rocha, J.V.; Moniz, M.; Gama, A.; Laires, P.A.; Pedro, A.R.; Dias, S.; Leite, A.; Nunes, C. Factors Associated with COVID-19 Vaccine Hesitancy. Vaccines 2021, 9, 300. [Google Scholar] [CrossRef] [PubMed]
- Alley, S.J.; Stanton, R.; Browne, M.; To, Q.G.; Khalesi, S.; Williams, S.L.; Thwaite, T.L.; Fenning, A.S.; Vandelanotte, C. As the Pandemic Progresses, How Does Willingness to Vaccinate against COVID-19 Evolve? Int. J. Environ. Res. Public Health 2021, 18, 797. [Google Scholar] [CrossRef]
- Khankeh, H.R.; Farrokhi, M.; Khanjani, M.S.; Momtaz, Y.A.; Forouzan, A.S.; Norouzi, M.; Ahmadi, S.; Harouni, G.G.; Roudini, J.; Ghanaatpisheh, E.; et al. The Barriers, Challenges, and Strategies of COVID-19 (SARS-CoV-2) Vaccine Acceptance: A Concurrent Mixed-Method Study in Tehran City, Iran. Vaccines 2021, 9, 1248. [Google Scholar] [CrossRef]
- Sallam, M. COVID-19 Vaccine Hesitancy Worldwide: A Concise Systematic Review of Vaccine Acceptance Rates. Vaccines 2021, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Moudatsou, M.; Stavropoulou, A.; Rovithis, M. Views and Challenges of COVID-19 Vaccination in the Primary Health Care Sector. A Qualitative Study. Vaccines 2023, 11, 803. [Google Scholar] [CrossRef]
- Nossier, S.A. Vaccine Hesitancy: The Greatest Threat to COVID-19 Vaccination Programs. J. Egypt. Public Health Assoc. 2021, 96, 18–20. [Google Scholar] [CrossRef]
- Comunian, S.; Dongo, D.; Milani, C.; Palestini, P. Air Pollution and COVID-19: The Role of Particulate Matter in the Spread and Increase of COVID-19′s Morbidity and Mortality. Int. J. Environ. Res. Public Health 2020, 17, 4487. [Google Scholar] [CrossRef] [PubMed]
- Holmes, L.; Enwere, M.; Williams, J.; Ogundele, B.; Chavan, P.; Piccoli, T.; Chinaka, C.; Comeaux, C.; Pelaez, L.; Okundaye, O.; et al. Black–White Risk Differentials in COVID-19 (Sars-Cov2) Transmission, Mortality and Case Fatality in the United States: Translational Epidemiologic Perspective and Challenges. Int. J. Environ. Res. Public Health 2020, 17, 4322. [Google Scholar] [CrossRef]
- Poblador-Plou, B.; Carmona-Pírez, J.; Ioakeim-Skoufa, I.; Poncel-Falcó, A.; Bliek-Bueno, K.; Cano-Del Pozo, M.; Gimeno-Feliú, L.A.; González-Rubio, F.; Aza-Pascual-salcedo, M.; Bandrés-Liso, A.C.; et al. Baseline Chronic Comorbidity and Mortality in Laboratory-Confirmed COVID-19 Cases: Results from the PRECOVID Study in Spain. Int. J. Environ. Res. Public Health 2020, 17, 5171. [Google Scholar] [CrossRef]
- Kodera, S.; Rashed, E.A.; Hirata, A. Correlation between COVID-19 Morbidity and Mortality Rates in Japan and Local Population Density, Temperature, and Absolute Humidity. Int. J. Environ. Res. Public Health 2020, 17, 5477. [Google Scholar] [CrossRef]
- Starke, K.R.; Petereit-Haack, G.; Schubert, M.; Kämpf, D.; Schliebner, A.; Hegewald, J.; Seidler, A. The Age-Related Risk of Severe Outcomes Due to COVID-19 Infection: A Rapid Review, Meta-Analysis, and Meta-Regression. Int. J. Environ. Res. Public Health 2020, 17, 5974. [Google Scholar] [CrossRef] [PubMed]
- Alves, V.P.; Casemiro, F.G.; De Araujo, B.G.; De Souza Lima, M.A.; De Oliveira, R.S.; De Souza Fernandes, F.T.; Gomes, A.V.C.; Gregori, D. Factors Associated with Mortality among Elderly People in the COVID-19 Pandemic (SARS-CoV-2): A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 8. [Google Scholar] [CrossRef]
- Taff, B.D.; Rice, W.L.; Lawhon, B.; Newman, P. Who Started, Stopped, and Continued Participating in Outdoor Recreation during the COVID-19 Pandemic in the United States? Results from a National Panel Study. Land 2021, 10, 1396. [Google Scholar] [CrossRef]
- Burnett, H.; Olsen, J.R.; Mitchell, R. Green Space Visits and Barriers to Visiting during the COVID-19 Pandemic: A Three-Wave Nationally Representative Cross-Sectional Study of UK Adults. Land 2022, 11, 503. [Google Scholar] [CrossRef]
- Huerta, C.M.; Utomo, A. Barriers Affecting Women’s Access to Urban Green Spaces during the COVID-19 Pandemic. Land 2022, 11, 560. [Google Scholar] [CrossRef]
- MacKinnon, M.; MacKinnon, R.; Pedersen Zari, M.; Glensor, K.; Park, T. Urgent Biophilia: Green Space Visits in Wellington, New Zealand, during the COVID-19 Lockdowns. Land 2022, 11, 793. [Google Scholar] [CrossRef]
- Feng, X.; Astell-Burt, T. Perceived Qualities, Visitation and Felt Benefits of Preferred Nature Spaces during the COVID-19 Pandemic in Australia: A Nationally-Representative Cross-Sectional Study of 2940 Adults. Land 2022, 11, 904. [Google Scholar] [CrossRef]
- Khalilnezhad, M.R.; Ugolini, F.; Massetti, L. Attitudes and Behaviors toward the Use of Public and Private Green Space during the COVID-19 Pandemic in Iran. Land 2021, 10, 1085. [Google Scholar] [CrossRef]
- Grigoletto, A.; Loi, A.; Latessa, P.M.; Marini, S.; Rinaldo, N.; Gualdi-Russo, E.; Zaccagni, L.; Toselli, S. Physical Activity Behavior, Motivation and Active Commuting: Relationships with the Use of Green Spaces in Italy. Int. J. Environ. Res. Public Health 2022, 19, 9248. [Google Scholar] [CrossRef]
- Ueno, Y.; Kato, S.; Mase, T.; Funamoto, Y.; Hasegawa, K. Human Flow Dataset Reveals Changes in Citizens’ Outing Behaviors Including Greenspace Visits before and during the First Wave of the COVID-19 Pandemic in Kanazawa, Japan. Int. J. Environ. Res. Public Health 2022, 19, 8728. [Google Scholar] [CrossRef]
- Han, S.; Bohannon, C.L.; Kwon, Y. How Has the COVID-19 Pandemic Affected the Perceptions of Public Space Employees? Land 2021, 10, 1332. [Google Scholar] [CrossRef]
- Low, S.; Smart, A. Thoughts about Public Space During COVID-19 Pandemic. City Soc. 2020, 32. [Google Scholar] [CrossRef] [PubMed]
- Cheshmehzangi, A. 10 Adaptive Measures for Public Places to Face the COVID 19 Pandemic Outbreak. City Soc. 2020, 32. [Google Scholar] [CrossRef] [PubMed]
- James, A.C. Don’t Stand so Close to Me: Public Spaces, Behavioral Geography, and COVID-19. Dialogues Hum. Geogr. 2020, 10, 187–190. [Google Scholar] [CrossRef]
- Chmielewska, A.; Ciski, M.; Renigier-Biłozor, M. Residential Real Estate Investors’ Motives under Pandemic Conditions. Cities 2022, 128, 103801. [Google Scholar] [CrossRef]
- Park, M.; Cook, A.R.; Lim, J.T.; Sun, Y.; Dickens, B.L. A Systematic Review of COVID-19 Epidemiology Based on Current Evidence. J. Clin. Med. 2020, 9, 967. [Google Scholar] [CrossRef]
- Tzamali, E.; Sakkalis, V.; Tzedakis, G.; Spanakis, E.G.; Tzanakis, N. Mathematical Modeling Evaluates How Vaccinations Affected the Course of COVID-19 Disease Progression. Vaccines 2023, 11, 722. [Google Scholar] [CrossRef]
- Karaye, I.M.; Horney, J.A. The Impact of Social Vulnerability on COVID-19 in the U.S.: An Analysis of Spatially Varying Relationships. Am. J. Prev. Med. 2020, 59, 317–325. [Google Scholar] [CrossRef]
- Sannigrahi, S.; Pilla, F.; Basu, B.; Basu, A.S.; Molter, A. Examining the Association between Socio-Demographic Composition and COVID-19 Fatalities in the European Region Using Spatial Regression Approach. Sustain. Cities Soc. 2020, 62. [Google Scholar] [CrossRef]
- Johnson, D.P.; Ravi, N.; Braneon, C.V. Spatiotemporal Associations Between Social Vulnerability, Environmental Measurements, and COVID-19 in the Conterminous United States. Geohealth 2021, 5, e2021GH000423. [Google Scholar] [CrossRef]
- Devkota, M.; Hatfield, G.; Chintala, R. Effect of Sample Size on the Performance of Ordinary Least Squares and Geographically Weighted Regression. Br. Journal. Math. Comput. Sci. 2014, 4, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Michał Rogalski (@micalrg)/Twitter. Available online: https://twitter.com/micalrg (accessed on 6 July 2022).
- Rogalski, M. Archiwum Danych Powiatowych Raportowanych Przez Ministerstwo Zdrowia. Available online: https://bit.ly/covid19_archiwumMZ (accessed on 6 July 2022).
- Rogalski, M. Dane o COVID-19 Według Powiatów. Available online: bit.ly/covid19_powiaty (accessed on 6 July 2022).
- Kaczmarek, T.; Mikuła, Ł. Presidential Elections in Poland during the COVID-19 Pandemic: An Unexpected Challenge for Political Actors and the Relationship between Central Government and Local Government; Springer: Cham, Switzerland, 2022; pp. 451–479. [Google Scholar]
- Lorent, D.; Nowak, R.; Roxo, C.; Lenartowicz, E.; Makarewicz, A.; Zaremba, B.; Nowak, S.; Kuszel, L.; Stefaniak, J.; Kierzek, R.; et al. Prevalence of Anti-SARS-CoV-2 Antibodies in Poznań, Poland, after the First Wave of the COVID-19 Pandemic. Vaccines 2021, 9, 541. [Google Scholar] [CrossRef]
- Lipowicz, I.; Szpor, G. Neue Aspekte Der Desinformation. Datenschutz Datensicherheit-DuD 2021, 45, 381–384. [Google Scholar] [CrossRef]
- Kowalski, P.A.; Szwagrzyk, M.; Kielpinska, J.; Konior, A.; Kusy, M. Numerical Analysis of Factors, Pace and Intensity of the Corona Virus (COVID-19) Epidemic in Poland. Ecol. Inform. 2021, 63, 101284. [Google Scholar] [CrossRef] [PubMed]
- Parysek, J.J.; Mierzejewska, L. Cities in the Epidemic, the Epidemic in Cities: Reconstruction of COVID-19 Development in Polish Cities. Cities 2022, 125, 103676. [Google Scholar] [CrossRef] [PubMed]
- Sawik, B.; Płonka, J. Project and Prototype of Mobile Application for Monitoring the Global COVID-19 Epidemiological Situation. Int. J. Environ. Res. Public Health 2022, 19, 1416. [Google Scholar] [CrossRef] [PubMed]
- Śleszyński, P. Prawidłowości Przebiegu Dyfuzji Przestrzennej Rejestrowanych Zakażeń Koronawirusem SARS-CoV-2 w Polsce w Pierwszych 100 Dniach EPidemii. Czas. Geogr. 2020, 91, 5–19. [Google Scholar]
- Duszyński, J.; Afelt, A.; Ochab-Marcinek, A.; Owczuk, R.; Pyrć, K.; Rosińska, M.; Rychard, A.; Smiatacz, T. Zrozumieć COVID-19 Opracowanie Zespołu ds. COVID-19 przy Prezesie Polskiej Akademii Nauk; PAN: Warszawa, Poland, 2020. [Google Scholar]
- Rząsa, K.; Ciski, M. Influence of the Demographic, Social, and Environmental Factors on the COVID-19 Pandemic—Analysis of the Local Variations Using Geographically Weighted Regression. Int. J. Environ. Res. Public Health 2022, 19, 1881. [Google Scholar] [CrossRef]
- Chudzicka-Czupała, A.; Chiang, S.K.; Grabowski, D.; Żywiołek-Szeja, M.; Quek, M.; Pudełek, B.; Teopiz, K.; Ho, R.; McIntyre, R.S. Predictors of Psychological Distress across Three Time Periods during the COVID-19 Pandemic in Poland. Int. J. Environ. Res. Public Health 2022, 19, 5405. [Google Scholar] [CrossRef]
- Stańdo, J.; Czabański, A.; Fechner, Ż.; Baum, E.; Andriessen, K.; Krysińska, K. Suicide and Attempted Suicide in Poland before and during the COVID-19 Pandemic between 2019 and 2021. Int. J. Environ. Res. Public Health 2022, 19, 8968. [Google Scholar] [CrossRef]
- Wysocka-Fijorek, E.; Dobrowolska, E.; Budniak, P.; Korzeniewski, K.; Czubak, D. Forest Resources Projection Tools: Comparison of Available Tools and Their Adaptation to Polish Conditions. Forests 2023, 14, 548. [Google Scholar] [CrossRef]
- Tokarz-Kocik, A.; Bera, A.; Drela, K.; Malkowska, A. The Impact of the COVID-19 Pandemic on the Labour Market in the Hotel Industry: Selected Conditions in Poland. Sustainability 2023, 15, 4886. [Google Scholar] [CrossRef]
- Biernat, E.; Krzepota, J.; Sadowska, D. Active or Passive Aging? Analysis of Selected Socioeconomic Factors in the Polish Population. Int. J. Environ. Res. Public Health 2023, 20, 4683. [Google Scholar] [CrossRef]
- Tiefelsdorf, M. The Saddlepoint Approximation of Moran’s I’s and Local Moran’s Ii’s Reference Distributions and Their Numerical Evaluation. Geogr. Anal. 2002, 34, 187–206. [Google Scholar] [CrossRef]
- Han, F.; Sui, F. Effect of Global Moran’s I and Space-Time Permutation Scanning Method in Shanghai Metro Traffic Based on Ecological Transportation System. Ekoloji 2019, 28, 4295–4303. [Google Scholar]
- Lichstein, J.W.; Simons, T.R.; Shriner, S.A.; Franzreb, K.E. Spatial Autocorrelation and Autoregressive Models in Ecology. Ecol. Monogr. 2002, 72, 445–463. [Google Scholar] [CrossRef]
- Mohammad Sham, N.; Anual, Z.F.; Shaharudin, R. GIS Based Interpolation Method to Urinary Metal Concentrations in Malaysia. Food Chem. Toxicol. 2022, 163, 112949. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, J.; Han, L. Exploring the Spatial Heterogeneity of Urban Heat Island Effect and Its Relationship to Block Morphology with the Geographically Weighted Regression Model. Sustain. Cities Soc. 2022, 76, 103431. [Google Scholar] [CrossRef]
- Geddes, A.; Fotheringham, A.S.; Libby, G.; Steele, R.J.C. Colorectal Cancer Screening Participation: Exploring Relationship Heterogeneity and Scale Differences Using Multiscale Geographically Weighted Regression. Geospat. Health 2021, 16, 103–112. [Google Scholar] [CrossRef]
- Chen, Y.; Luo, Z. Hedonic Pricing of Houses in Megacities Pre- and Post-COVID-19: A Case Study of Shanghai, China. Sustainability 2022, 14, 21. [Google Scholar] [CrossRef]
- He, Y.; Seminara, P.J.; Huang, X.; Yang, D.; Fang, F.; Song, C. Geospatial Modeling of Health, Socioeconomic, Demographic, and Environmental Factors with COVID-19 Incidence Rate in Arkansas, US. ISPRS Int. J. Geoinf. 2023, 12, 45. [Google Scholar] [CrossRef]
- Mohammadi, A.; Pishgar, E.; Fatima, M.; Lotfata, A.; Fanni, Z.; Bergquist, R.; Kiani, B. The COVID-19 Mortality Rate Is Associated with Illiteracy, Age, and Air Pollution in Urban Neighborhoods: A Spatiotemporal Cross-Sectional Analysis. Trop. Med. Infect. Dis. 2023, 8, 85. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Zhu, H.; Li, P.; Liu, C.; Li, F.; Luo, Z.; Zhang, M.; Li, L. Spatial Patterns of the Spread of COVID-19 in Singapore and the Influencing Factors. ISPRS Int. J. Geoinf. 2022, 11, 152. [Google Scholar] [CrossRef]
- Oshan, T.M.; Li, Z.; Kang, W.; Wolf, L.J.; Stewart Fotheringham, A. MGWR: A Python Implementation of Multiscale Geographically Weighted Regression for Investigating Process Spatial Heterogeneity and Scale. ISPRS Int. J. Geoinf. 2019, 8, 269. [Google Scholar] [CrossRef]
- Ciski, M.; Rząsa, K. Threats to Cultural Heritage Caused by the Global Sea Level Rise as a Result of the Global Warming. Water 2021, 13, 2577. [Google Scholar] [CrossRef]
- Rząsa, K.; Ciski, M. Determination of the Level of Sustainable Development of the Cities—A Proposal for a Method of Classifying Objects Based on Natural Breaks. Acta Sci. Pol. Adm. Locorum 2021, 20, 215–239. [Google Scholar] [CrossRef]
- Ciski, M.; Rząsa, K. Cultural Parks in the Spatial Planning System in Poland. In Proceedings of the 2018 Baltic Geodetic Congress (BGC Geomatics), Olsztyn, Poland, 21–23 June 2018; pp. 145–149. [Google Scholar]
- Ciski, M.; Ogryzek, M. Differences in the Mapping of the Southern Coastline of the Baltic Sea on Historical Maps, in the XVI-XX Centuries. In Proceedings of the 2018 Baltic Geodetic Congress, BGC-Geomatics 2018, Olsztyn, Poland, 21–23 June 2018; pp. 154–158. [Google Scholar]
- Ciski, M.; Rząsa, K.; Ogryzek, M. Use of GIS Tools in Sustainable Heritage Management-the Importance of Data Generalization in Spatial Modeling. Sustainability 2019, 11, 5616. [Google Scholar] [CrossRef]
- Comber, A.; Brunsdon, C.; Charlton, M.; Dong, G.; Harris, R.; Lu, B.; Yihe, L.; Murakami, D.; Nakaya, T.; Wang, Y.; et al. A Route Map for Successful Applications of Geographically Weighted Regression. Geogr. Anal. 2022. [Google Scholar] [CrossRef]
- Zafri, N.M.; Khan, A. A Spatial Regression Modeling Framework for Examining Relationships between the Built Environment and Pedestrian Crash Occurrences at Macroscopic Level: A Study in a Developing Country Context. Geogr. Sustain. 2022, 3, 312–324. [Google Scholar] [CrossRef]
- Liu, Y.; He, Z.; Zhou, X. Space-Time Variation and Spatial Differentiation of COVID-19 Confirmed Cases in Hubei Province Based on Extended GWR. ISPRS Int. J. Geoinf. 2020, 9, 536. [Google Scholar] [CrossRef]
- Ganasegeran, K.; Jamil, M.F.A.; Appannan, M.R.; Ch’ng, A.S.H.; Looi, I.; Peariasamy, K.M. Spatial Dynamics and Multiscale Regression Modelling of Population Level Indicators for COVID-19 Spread in Malaysia. Int. J. Environ. Res. Public Health 2022, 19, 2082. [Google Scholar] [CrossRef] [PubMed]
Variable | Symbol |
---|---|
The number of confirmed COVID-19 deaths | V1 |
The number of COVID-19 vaccine doses administered | V2 |
The number of confirmed SARS-CoV-2 cases | V3 |
Population—total population | V4 |
Population—age range 0–9 | V5 |
Population—age range 10–19 | V6 |
Population—age range 20–29 | V7 |
Population—age range 30–39 | V8 |
Population—age range 40–49 | V9 |
Population—age range 50–59 | V10 |
Population—age range 60–69 | V11 |
Population—age range 70–79 | V12 |
Population—age range over 80 | V13 |
Population—total female | V14 |
Population—total male | V15 |
Symbol | p-Value | Z-Score | Moran’s I index | Spatial Pattern | Confidence Level |
---|---|---|---|---|---|
V1 | 0.02 | 2.40 | 0.07 | Clustered | 5% |
V2 | 0.01 | 2.51 | 0.06 | Clustered | 1% |
V3 | 0.00 | 5.97 | 0.20 | Clustered | 1% |
V4 | 0.00 | 4.11 | 0.12 | Clustered | 1% |
V5 | 0.00 | 5.44 | 0.16 | Clustered | 1% |
V6 | 0.00 | 5.71 | 0.17 | Clustered | 1% |
V7 | 0.00 | 4.48 | 0.14 | Clustered | 1% |
V8 | 0.00 | 3.89 | 0.11 | Clustered | 1% |
V9 | 0.00 | 4.69 | 0.14 | Clustered | 1% |
V10 | 0.00 | 4.20 | 0.13 | Clustered | 1% |
V11 | 0.00 | 3.04 | 0.09 | Clustered | 1% |
V12 | 0.01 | 2.63 | 0.08 | Clustered | 1% |
V13 | 0.04 | 2.03 | 0.07 | Clustered | 5% |
V14 | 0.00 | 3.96 | 0.12 | Clustered | 1% |
V15 | 0.00 | 4.27 | 0.13 | Clustered | 1% |
Symbol | MGWR R2 Value | ||
---|---|---|---|
V1 | V2 | V3 | |
V1 * | -- | -- | -- |
V2 ** | 0.94 | -- | 0.96 |
V3 ** | 0.96 | -- | -- |
V4 ** | 0.97 | 0.93 | 0.99 |
V5 ** | 0.95 | 0.91 | 0.99 |
V6 ** | 0.93 | 0.87 | 0.98 |
V7 ** | 0.94 | 0.89 | 0.97 |
V8 ** | 0.97 | 0.94 | 0.99 |
V9 ** | 0.96 | 0.92 | 0.99 |
V10 ** | 0.96 | 0.91 | 0.99 |
V11 ** | 0.98 | 0.95 | 0.99 |
V12 ** | 0.98 | 0.97 | 0.99 |
V13 * | 0.97 | 0.97 | 0.98 |
V14 ** | 0.97 | 0.95 | 0.99 |
V15 ** | 0.96 | 0.93 | 0.99 |
V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 | V11 | V12 | V13 | V14 | V15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V1 | −1.51 | −1.75 | −1.91 | −0.49 | −0.74 | −1.54 | −0.52 | −1.31 | −1.23 | −0.72 | 0.06 | −0.43 | −1.45 | −1.00 |
V2 | −1.71 | −0.51 | −0.61 | −0.93 | −1.17 | −1.58 | −1.68 | −1.37 | −1.21 | −1.37 | −1.62 | 0.16 | ||
V3 | −1.88 | −0.65 | −1.59 | −1.35 | −1.38 | −1.18 | −1.08 | −1.06 | −0.99 | −1.34 | −1.51 | −0.95 | −1.91 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ciski, M.; Rząsa, K. Multiscale Geographically Weighted Regression in the Investigation of Local COVID-19 Anomalies Based on Population Age Structure in Poland. Int. J. Environ. Res. Public Health 2023, 20, 5875. https://doi.org/10.3390/ijerph20105875
Ciski M, Rząsa K. Multiscale Geographically Weighted Regression in the Investigation of Local COVID-19 Anomalies Based on Population Age Structure in Poland. International Journal of Environmental Research and Public Health. 2023; 20(10):5875. https://doi.org/10.3390/ijerph20105875
Chicago/Turabian StyleCiski, Mateusz, and Krzysztof Rząsa. 2023. "Multiscale Geographically Weighted Regression in the Investigation of Local COVID-19 Anomalies Based on Population Age Structure in Poland" International Journal of Environmental Research and Public Health 20, no. 10: 5875. https://doi.org/10.3390/ijerph20105875
APA StyleCiski, M., & Rząsa, K. (2023). Multiscale Geographically Weighted Regression in the Investigation of Local COVID-19 Anomalies Based on Population Age Structure in Poland. International Journal of Environmental Research and Public Health, 20(10), 5875. https://doi.org/10.3390/ijerph20105875