The Scorching Truth: Investigating the Impact of Heatwaves on Selangor’s Elderly Hospitalisations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Profile of Study Area
2.2. Definition of Heatwaves
2.3. Hospitalisation Data
2.4. Meteorological Data
2.5. Model Specification
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NOAA. Global Climate Report—Annual. 2020. Available online: https://www.ncdc.noaa.gov/sotc/global/202013#ref (accessed on 20 December 2022).
- Van Oldenborgh, G.J.; Wehner, M.F.; Vautard, R.; Otto, F.E.; Seneviratne, S.I.; Stott, P.A.; Hegerl, G.C.; Philip, S.Y.; Kew, S.F. Attributing and projecting heatwaves is hard: We can do better. Earth’s Future 2022, 10, e2021EF002271. [Google Scholar] [CrossRef]
- IPCC. Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2018. [Google Scholar]
- Perkins-Kirkpatrick, S.; Lewis, S. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Habeeb, D.; Vargo, J.; Stone, B. Rising heat wave trends in large US cities. Nat. Hazards 2015, 76, 1651–1665. [Google Scholar] [CrossRef]
- Keellings, D.; Moradkhani, H. Spatiotemporal evolution of heat wave severity and coverage across the United States. Geophys. Res. Lett. 2020, 47, e2020GL087097. [Google Scholar] [CrossRef]
- Hulley, G.C.; Dousset, B.; Kahn, B.H. Rising trends in heatwave metrics across southern California. Earth’s Future 2020, 8, e2020EF001480. [Google Scholar] [CrossRef]
- Diaconescu, E.; Sankare, H.; Chow, K.; Murdock, T.Q.; Cannon, A.J. A short note on the use of daily climate data to calculate Humidex heat—Stress indices. Int. J. Climatol. 2023, 43, 837–849. [Google Scholar] [CrossRef]
- Acero, F.J.; Fernández-Fernández, M.I.; Carrasco, V.M.S.; Parey, S.; Hoang, T.T.H.; Dacunha-Castelle, D.; García, J.A. Changes in heat wave characteristics over Extremadura (SW Spain). Theor. Appl. Climatol. 2018, 133, 605–617. [Google Scholar] [CrossRef]
- Luo, M.; Lau, N.C.; Liu, Z.; Wu, S.; Wang, X. An observational investigation of spatiotemporally contiguous heatwaves in China from a 3D perspective. Geophys. Res. Lett. 2022, 49, e2022GL097714. [Google Scholar] [CrossRef]
- He, B.-J.; Wang, J.; Zhu, J.; Qi, J. Beating the urban heat: Situation, background, impacts and the way forward in China. Renew. Sustain. Energy Rev. 2022, 161, 112350. [Google Scholar] [CrossRef]
- Ahn, K.-H. Interannual variability of heat waves over the Korean Peninsula based on integrated approach. Sci. Total Environ. 2022, 826, 154153. [Google Scholar] [CrossRef]
- Jyoteeshkumar Reddy, P.; Perkins-Kirkpatrick, S.E.; Sharples, J.J. Intensifying Australian heatwave trends and their sensitivity to observational data. Earth’s Future 2021, 9, e2020EF001924. [Google Scholar] [CrossRef]
- Li, X.-X. Heat wave trends in Southeast Asia during 1979–2018: The impact of humidity. Sci. Total Environ. 2020, 721, 137664. [Google Scholar] [CrossRef]
- Domeisen, D.I.; Eltahir, E.A.; Fischer, E.M.; Knutti, R.; Perkins-Kirkpatrick, S.E.; Schär, C.; Seneviratne, S.I.; Weisheimer, A.; Wernli, H. Prediction and projection of heatwaves. Nat. Rev. Earth Environ. 2023, 4, 36–50. [Google Scholar] [CrossRef]
- Mason, H.M.; King, J.C.; Peden, A.E.; Watt, K.; Bosley, E.; Fitzgerald, G.; Nairn, J.; Miller, L.; Mandalios, N.; Franklin, R.C. Determining the impact of heatwaves on emergency ambulance calls in Queensland: A retrospective population-based study. Int. J. Environ. Res. Public Health 2023, 20, 4875. [Google Scholar] [CrossRef] [PubMed]
- Wedler, M.; Pinto, J.G.; Hochman, A. More frequent, persistent, and deadly heat waves in the 21st century over the Eastern Mediterranean. Sci. Total Environ. 2023, 870, 161883. [Google Scholar] [CrossRef] [PubMed]
- Thompson, R.; Landeg, O.; Kar-Purkayastha, I.; Hajat, S.; Kovats, S.; O’connell, E. Heatwave mortality in summer 2020 in England: An observational study. Int. J. Environ. Res. Public Health 2022, 19, 6123. [Google Scholar] [CrossRef]
- Dubey, A.K.; Lal, P.; Kumar, P.; Kumar, A.; Dvornikov, A.Y. Present and future projections of heatwave hazard-risk over India: A regional earth system model assessment. Environ. Res. 2021, 201, 111573. [Google Scholar] [CrossRef]
- Yong, K.H.; Chu, C. A Community Needs Assessment Model on heatwave-related health risks in the elderly: A pitch. Account. Manag. Inf. Syst. 2023, 22, 173–180. [Google Scholar] [CrossRef]
- Åström, C.; Bjelkmar, P.; Forsberg, B. High mortality during the 2018 heatwave in Sweden. Lakartidningen 2019, 116, FLFH, PMID: 31192425. [Google Scholar] [PubMed]
- Buzási, A. Comparative assessment of heatwave vulnerability factors for the districts of Budapest, Hungary. Urban Clim. 2022, 42, 101127. [Google Scholar] [CrossRef]
- Malmquist, A.; Hjerpe, M.; Glaas, E.; Karlsson, H.; Lassi, T. Elderly people’s perceptions of heat stress and adaptation to heat: An interview study. Int. J. Environ. Res. Public Health 2022, 19, 3775. [Google Scholar] [CrossRef]
- Ruuhela, R.; Votsis, A.; Kukkonen, J.; Jylhä, K.; Kankaanpää, S.; Perrels, A. Temperature-related mortality in Helsinki compared to its surrounding region over two decades, with special emphasis on intensive heatwaves. Atmosphere 2020, 12, 46. [Google Scholar] [CrossRef]
- Wu, Q.; Yang, M.; Wu, K.; Su, H.; Huang, C.; Xu, Z.; Ho, H.C.; Zheng, H.; Zhang, W.; Tao, J. Abnormal ambient temperature change increases the risk of out-of-hospital cardiac arrest: A systematic review and meta-analysis of exposure types, risk, and vulnerable populations. Sci. Total Environ. 2023, 861, 160554. [Google Scholar] [CrossRef] [PubMed]
- Ciumărnean, L.; Milaciu, M.V.; Negrean, V.; Orășan, O.H.; Vesa, S.C.; Sălăgean, O.; Iluţ, S.; Vlaicu, S.I. Cardiovascular risk factors and physical activity for the prevention of cardiovascular diseases in the elderly. Int. J. Environ. Res. Public Health 2022, 19, 207. [Google Scholar] [CrossRef] [PubMed]
- NCOA. Get the Facts on Healthy Aging. Available online: https://www.ncoa.org/article/get-the-facts-on-healthy-aging (accessed on 1 May 2023).
- Xu, Z.; FitzGerald, G.; Guo, Y.; Jalaludin, B.; Tong, S. Assessing heatwave impacts on cause-specific emergency department visits in urban and rural communities of Queensland, Australia. Environ. Res. 2019, 168, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Silveira, I.H.; Cortes, T.R.; Bell, M.L.; Junger, W.L. Effects of heat waves on cardiovascular and respiratory mortality in Rio de Janeiro, Brazil. PLoS ONE 2023, 18, e0283899. [Google Scholar] [CrossRef]
- Lan, Y.; Wu, S. Impacts of environmental insults on cardiovascular aging. Curr. Environ. Health Rep. 2022, 9, 11–28. [Google Scholar] [CrossRef]
- Liu, J.; Varghese, B.M.; Hansen, A.; Zhang, Y.; Driscoll, T.; Morgan, G.; Dear, K.; Gourley, M.; Capon, A.; Bi, P. Heat exposure and cardiovascular health outcomes: A systematic review and meta-analysis. Lancet Planet. Health 2022, 6, e484–e495. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, Z.; Bambrick, H.; Prescott, V.; Wang, N.; Zhang, Y.; Su, H.; Tong, S.; Hu, W. Cardiorespiratory effects of heatwaves: A systematic review and meta-analysis of global epidemiological evidence. Environ. Res. 2019, 177, 108610. [Google Scholar] [CrossRef]
- Gronlund, C.J.; Zanobetti, A.; Schwartz, J.D.; Wellenius, G.A.; O’Neill, M.S. Heat, heat waves, and hospital admissions among the elderly in the United States, 1992–2006. Environ. Health Perspect. 2014, 122, 1187–1192. [Google Scholar] [CrossRef]
- Song, X.; Wang, S.; Li, T.; Tian, J.; Ding, G.; Wang, J.; Wang, J.; Shang, K. The impact of heat waves and cold spells on respiratory emergency department visits in Beijing, China. Sci. Total Environ. 2018, 615, 1499–1505. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Hu, W.; Li, J.; Wei, R.; Lin, J.; Ma, W. Impact of heatwaves on daily outpatient visits of respiratory disease: A time-stratified case-crossover study. Environ. Res. 2019, 169, 196–205. [Google Scholar] [CrossRef] [PubMed]
- WHO. Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 4 May 2023).
- Ji, S.; Zhou, Q.; Jiang, Y.; He, C.; Chen, Y.; Wu, C.; Liu, B. The interactive effects between particulate matter and heat waves on circulatory mortality in Fuzhou, China. Int. J. Environ. Res. Public Health 2020, 17, 5979. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Gasparrini, A.; Li, S.; Sera, F.; Vicedo-Cabrera, A.M.; de Sousa Zanotti Stagliorio Coelho, M.; Saldiva, P.H.N.; Lavigne, E.; Tawatsupa, B.; Punnasiri, K. Quantifying excess deaths related to heatwaves under climate change scenarios: A multicountry time series modelling study. PLoS Med. 2018, 15, e1002629. [Google Scholar] [CrossRef]
- Lo, Y.E.; Mitchell, D.M.; Thompson, R.; O’Connell, E.; Gasparrini, A. Estimating heat-related mortality in near real time for national heatwave plans. Environ. Res. Lett. 2022, 17, 024017. [Google Scholar] [CrossRef]
- Oudin Åström, D.; Åström, C.; Forsberg, B.; Vicedo-Cabrera, A.M.; Gasparrini, A.; Oudin, A.; Sundquist, K. Heat wave–related mortality in Sweden: A case-crossover study investigating effect modification by neighbourhood deprivation. Scand. J. Public Health 2020, 48, 428–435. [Google Scholar] [CrossRef]
- Yan, M.; Xie, Y.; Zhu, H.; Ban, J.; Gong, J.; Li, T. The exceptional heatwaves of 2017 and all-cause mortality: An assessment of nationwide health and economic impacts in China. Sci. Total Environ. 2022, 812, 152371. [Google Scholar] [CrossRef]
- Yan, M.; Xie, Y.; Zhu, H.; Ban, J.; Gong, J.; Li, T. Cardiovascular mortality risks during the 2017 exceptional heatwaves in China. Environ. Int. 2023, 172, 107767. [Google Scholar] [CrossRef]
- Han, J.; Liu, S.; Zhang, J.; Zhou, L.; Fang, Q.; Zhang, J.; Zhang, Y. The impact of temperature extremes on mortality: A time-series study in Jinan, China. BMJ Open 2017, 7, e014741. [Google Scholar] [CrossRef]
- Isaksen, T.B.; Yost, M.G.; Hom, E.K.; Ren, Y.; Lyons, H.; Fenske, R.A. Increased hospital admissions associated with extreme-heat exposure in King County, Washington, 1990–2010. Rev. Environ. Health 2015, 30, 51–64. [Google Scholar] [CrossRef]
- Bundo, M.; de Schrijver, E.; Federspiel, A.; Toreti, A.; Xoplaki, E.; Luterbacher, J.; Franco, O.H.; Müller, T.; Vicedo-Cabrera, A.M. Ambient temperature and mental health hospitalizations in Bern, Switzerland: A 45-year time-series study. PLoS ONE 2021, 16, e0258302. [Google Scholar] [CrossRef] [PubMed]
- Van den Wyngaert, I.; De Troeyer, K.; Vaes, B.; Alsaiqali, M.; Van Schaeybroeck, B.; Hamdi, R.; Casas Ruiz, L.; Van Pottelbergh, G. Impact of heat waves on hospitalisation and mortality in nursing homes: A case-crossover study. Int. J. Environ. Res. Public Health 2021, 18, 10697. [Google Scholar] [CrossRef] [PubMed]
- D’Ippoliti, D.; Michelozzi, P.; Marino, C.; de’Donato, F.; Menne, B.; Katsouyanni, K.; Kirchmayer, U.; Analitis, A.; Medina-Ramón, M.; Paldy, A. The impact of heat waves on mortality in 9 European cities: Results from the EuroHEAT project. Environ. Health 2010, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Leone, M.; D’Ippoliti, D.; De Sario, M.; Analitis, A.; Menne, B.; Katsouyanni, K.; De’Donato, F.K.; Basagana, X.; Salah, A.B.; Casimiro, E. A time series study on the effects of heat on mortality and evaluation of heterogeneity into European and Eastern-Southern Mediterranean cities: Results of EU CIRCE project. Environ. Health 2013, 12, 1–12. [Google Scholar] [CrossRef]
- Grjibovski, A.M.; Nurgaliyeva, N.; Kosbayeva, A.; Sharbakov, A.; Seysembekov, T.; Menne, B. Effect of high temperatures on daily counts of mortality from diseases of circulatory system in Astana, Kazakhstan. Medicina 2012, 48, 94. [Google Scholar] [CrossRef]
- Lee, S.; Lee, H.; Myung, W.; Kim, E.J.; Kim, H. Mental disease-related emergency admissions attributable to hot temperatures. Sci. Total Environ. 2018, 616, 688–694. [Google Scholar] [CrossRef]
- Faurie, C.; Varghese, B.M.; Liu, J.; Bi, P. Association between high temperature and heatwaves with heat-related illnesses: A systematic review and meta-analysis. Sci. Total Environ. 2022, 852, 158332. [Google Scholar] [CrossRef]
- Michelozzi, P.; Accetta, G.; De Sario, M.; D’Ippoliti, D.; Marino, C.; Baccini, M.; Biggeri, A.; Anderson, H.R.; Katsouyanni, K.; Ballester, F. High temperature and hospitalizations for cardiovascular and respiratory causes in 12 European cities. Am. J. Respir. Crit. Care Med. 2009, 179, 383–389. [Google Scholar] [CrossRef]
- Lu, P.; Xia, G.; Zhao, Q.; Green, D.; Lim, Y.-H.; Li, S.; Guo, Y. Attributable risks of hospitalizations for urologic diseases due to heat exposure in Queensland, Australia, 1995–2016. Int. J. Epidemiol. 2022, 51, 144–154. [Google Scholar] [CrossRef]
- Lu, P.; Xia, G.; Zhao, Q.; Xu, R.; Li, S.; Guo, Y. Temporal trends of the association between ambient temperature and hospitalisations for cardiovascular diseases in Queensland, Australia from 1995 to 2016: A time-stratified case-crossover study. PLoS Med. 2020, 17, e1003176. [Google Scholar] [CrossRef]
- Nhung, N.T.T.; Hoang, L.T.; Tuyet Hanh, T.T.; Toan, L.Q.; Thanh, N.D.; Truong, N.X.; Son, N.A.; Nhat, H.V.; Quyen, N.H.; Nhu, H.V. Effects of Heatwaves on Hospital Admissions for Cardiovascular and Respiratory Diseases, in Southern Vietnam, 2010–2018: Time Series Analysis. Int. J. Environ. Res. Public Health 2023, 20, 3908. [Google Scholar] [CrossRef] [PubMed]
- Sohail, H.; Kollanus, V.; Tiittanen, P.; Schneider, A.; Lanki, T. Heat, heatwaves and cardiorespiratory hospital admissions in Helsinki, Finland. Int. J. Environ. Res. Public Health 2020, 17, 7892. [Google Scholar] [CrossRef] [PubMed]
- Conti, A.; Valente, M.; Paganini, M.; Farsoni, M.; Ragazzoni, L.; Barone-Adesi, F. Knowledge gaps and research priorities on the health effects of heatwaves: A systematic review of reviews. Int. J. Environ. Res. Public Health 2022, 19, 5887. [Google Scholar] [CrossRef]
- Faye, M.; Dème, A.; Diongue, A.K.; Diouf, I. Impact of different heat wave definitions on daily mortality in Bandafassi, Senegal. PLoS ONE 2021, 16, e0249199. [Google Scholar] [CrossRef]
- Lim, Y.-H.; Reid, C.E.; Honda, Y.; Kim, H. Temperature deviation index and elderly mortality in Japan. Int. J. Biometeorol. 2016, 60, 991–998. [Google Scholar] [CrossRef]
- Lin, Y.-K.; Maharani, A.T.; Chang, F.-T.; Wang, Y.-C. Mortality and morbidity associated with ambient temperatures in Taiwan. Sci. Total Environ. 2019, 651, 210–217. [Google Scholar] [CrossRef]
- Awasthi, A.; Vishwakarma, K.; Pattnayak, K.C. Retrospection of heatwave and heat index. Theor. Appl. Climatol. 2022, 147, 589–604. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Gasparrini, A.; Armstrong, B.G.; Tawatsupa, B.; Tobias, A.; Lavigne, E.; Coelho, M.d.S.Z.S.; Pan, X.; Kim, H.; Hashizume, M. Heat wave and mortality: A multicountry, multicommunity study. Environ. Health Perspect. 2017, 125, 087006. [Google Scholar] [CrossRef] [PubMed]
- Yatim, A.N.M.; Latif, M.T.; Sofwan, N.M.; Ahamad, F.; Khan, M.F.; Mahiyuddin, W.R.W.; Sahani, M. The association between temperature and cause-specific mortality in the Klang Valley, Malaysia. Environ. Sci. Pollut. Res. 2021, 28, 60209–60220. [Google Scholar] [CrossRef]
- Suparta, W.; Yatim, A. An analysis of heat wave trends using heat index in East Malaysia. J. Phys. Conf. Ser. 2017, 852, 012005. [Google Scholar] [CrossRef]
- DOSM. Social Statistics Bulletin Malaysia. Available online: https://newss.statistics.gov.my/newss-portalx/ep/epFreeDownloadContentSearch.seam?cid=92853 (accessed on 4 May 2023).
- NOAA. Heat Forecast Tools. Available online: https://www.weather.gov/safety/heat-index (accessed on 26 December 2022).
- Kalkstein, L.S.; Valimont, K.M. An evaluation of summer discomfort in the United States using a relative climatological index. Bull. Am. Meteorol. Soc. 1986, 67, 842–848. [Google Scholar] [CrossRef]
- O’Neill, M.S.; Zanobetti, A.; Schwartz, J. Modifiers of the Temperature and Mortality Association in Seven US Cities. Am. J. Epidemiol. 2003, 157, 1074–1082. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Luo, M.; Walker, R.J.; Liu, X.; Hwang, S.-A.; Chinery, R. Extreme high temperatures and hospital admissions for respiratory and cardiovascular diseases. Epidemiology 2009, 20, 738–746. [Google Scholar] [CrossRef] [PubMed]
- Loughnan, M.E.; Nicholls, N.; Tapper, N.J. When the heat is on: Threshold temperatures for AMI admissions to hospital in Melbourne Australia. Appl. Geogr. 2010, 30, 63–69. [Google Scholar] [CrossRef]
- Sung, T.-I.; Wu, P.-C.; Lung, S.-C.; Lin, C.-Y.; Chen, M.-J.; Su, H.-J. Relationship between heat index and mortality of 6 major cities in Taiwan. Sci. Total Environ. 2013, 442, 275–281. [Google Scholar] [CrossRef]
- Liss, A.; Naumova, E.N. Heatwaves and hospitalizations due to hyperthermia in defined climate regions in the conterminous USA. Environ. Monit. Assess. 2019, 191, 1–16. [Google Scholar] [CrossRef]
- Layton, J.B.; Li, W.; Yuan, J.; Gilman, J.P.; Horton, D.B.; Setoguchi, S. Heatwaves, medications, and heat-related hospitalization in older Medicare beneficiaries with chronic conditions. PLoS ONE 2020, 15, e0243665. [Google Scholar] [CrossRef]
- Nitschke, M.; Tucker, G.R.; Hansen, A.L.; Williams, S.; Zhang, Y.; Bi, P. Impact of two recent extreme heat episodes on morbidity and mortality in Adelaide, South Australia: A case-series analysis. Environ. Health 2011, 10, 42. [Google Scholar] [CrossRef]
- Mohammadi, R.; Soori, H.; Alipour, A.; Bitaraf, E.; Khodakarim, S. The impact of ambient temperature on acute myocardial infarction admissions in Tehran, Iran. J. Therm. Biol. 2018, 73, 24–31. [Google Scholar] [CrossRef]
- Phung, D.; Chu, C.; Rutherford, S.; Nguyen, H.L.T.; Do, C.M.; Huang, C. Heatwave and risk of hospitalization: A multi-province study in Vietnam. Environ. Pollut. 2017, 220, 597–607. [Google Scholar] [CrossRef]
- Beckmann, S.K.; Hiete, M. Predictors associated with health-related heat risk perception of urban citizens in Germany. Int. J. Environ. Res. Public Health 2020, 17, 874. [Google Scholar] [CrossRef] [PubMed]
- Erens, B.; Williams, L.; Exley, J.; Ettelt, S.; Manacorda, T.; Hajat, S.; Mays, N. Public attitudes to, and behaviours taken during, hot weather by vulnerable groups: Results from a national survey in England. BMC Public Health 2021, 21, 1–11. [Google Scholar] [CrossRef] [PubMed]
Month | Hospitalisation | ATmean (°C) | |||||||
---|---|---|---|---|---|---|---|---|---|
All-Cause Diseases | Natural Causes | Share (%) | Circulatory System 1 | Share (%) | Respiratory System 2 | Share (%) | Mean | S.D. | |
Jan | 5590 | 5133 | 91.8 | 1318 | 23.6 | 890 | 15.9 | 33.2 | 1.5 |
Feb | 4924 | 4507 | 91.5 | 1164 | 23.6 | 802 | 16.3 | 33.7 | 1.1 |
Mar | 5342 | 4874 | 91.2 | 1247 | 23.3 | 841 | 15.7 | 34.5 | 1.2 |
Apr | 5058 | 4624 | 91.4 | 1230 | 24.3 | 742 | 14.7 | 35.0 | 1.4 |
May | 5333 | 4874 | 91.4 | 1299 | 24.4 | 751 | 14.1 | 35.2 | 1.4 |
June | 5193 | 4730 | 91.1 | 1257 | 24.2 | 703 | 13.5 | 34.8 | 3.1 |
July | 5265 | 4816 | 91.5 | 1260 | 23.9 | 721 | 13.7 | 34.3 | 1.2 |
Aug | 5266 | 4821 | 91.5 | 1285 | 24.4 | 729 | 13.8 | 34.3 | 1.2 |
Sep | 4943 | 4525 | 91.5 | 1193 | 24.1 | 687 | 13.9 | 33.6 | 2.3 |
Oct | 4533 | 4138 | 91.3 | 1073 | 23.7 | 630 | 13.9 | 33.5 | 2.9 |
Nov | 2987 | 2722 | 91.1 | 723 | 24.2 | 425 | 14.2 | 33.4 | 1.1 |
Dec | 1624 | 1429 | 88.0 | 376 | 23.1 | 243 | 14.9 | 33.0 | 2.7 |
Heatwaves (n = 35) | Non-Heatwave (n = 3983) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Hospitalisation | Mean | Max | Q3 | Median | Q1 | Mean | Max | Q3 | Median | Q1 |
All-cause | 135 | 312 | 212 | 98 | 78 | 154 | 473 | 250 | 119 | 71 |
Natural cause | 124 | 294 | 202 | 88 | 72 | 140 | 423 | 228 | 108 | 65 |
Circulatory system | 34 | 106 | 49 | 24 | 20 | 37 | 152 | 58 | 27 | 16 |
Respiratory system | 18 | 55 | 21 | 12 | 11 | 22 | 94 | 36 | 17 | 10 |
Age 60–69 | 81 | 210 | 118 | 62 | 44 | 93 | 361 | 149 | 69 | 44 |
Age 70–79 | 66 | 615 | 87 | 35 | 32 | 56 | 218 | 88 | 44 | 29 |
Age 80 and older | 19 | 66 | 28 | 12 | 10 | 20 | 91 | 32 | 15 | 9 |
Age 60 and older | 166 | 842 | 234 | 109 | 81 | 170 | 572 | 275 | 127 | 85 |
ATmean (°C) | 38.1 | 39.0 | 37.8 | 37.6 | 37.4 | 36.0 | 38.4 | 35.0 | 34.1 | 33.1 |
Year | Date of Start | Heatwaves (Days) | Age Groups | Diseases | ||||||
---|---|---|---|---|---|---|---|---|---|---|
60 to 69 | 70 to 79 | 80 and Older | 60 and Older | All Causes | Natural Causes | Circulatory System | Respiratory System | |||
2010 | May-15 | 3 | 155 | 86 | 32 | 273 | 273 | 245 | 55 | 27 |
2010 | May-23 | 5 | 272 | 169 | 52 | 493 | 493 | 441 | 116 | 62 |
2011 | May-06 | 5 | 194 | 122 | 48 | 364 | 364 | 319 | 77 | 37 |
2012 | April-27 | 4 | 158 | 140 | 47 | 345 | 345 | 266 | 85 | 35 |
2012 | May-14 | 3 | 196 | 114 | 38 | 348 | 348 | 278 | 77 | 40 |
2012 | June-02 | 4 | 147 | 76 | 23 | 246 | 246 | 200 | 53 | 42 |
2016 | April-12 | 3 | 470 | 278 | 108 | 856 | 856 | 754 | 160 | 126 |
2020 | May-05 | 8 | 1255 | 1328 | 305 | 2888 | 2888 | 1831 | 581 | 245 |
Total | 35 | 1592 | 985 | 348 | 2925 | 2925 | 2503 | 623 | 369 |
Parametric Coefficients | Estimate | Std. Error | t Value | Pr (>|t|) | |
---|---|---|---|---|---|
(Intercept) | 0.130 | 0.215 | 1.360 | 0.187 | |
ATmean | 0.129 | 0.002 | 64.319 | 0.000 | *** |
Heatwave | 0.054 | 0.313 | 0.173 | 0.863 | |
Day of Week | |||||
Mondays | 0.195 | 0.097 | 2.017 | 0.044 | * |
Tuesdays | 0.124 | 0.097 | 1.285 | 0.199 | |
Wednesdays | 0.160 | 0.097 | 1.660 | 0.097 | # |
Thursdays | 0.048 | 0.096 | 0.494 | 0.622 | |
Fridays | 0.028 | 0.097 | 0.385 | 0.088 | |
Saturdays | 0.000 | 0.097 | -0.001 | 0.999 | |
Sundays | 0.035 | 0.097 | 0.360 | 0.719 | |
Approx. sig. of smooth terms: | edf | Ref.df | F | p-value | |
s(ATmean) | 3.536 | 3.816 | 19.673 | 0.000 | *** |
s(DRF) | 2.394 | 2.879 | 6.092 | 0.000 | *** |
s(DMEANRH) | 3.593 | 4.365 | 35.752 | 0.000 | *** |
Aged 60 to 69 | Aged 70 to 79 | Aged 80 and Older | Aged 60 and Older | |||||
---|---|---|---|---|---|---|---|---|
(Intercept) | −0.161 | # | −0.800 | *** | −0.738 | *** | 0.335 | *** |
ATmean | ||||||||
Lag 0–1 day | 0.013 | 0.104 | −0.164 | 0.032 | ||||
Lag 0–3 days | 0.316 | # | −0.127 | 0.539 | * | 0.213 | ||
Lag 0–5 days | −0.530 | ** | −0.156 | −0.417 | # | −0.432 | ** | |
Gender | ||||||||
Female | 0.005 | *** | 0.006 | *** | 0.006 | *** | 0.006 | *** |
Male | 0.005 | *** | 0.005 | *** | 0.004 | *** | 0.006 | *** |
Hospitalisations | ||||||||
All causes | −0.001 | 0.000 | 0.000 | −0.002 | * | |||
Natural causes | 0.514 | ** | 0.206 | 0.466 | * | 0.397 | ** | |
Circulatory system | −0.953 | *** | −0.430 | −0.781 | * | −0.666 | ** | |
Respiratory system | 0.480 | *** | 0.140 | 0.117 | 0.463 | *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yong, K.H.; Teo, Y.N.; Azadbakht, M.; Phung, H.; Chu, C. The Scorching Truth: Investigating the Impact of Heatwaves on Selangor’s Elderly Hospitalisations. Int. J. Environ. Res. Public Health 2023, 20, 5910. https://doi.org/10.3390/ijerph20105910
Yong KH, Teo YN, Azadbakht M, Phung H, Chu C. The Scorching Truth: Investigating the Impact of Heatwaves on Selangor’s Elderly Hospitalisations. International Journal of Environmental Research and Public Health. 2023; 20(10):5910. https://doi.org/10.3390/ijerph20105910
Chicago/Turabian StyleYong, Kun Hing, Yen Nee Teo, Mohsen Azadbakht, Hai Phung, and Cordia Chu. 2023. "The Scorching Truth: Investigating the Impact of Heatwaves on Selangor’s Elderly Hospitalisations" International Journal of Environmental Research and Public Health 20, no. 10: 5910. https://doi.org/10.3390/ijerph20105910