The Influence of Whey Protein on Muscle Strength, Glycemic Control and Functional Tasks in Older Adults with Type 2 Diabetes Mellitus in a Resistance Exercise Program: Randomized and Triple Blind Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lewgood, J.; Oliveira, B.; Korzepa, M.; Forbes, S.C.; Little, J.P.; Breen, L.; Bailie, R.; Candow, D.G. Efficacy of dietary and supplementation interventions for individuals with type 2 diabetes. Nutrients 2021, 13, 2378. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.D.; Langenberg, C.; Rapsomaniki, E.; Denaxas, S.; Pujades-Rodriguez, M.; Gale, C.P.; Deanfield, J.; Smeeth, L.; Timmis, A.; Hemingway, H. Type 2 diabetes and incidence of cardiovascular diseases: A cohort study in 1·9 million people. Lancet Diabetes Endocrinol. 2015, 3, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Beulens, J.W.J.; Pinho, M.G.M.; Abreu, T.C.; den Braver, N.R.; Lam, T.M.; Huss, A.; Vlaanderen, J.; Sonnenschein, T.; Siddiqui, N.Z.; Yuan, Z.; et al. Environmental risk factors of type 2 diabetes—An exposome approach. Diabetologia 2022, 65, 263–274. [Google Scholar] [CrossRef] [PubMed]
- Argano, C.; Natoli, G.; Mularo, S.; Nobili, A.; Lo Monaco, M.; Mannucci, P.M.; Perticone, F.; Pietrangelo, A.; Corrao, S. Impact of Diabetes Mellitus and Its Comorbidities on Elderly Patients Hospitalized in Internal Medicine Wards: Data from the RePoSi Registry. Healthcare 2022, 10, 86. [Google Scholar] [CrossRef]
- Beaudry, K.M.; Devries, M.C. Nutritional Strategies to Combat Type 2 Diabetes in Aging Adults: The Importance of Protein. Front. Nutr. 2019, 6, 138. [Google Scholar] [CrossRef] [PubMed]
- Chapman, I.; Oberoi, A.; Giezenaar, C.; Soenen, S. Rational use of protein supplements in the elderly—Relevance of gastrointestinal mechanisms. Nutrients 2021, 13, 1227. [Google Scholar] [CrossRef]
- Ibañez, J.; Izquierdo, M.; Argüelles, I.; Forga, L.; Larrión, J.L.; García-Unciti, M.; Idoate, F.; Gorostiaga, E.M. Twice-weekly progressive resistance training decreases abdominal fat and improves insulin sensitivity in older men with type 2 diabetes. Diabetes Care 2005, 28, 662–667. [Google Scholar] [CrossRef]
- Cadore, E.L.; Rodríguez-Mañas, L.; Sinclair, A.; Izquierdo, M. Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: A systematic review. Rejuvenation Res. 2013, 16, 105–114. [Google Scholar] [CrossRef]
- Bommer, C.; Sagalova, V.; Heesemann, E.; Manne-Goehler, J.; Atun, R.; Bärnighausen, T.; Davies, J.; Vollmer, S. Global economic burden of diabetes in adults: Projections from 2015 to 2030. Diabetes Care 2018, 41, 963–970. [Google Scholar] [CrossRef]
- Daly, R.M.; Miller, E.G.; Dunstan, D.W.; Kerr, D.A.; Solah, V.; Menzies, D.; Nowson, C.A. The effects of progressive resistance training combined with a whey-protein drink and vitamin D supplementation on glycaemic control, body composition and cardiometabolic risk factors in older adults with type 2 diabetes: Study protocol for a randomized controlled trial. Trials 2014, 15, 431. [Google Scholar] [CrossRef]
- Pesta, D.H.; Goncalves, R.L.S.; Madiraju, A.K.; Strasser, B.; Sparks, L.M. Resistance training to improve type 2 diabetes: Working toward a prescription for the future. Nutr. Metab. 2017, 14, 24. [Google Scholar] [CrossRef] [PubMed]
- Flaim, C.; Kob, M.; Di Pierro, A.M.; Herrmann, M.; Lucchin, L. Effects of a whey protein supplementation on oxidative stress, body composition and glucose metabolism among overweight people affected by diabetes mellitus or impaired fasting glucose: A pilot study. J. Nutr. Biochem. 2017, 50, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Sartorius, T.; Weidner, A.; Dharsono, T.; Boulier, A.; Wilhelm, M.; Schön, C. Correction: Postprandial effects of a proprietary milk protein hydrolysate containing bioactive peptides in prediabetic subjects. Nutrients 2019, 11, 1700. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.L.; Broughton, K.S. Insulinotropic Effects of Whey: Mechanisms of Action, Recent Clinical Trials, and Clinical Applications. Ann. Nutr. Metab. 2016, 69, 56–63. [Google Scholar] [CrossRef]
- Hannon, B.A.; Fairfield, W.D.; Adams, B.; Kyle, T.; Crow, M.; Thomas, D.M. Use and abuse of dietary supplements in persons with diabetes. Nutr. Diabetes 2020, 10, 14. [Google Scholar] [CrossRef]
- Kakigi, R.; Yoshihara, T.; Ozaki, H.; Ogura, Y.; Ichinoseki-Sekine, N.; Kobayashi, H.; Naito, H. Whey protein intake after resistance exercise activates mTOR signaling in a dose-dependent manner in human skeletal muscle. Eur. J. Appl. Physiol. 2014, 114, 735–742. [Google Scholar] [CrossRef]
- Teo, S.Y.M.; Kanaley, J.A.; Guelfi, K.J.; Marston, K.J.; Fairchild, T.J. The Effect of Exercise Timing on Glycemic Control: A Randomized Clinical Trial. Med. Sci. Sports Exerc. 2020, 52, 323–334. [Google Scholar] [CrossRef]
- Alonso, A.C.; Ribeiro, S.M.; Luna, N.M.S.; Peterson, M.D.; Bocalini, D.S.; Serra, M.M.; Brech, G.C.; Greve, J.M.D.; Garcez-Leme, L.E. Association between handgrip strength, balance, and knee flexion/extension strength in older adults. PLoS ONE 2018, 13, e0198185. [Google Scholar] [CrossRef]
- De Ernandes, R.C.; Brech, G.C.; Luna, N.M.S.; Nunes, M.F.; Greve, J.M.D.A.; Leme, L.E.G.; Alonso, A.C. Relationship of force platform with the clinical balance evaluation systems test in older adults. Acta Ortop. Bras. 2020, 28, 111–113. [Google Scholar] [CrossRef]
- Consort—Welcome to the CONSORT Website. Available online: http://www.consort-statement.org/ (accessed on 6 February 2023).
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the prot-age study group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Promislow, J.H.E.; Goodman-Gruen, D.; Slymen, D.J.; Barrett-Connor, E. Protein consumption and bone mineral density in the elderly: The Rancho Bernardo study. Am. J. Epidemiol. 2002, 155, 636–644. [Google Scholar] [CrossRef] [PubMed]
- Rapuri, P.B.; Gallagher, J.C.; Haynatzka, V. Protein intake: Effects on bone mineral density and the rate of bone loss in elderly women. Am. J. Clin. Nutr. 2003, 77, 1517–1525. [Google Scholar] [CrossRef] [PubMed]
- Houston, D.K.; Nicklas, B.J.; Ding, J.; Harris, T.B.; Tylavsky, F.A.; Newman, A.B.; Jung, S.L.; Sahyoun, N.R.; Visser, M.; Kritchevsky, S.B. Dietary protein intake is associated with lean mass change in older, community-dwelling adults: The Health, Aging, and Body Composition (Health ABC) study. Am. J. Clin. Nutr. 2008, 87, 150–155. [Google Scholar] [CrossRef]
- Grgic, J.; Lazinica, B.; Schoenfeld, B.J.; Pedisic, Z. Test–Retest Reliability of the One-Repetition Maximum (1RM) Strength Assessment: A Systematic Review. Sport. Med. Open 2020, 6, 31. [Google Scholar] [CrossRef]
- Gearhart, R., Jr.; Lagally, K.; Riechman, S.; Andrews, R.; Robertson, R. Stregnth training using the OMNI resistance exercise scale in older mena and women. J. Strength Cond. Res. 2009, 23, 1011–1015. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Breen, L.; Burd, N.A.; Hector, A.J.; Churchward-Venne, T.A.; Josse, A.R.; Tarnopolsky, M.A.; Phillips, S.M. Resistance exercise enhances myofibrillar protein synthesis with graded intakes of whey protein in older men. Br. J. Nutr. 2012, 108, 1780–1788. [Google Scholar] [CrossRef]
- Pal, S.; Ellis, V.; Dhaliwal, S. Effects of whey protein isolate on body composition, lipids, insulin and glucose in overweight and obese individuals. Br. J. Nutr. 2010, 104, 716–723. [Google Scholar] [CrossRef]
- Miller, E.G.; Nowson, C.A.; Dunstan, D.W.; Kerr, D.A.; Menzies, D.; Daly, R.M. Effects of whey protein plus vitamin D supplementation combined with progressive resistance training on glycaemic control, body composition, muscle function and cardiometabolic risk factors in middle-aged and older overweight/obese adults with type 2 diabetes: A 24-week randomized controlled trial. Diabetes Obes. Metab. 2021, 23, 938–949. [Google Scholar] [CrossRef]
- Gaffney, K.; Lucero, A.; Macartney-Coxson, D.; Clapham, J.; Whitfield, P.; Palmer, B.R.; Wakefield, S.; Faulkner, J.; Stoner, L.; Rowlands, D.S. Effects of whey protein on skeletal muscle microvascular and mitochondrial plasticity following 10 weeks of exercise training in men with type 2 diabetes. Appl. Physiol. Nutr. Metab. 2021, 46, 915–924. [Google Scholar] [CrossRef]
- Subhashini; Chauhan, P.S.; Kumari, S.; Kumar, J.P.; Chawla, R.; Dash, D.; Singh, M.; Singh, R. Intranasal curcumin and its evaluation in murine model of asthma. Int. Immunopharmacol. 2013, 17, 733–743. [Google Scholar] [CrossRef]
- Ernandes, R.C.; Brech, G.C.; Luna, N.M.S.; Bega, A.; Guimarães, D.S.; Bocalini, D.S.; Scherrer, G.; Greve, J.M.D.A.; Leme, L.E.G.; Alonso, A.C. Impact of Diabetic Neuropathy on Quality of Life and Postural Balance in Brazilian Older Adults. Acta Ortop. Bras. 2020, 28, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Mavros, Y.; Kay, S.; Anderberg, K.A.; Baker, M.K.; Wang, Y.; Zhao, R.; Meiklejohn, J.; Climstein, M.; O’Sullivan, A.; de Vos, N.; et al. Changes in insulin resistance and HbA1c are related to exercise-mediated changes in body composition in older adults with type 2 diabetes: Interim outcomes from the GREAT2DO trial. Diabetes Care 2013, 36, 2372–2379. [Google Scholar] [CrossRef] [PubMed]
- Cox, D.J.; Banton, T.; Moncrief, M.; Conaway, M.; Diamond, A.; Holmes, V.; Green Pastors, J.; Wolf, A.; Fang, K.; Mccall, A. Glycemic excursion minimization in the management of type 2 diabetes: A novel intervention tested in a randomized clinical trial. BMJ Open Diabetes Res. Care 2020, 8, 1795. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.J.; Aroda, V.R.; Collins, B.S.; Gabbay, R.A.; Green, J.; Maruthur, N.M.; Rosas, S.E.; Del Prato, S.; Mathieu, C.; Mingrone, G.; et al. Management of Hyperglycemia in Type 2 Diabetes, 2022. A Consensus Report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care 2022, 45, 2753–2786. [Google Scholar] [CrossRef]
- Sumukadas, D.; Struthers, A.D.; McMurdo, M.E.T. Sarcopenia—A potential target for angiotensin-converting enzyme inhibition? Gerontology 2006, 52, 237–242. [Google Scholar] [CrossRef]
- Tawfik, V.L.; Quarta, M.; Paine, P.; Forman, T.E.; Pajarinen, J.; Takemura, Y.; Goodman, S.B.; Rando, T.A.; Clark, J.D. Angiotensin receptor blockade mimics the effect of exercise on recovery after orthopaedic trauma by decreasing pain and improving muscle regeneration. J. Physiol. 2020, 598, 317–329. [Google Scholar] [CrossRef]
- Campins, L.; Camps, M.; Riera, A.; Pleguezuelos, E.; Yebenes, J.C.; Serra-Prat, M. Oral drugs related with muscle wasting and sarcopenia. A review. Pharmacology 2017, 99, 1–8. [Google Scholar] [CrossRef]
- Long, D.E.; Kosmac, K.; Dungan, C.M.; Bamman, M.M.; Peterson, C.A.; Kern, P.A. Potential Benefits of Combined Statin and Metformin Therapy on Resistance Training Response in Older Individuals. Front. Physiol. 2022, 13, 872745. [Google Scholar] [CrossRef]
- Band, M.M.; Sumukadas, D.; Struthers, A.D.; Avenell, A.; Donnan, P.T.; Kemp, P.R.; Smith, K.T.; Hume, C.L.; Hapca, A.; Witham, M.D. Leucine and ACE inhibitors as therapies for sarcopenia (LACE trial): Study protocol for a randomised controlled trial. Trials 2018, 19, 6. [Google Scholar] [CrossRef]
- Chen, F.; Xu, S.; Wang, Y.; Chen, F.; Cao, L.; Liu, T.; Huang, T.; Wei, Q.; Ma, G.; Zhao, Y.; et al. Risk Factors for Sarcopenia in the Elderly with Type 2 Diabetes Mellitus and the Effect of Metformin. J. Diabetes Res. 2020, 2020, 3950404. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, Y.; Chen, S.; Shao, H. Anti-diabetic drugs and sarcopenia: Emerging links, mechanistic insights, and clinical implications. J. Cachexia. Sarcopenia Muscle 2021, 12, 1368–1379. [Google Scholar] [CrossRef] [PubMed]
- Caplan, E.O.; Sheer, R.; Schmedt, N.; Evers, T.; Cockrell, M.; Tindal, M.; Pasquale, M.K.; Kovesdy, C.P. Glomerular filtration rate change and outcomes in type 2 diabetes. Am. J. Manag. Care 2021, 27 (Suppl. S8), S160–S167. [Google Scholar] [CrossRef] [PubMed]
Protein M(SD) | Control M(SD) | p-Value | |
---|---|---|---|
# Age (years) | 68.1 (4.5) | 68.9 (4.1) | 0.63 |
# BMI (kg/m2) | 29.3 (2.6) | 26.8 (3.8) | 0.07 |
# Education (years) | 11.5 (3.1) | 11.5 (3.1) | 0.39 |
# Time since diagnosis (years) | 12.7 (3.8) | 12.8 (6.4) | 0.86 |
# Other diseases (n) | 1.6 (1.4) | 1.2 (0.9) | 0.36 |
# Medication (n) | 3.8 (2.0) | 3.4 (1.8) | 0.62 |
§ Ethnicity | n (%) | n (%) | χ2 (p) |
Caucasian | 9/64.3 | 11/78.6 | 1.343(0.51) |
Asian | 1/7.7 | 0/0 | |
Black and Brown Skin | 4/28.6 | 3/21.4 | |
§ BMI (kg/m2) | n (%) | n (%) | χ2 (p) |
Low weight | 1/7.1 | 1/7.1 | 0.650 (0.72) |
Eutrophic | 6/42.9 | 4/28.6 | |
Overweight | 7/50 | 9/64.3 | |
* Oral Hypoglycemic Medication | n (%) | n (%) | Fischer’s exact (p) |
Thiazolidinediones | 2/14.3 | 0/0 | 0.48 |
Sulfonylureas | 8/57.1 | 8/57.1 | 1.00 |
Biguanide | 8/57.1 | 9/64.3 | 1.00 |
DPP-4 inhibitors | 2/14.3 | 3/21.4 | 1.00 |
SGLT2 inhibitors | 2/14.3 | 2/14.3 | 1.00 |
* Cardiovascular Medication | n (%) | n (%) | Fischer’s exact (p) |
ARBs | 1/7.1 | 4/28.6 | 0.32 |
ACE-Is | 2/14.3 | 1/7.1 | 1.00 |
Statins | 5/35.7 | 3/21.4 | 0.67 |
Parameters | Pre (sd) | Post (sd) | η2 | ANOVA | |||||
---|---|---|---|---|---|---|---|---|---|
Time Effect | Group Effect | Group × Time Effect | |||||||
F | p | F | p | F | p | ||||
Lift Up left side | |||||||||
Protein | 36.64 (9.90) | 36.82 (12.31) | 0.01 | 0.44 | 0.50 | 0.02 | 0.86 | 0.52 | 0.47 |
Control | 35.1 (8.95) | 39.3 (10.68) | |||||||
Lift Up right side | |||||||||
Protein | 36.92 (7.23) | 38.00 (9.27) | 0.01 | 1.74 | 0.19 | 0.07 | 0.78 | 0.83 | 0.36 |
Control | 33.8 (9.6) | 39.6 (11.3) | |||||||
Moment Time left | |||||||||
Protein | 1.51(0.19) | 1.69 (0.33) | 0.01 | 0.74 | 0.39 | 3.15 | 0.08 | 0.91 | 0.34 |
Control | 1.78(0.35) | 1.77 (0.42) | |||||||
Moment Time right | |||||||||
Protein | 1.68 (0.30) | 1.76 (0.56) | 0.01 | 0.03 | 0.85 | 0.004 | 0.95 | 0.84 | 0.36 |
Control | 1.80 (0.42) | 1.67 (0.25) | |||||||
Impact Index left | |||||||||
Protein | 44.54 (13.58) | 38.10 (11.53) | 0.03 | 0.19 | 0.65 | 0.06 | 0.80 | 1.86 | 0.17 |
Control | 40.57 (12.21) | 43.85 (13.0) | |||||||
Impact Index right | |||||||||
Protein | 40.00 (14.33) | 34.18 (12.66) | 0.01 | 0.47 | 0.49 | 5.74 | 0.02 | 0.46 | 0.50 |
Control | 47.26 (17.13) | 47.23 (14.94) | |||||||
Weight transfer | |||||||||
Protein | 0.50 (0.19) | 0.52 (0.26) | 0.001 | 0.004 | 0.95 | 0.03 | 0.86 | 0.05 | 0.82 |
Control | 0.51 (0.32) | 0.48 (0.32) | |||||||
Sway Velocity | |||||||||
Protein | 3.50 (1.16) | 3.71 (0.88) | 0.008 | 0.004 | 0.95 | 2.47 | 0.12 | 0.36 | 0.55 |
Control | 4.08 (1.45) | 4.33 (1.72) | |||||||
Turn Time-SND | |||||||||
Protein | 2.20 (0.73) | 2.12 (0.58) | 0.007 | 0.95 | 0.33 | 1.29 | 0.26 | 0.32 | 0.57 |
Control | 2.54 (0.87) | 2.23 (0.60) | |||||||
Turn Time-SD | |||||||||
Protein | 2.31 (0.74) | 1.85 (0.36) | 0.02 | 0.003 | 0.95 | 4.31 | 0.04 | 1.40 | 0.24 |
Control | 2.34 (0.85) | 2.61 (1.10) | |||||||
Turn Sway-SND | |||||||||
Protein | 50.26 (13.10) | 45.21 (10.9) | 0.02 | 0.08 | 0.77 | 0.51 | 0.47 | 1.31 | 0.25 |
Control | 43.5 (13.1) | 46.7 (12.9) | |||||||
Turn Sway-SD | |||||||||
Protein | 50.26 (13.10) | 45.21 (12.62) | 0.02 | 0.08 | 0.77 | 0.51 | 0.47 | 1.31 | 0.25 |
Control | 43.71 (12.64) | 46.73 (12.72) |
Pre (sd) | Post (sd) | η2 | ANOVA | ||||||
---|---|---|---|---|---|---|---|---|---|
Time Effect | Group Effect | Group × Time Effect | |||||||
F | p | F | p | F | p | ||||
MDRD (mL/min/1.73 m2) | |||||||||
Protein | 86.7 (32.4) | 90.1 (24.9) | 0.04 | 0.00 | 0.98 | 1.87 | 0.10 | 0.13 | 0.71 |
Control | 82.3 (17.6) | 79.2 (11.4) | |||||||
FRUCTOSAMINE (µmol/L) | |||||||||
Protein | 315.2 (75.0) | 285.0 (40.1) | 0.02 | 2.00 | 0.16 | 1.55 | 0.22 | 0.59 | 0.81 |
Control | 281.6 (50.6) | 260.6 (30.8) | |||||||
GLUCOSE (mg/dL) | |||||||||
Protein | 140.1 (65.9) | 124.8 (37.7) | 0.00 | 0.87 | 0.35 | 0.08 | 0.93 | 0.00 | 0.98 |
Control | 141.2 (47.3) | 126.5 (17.8) | |||||||
INSULIN (µU/mL) | |||||||||
Protein | 11.0 (3.9) | 12.4 (9.0) | 0.02 | 0.16 | 0.68 | 1.82 | 0.18 | 0.73 | 0.39 |
Control | 17.6 (9.1) | 14.3 (5.4) | |||||||
HbA1c (%) | |||||||||
Protein | 7.2 (1.1) | 6.9 (1.0) | 0.01 | 1.24 | 0.27 | 0.09 | 0.75 | 0.02 | 0.87 |
Control | 7.0 (1.2) | 6.5 (0.6) | |||||||
HOMA IR | |||||||||
Protein | 4.1 (1.7) | 4.2 (2.6) | 0.03 | 1.50 | 0.21 | 2.50 | 0.11 | 1.7 | 0.20 |
Control | 6.5 (3.9) | 4.1 (2.1) | |||||||
Body Composition | |||||||||
LEAN MASS (kg) | |||||||||
Protein | 32.8 (5.3) | 32.5 (4.8) | 0.04 | 0.17 | 0.67 | 0.84 | 0.36 | 0.20 | 0.65 |
Control | 34.3 (5.4) | 34.4 (5.7) | |||||||
FAT MASS (kg) | |||||||||
Protein | 22.5 (7.8) | 21.9 (8.1) | 0.00 | 0.02 | 0.86 | 3.00 | 0.08 | 0.00 | 0.93 |
Control | 26.8 (10.3) | 26.6 (10.2) | |||||||
Hand Grip Strength | |||||||||
HGS–DS (kg/f) | |||||||||
Protein | 36.7 (9.9) | 36.1 (8.7) | 0.01 | 0.34 | 0.55 | 0.20 | 0.65 | 068 | 0.41 |
Control | 33.8 (8.7) | 37.0 (4.6) | |||||||
HGS–NDS (kg/f) | |||||||||
Protein | 33.7 (10.8) | 35.8 (10.3) | 0.001 | 1.20 | 0.27 | 0.25 | 0.61 | 0.05 | 0.82 |
Control | 32.0 (7.4) | 35.1 (4.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soares, A.L.d.S.; Machado-Lima, A.; Brech, G.C.; Greve, J.M.D.; dos Santos, J.R.; Inojossa, T.R.; Rogero, M.M.; Salles, J.E.N.; Santarem-Sobrinho, J.M.; Davis, C.L.; et al. The Influence of Whey Protein on Muscle Strength, Glycemic Control and Functional Tasks in Older Adults with Type 2 Diabetes Mellitus in a Resistance Exercise Program: Randomized and Triple Blind Clinical Trial. Int. J. Environ. Res. Public Health 2023, 20, 5891. https://doi.org/10.3390/ijerph20105891
Soares ALdS, Machado-Lima A, Brech GC, Greve JMD, dos Santos JR, Inojossa TR, Rogero MM, Salles JEN, Santarem-Sobrinho JM, Davis CL, et al. The Influence of Whey Protein on Muscle Strength, Glycemic Control and Functional Tasks in Older Adults with Type 2 Diabetes Mellitus in a Resistance Exercise Program: Randomized and Triple Blind Clinical Trial. International Journal of Environmental Research and Public Health. 2023; 20(10):5891. https://doi.org/10.3390/ijerph20105891
Chicago/Turabian StyleSoares, André Luiz de Seixas, Adriana Machado-Lima, Guilherme Carlos Brech, Júlia Maria D’Andréa Greve, Joselma Rodrigues dos Santos, Thiago Resende Inojossa, Marcelo Macedo Rogero, João Eduardo Nunes Salles, José Maria Santarem-Sobrinho, Catherine L. Davis, and et al. 2023. "The Influence of Whey Protein on Muscle Strength, Glycemic Control and Functional Tasks in Older Adults with Type 2 Diabetes Mellitus in a Resistance Exercise Program: Randomized and Triple Blind Clinical Trial" International Journal of Environmental Research and Public Health 20, no. 10: 5891. https://doi.org/10.3390/ijerph20105891
APA StyleSoares, A. L. d. S., Machado-Lima, A., Brech, G. C., Greve, J. M. D., dos Santos, J. R., Inojossa, T. R., Rogero, M. M., Salles, J. E. N., Santarem-Sobrinho, J. M., Davis, C. L., & Alonso, A. C. (2023). The Influence of Whey Protein on Muscle Strength, Glycemic Control and Functional Tasks in Older Adults with Type 2 Diabetes Mellitus in a Resistance Exercise Program: Randomized and Triple Blind Clinical Trial. International Journal of Environmental Research and Public Health, 20(10), 5891. https://doi.org/10.3390/ijerph20105891