Evaluating Exposure to VOCs and Naphthalene for Firefighters Wearing Different PPE Configurations through Measures in Air, Exhaled Breath, and Urine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Design
- Standard, commercially available NFPA 1971-compliant PPE with cotton short-sleeve shirt and shorts base layer (SS) and knit hood,
- Standard, commercially available NFPA 1971-compliant PPE with cotton long-sleeve shirt and long pants base layer and knit hood (SL), and
- Interface control PPE (experimental PPE ensemble designed with enhanced interface control features between jacket and pants (one-piece moisture barrier layer) and tightened interface between particulate-blocking hood and jacket, jacket and gloves, and boots and pants)) with cotton long-sleeve shirt and long pants base layer and particulate-blocking hood (OL; Figure 1).
2.2. Personal Air Sampling
2.3. Exhaled Breath Sampling
2.4. Urine Sampling
2.5. Data Analysis
3. Results
3.1. Benzene, Toluene, Styrene, and Naphthalene Personal Air Concentrations Outside and Inside Firefighter PPE
3.2. VOC Exhaled Breath Concentrations and Their Association with Personal Air Concentrations
3.3. VOC and Naphthalene Urinary Metabolite Concentrations and Their Association with Personal Air Concentrations
4. Discussion
4.1. Comparing Personal Air Concentrations Taken Outside the Gear and Inside the Hood, Jacket and Pants, Stratified by PPE Configuration and Zip Status
4.2. Evaluating Exhaled Breath and Urinary Metabolite Concentrations and Their Association with Personal Air Concentrations, Stratified by PPE Ensemble
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Austin, C.C.; Dussault, G.; Ecobichon, D.J. Municipal firefighter exposure groups, time spent at fires and use of self-contained-breathing-apparatus. Am. J. Ind. Med. 2001, 40, 683–692. [Google Scholar] [CrossRef] [PubMed]
- Fent, K.W.; Evans, D.E.; Babik, K.; Striley, C.; Bertke, S.; Kerber, S.; Smith, D.; Horn, G.P. Airborne contaminants during controlled residential fires. J. Occup. Environ. Hyg. 2018, 15, 399–412. [Google Scholar] [CrossRef] [Green Version]
- Jankovic, J.; Jones, W.; Burkhart, J.; Noonan, G. Environmental study of firefighters. Ann. Occup. Hyg. 1991, 35, 581–602. [Google Scholar] [PubMed]
- IARC. Some Non-heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; International Agency for Research on Cancer: Lyon, France, 2010. [Google Scholar]
- Barros, B.; Oliveira, M.; Morais, S. Urinary biohazard markers in firefighters. Adv. Clin. Chem. 2021, 105, 243–319. [Google Scholar]
- Caux, C.; O’Brien, C.; Viau, C. Determination of firefighter exposure to polycyclic aromatic hydrocarbons and benzene during fire fighting using measurement of biological indicators. Appl. Occup. Environ. Hyg. 2002, 17, 379–386. [Google Scholar] [CrossRef]
- Fent, K.W.; Mayer, A.C.; Toennis, C.; Sammons, D.; Robertson, S.; Chen, I.C.; Bhandari, D.; Blount, B.C.; Kerber, S.; Smith, D.L.; et al. Firefighters’ urinary concentrations of VOC metabolites after controlled-residential and training fire responses. Int. J. Hyg. Environ. Health 2022, 242, 113969. [Google Scholar] [CrossRef]
- Fent, K.W.; Toennis, C.; Sammons, D.; Robertson, S.; Bertke, S.; Calafat, A.M.; Pleil, J.D.; Wallace, M.A.G.; Kerber, S.; Smith, D.; et al. Firefighters’ absorption of PAHs and VOCs during controlled residential fires by job assignment and fire attack tactic. J. Expo. Sci. Environ. Epidemiol. 2020, 30, 338–349. [Google Scholar] [CrossRef]
- Rosting, C.; Olsen, R. Biomonitoring of the benzene metabolite s-phenylmercapturic acid and the toluene metabolite s-benzylmercapturic acid in urine from firefighters. Toxicol. Lett. 2020, 329, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.A.G.; Pleil, J.D.; Oliver, K.D.; Whitaker, D.A.; Mentese, S.; Fent, K.W.; Horn, G.P. Targeted GC-MS analysis of firefighters’ exhaled breath: Exploring biomarker response at the individual level. J. Occup. Environ. Hyg. 2019, 16, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Mayer, A.C.; Fent, K.W.; Wilkinson, A.; Chen, I.C.; Kerber, S.; Smith, D.L.; Kesler, R.M.; Horn, G.P. Characterizing exposure to benzene, toluene, and naphthalene in firefighters wearing different types of new or laundered PPE. Int. J. Hyg. Environ. Health 2022, 240, 113900. [Google Scholar] [CrossRef] [PubMed]
- Daniels, R.D.; Kubale, T.L.; Yiin, J.H.; Dahm, M.M.; Hales, T.R.; Baris, D.; Zahm, S.H.; Beaumont, J.J.; Waters, K.M.; Pinkerton, L.E. Mortality and cancer incidence in a pooled cohort of US firefighters from San Francisco, Chicago and Philadelphia (1950–2009). Occup. Environ. Med. 2014, 71, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.J.; Koru-Sengul, T.; Hernandez, M.N.; Caban-Martinez, A.J.; McClure, L.A.; Mackinnon, J.A.; Kobetz, E.N. Cancer risk among career male and female Florida firefighters: Evidence from the Florida Firefighter Cancer Registry (1981–2014). Am. J. Ind. Med. 2020, 63, 285–299. [Google Scholar] [CrossRef] [PubMed]
- LeMasters, G.K.; Genaidy, A.M.; Succop, P.; Deddens, J.; Sobeih, T.; Barriera-Viruet, H.; Dunning, K.; Lockey, J. Cancer risk among firefighters: A review and meta-analysis of 32 studies. J. Occup. Environ. Med. 2006, 48, 1189–1202. [Google Scholar] [CrossRef]
- Daniels, R.D.; Bertke, S.; Dahm, M.M.; Yiin, J.H.; Kubale, T.L.; Hales, T.R.; Baris, D.; Zahm, S.H.; Beaumont, J.J.; Waters, K.M.; et al. Exposure-response relationships for select cancer and non-cancer health outcomes in a cohort of US firefighters from San Francisco, Chicago and Philadelphia (1950–2009). Occup. Environ. Med. 2015, 72, 699–706. [Google Scholar] [CrossRef] [PubMed]
- Demers, P.A.; DeMarini, D.M.; Fent, K.W.; Glass, D.C.; Hansen, J.; Adetona, O.; Andersen, M.H.; Freeman, L.E.B.; Caban-Martinez, A.J.; Daniels, R.D.; et al. Carcinogenicity of occupational exposure as a firefighter. Lancet Oncol. 2022, 23, 985–986. [Google Scholar] [CrossRef]
- Kirk, K.M.; Logan, M.B. Structural Fire Fighting Ensembles: Accumulation and Off-gassing of Combustion Products. J. Occup. Environ. Hyg. 2015, 12, 376–383. [Google Scholar] [CrossRef]
- Wingfors, H.; Nyholm, J.R.; Magnusson, R.; Wijkmark, C.H. Impact of Fire Suit Ensembles on Firefighter PAH Exposures as Assessed by Skin Deposition and Urinary Biomarkers. Ann. Work Expo. Health 2018, 62, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Kesler, R.M.; Mayer, A.; Fent, K.W.; Chen, I.; Deaton, A.; Ormond, R.; Smith, D.; Wilkinson, A.; Kerber, S.; Horn, G. Effects of firefighting hood design, laundering and doffing on smoke protection, heat stress and wearability. Ergonomics 2021, 64, 755–767. [Google Scholar] [CrossRef]
- Fabrics, G. Gore Particulate Hood. 2021. Available online: https://www.goretexprofessional.com/technologies/particulate-hood (accessed on 25 August 2022).
- NFPA. NFPA 1971 Standard on Protective Ensembles for Structural Fire Fighting and Proximity Fire Fighting, 2018th ed.; National Fire Protection Association: Quincy, MA, USA, 2018. [Google Scholar]
- Franz, T.J. Percutaneous absorption of benzene. In Advances in Modern Environmental Toxicology Volume 6, Applied Toxicology of Petroleum Hydrocarbons; McFarland, H.N., Ed.; Scientific Publishers: Princeton, NJ, USA, 1984. [Google Scholar]
- Thrall, K.D.; Poet, T.S.; Corley, R.A.; Tanojo, H.; Edwards, J.A.; Weitz, K.K.; Hui, X.; Maibach, H.I.; Wester, R.C. A real-time in-vivo method for studying the percutaneous absorption of volatile chemicals. Int. J. Occup. Environ. Health 2000, 6, 96–103. [Google Scholar] [CrossRef]
- Malley, K.S.; Goldstein, A.M.; Aldrich, T.K.; Kelly, K.J.; Weiden, M.; Coplan, N.; Karwa, M.L.; Prezant, D.J. Effects of Fire Fighting Uniform (Modern, Modified Modern, and Traditional) Design Changes on Exercise Duration in New York City Firefighters. J. Occup. Environ. Med. 1999, 41, 1104–1115. [Google Scholar] [CrossRef]
- Horn, G.P.K.S.; Lattz, J.; Kesler, R.; Smith, D.; Mayer, A.; Fent, K. Development of Fireground Exposure Simulator (FES) Prop for PPE Testing and Evaluation. Fire Technol. 2020, 56, 2331–2344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EPA. Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling onto Sorbent Tubes. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air- Compendium Method TO-17; Environmental Protection Agency: Cincinnati, OH, USA, 1999.
- Lindahl, R.C.A.; Khan, M.; Levin, J. Development of a method for the determination of naphthalene and phenanthrene in workplace air using diffusive sampling and thermal desorption GC-mS analysis. Ann. Occup. Hyg. 2011, 55, 681–687. [Google Scholar] [PubMed] [Green Version]
- Geer Wallace, M.A.; Pleil, J.D.; Mentese, S.; Oliver, K.D.; Whitaker, D.A.; Fent, K.W. Calibration and performance of synchronous SIM/scan mode for simultaneous targeted and discovery (non-targeted) analysis of exhaled breath samples from firefighters. J. Chromatogr. A 2017, 1516, 114–124. [Google Scholar] [CrossRef] [PubMed]
- Alwis, K.U.; Blount, B.C.; Britt, A.S.; Patel, D.; Ashley, D.L. Simultaneous analysis of 28 urinary VOC metabolites using ultra high performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (UPLC-ESI/MSMS). Anal. Chim. Acta 2012, 750, 152–160. [Google Scholar] [CrossRef]
- Bhandari, D.; McCarthy, D.; Biren, C.; Movassaghi, C.; Blound, B.; De Jesús, V. Development of a UPLC-ESI-MS/MS method to measure urinary metabolites of selected VOCs: Benzene, cyanide, furfural, furfuryl alcohol, 5-hydroxymethylfurfural, and N-methyl-2-pyrrolidone. J. Chromatogr. B 2019, 1126, 121746. [Google Scholar] [CrossRef] [PubMed]
- Suwan-ampai, P.; Navas-Acien, A.; Strickland, P.T.; Agnew, J. Involuntary tobacco smoke exposure and urinary levels of polycyclic aromatic hydrocarbons in the United States, 1999 to 2002. Cancer Epidemiol. Biomark. Prev. 2009, 18, 884–893. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Meng, L.; Pittman, E.N.; Etheredge, A.; Hubbard, K.; Trinidad, D.; Kato, K.; Ye, X.; Calafat, A. Quantification of Urinary Mono-hydroxylated Metabolites of Polycyclic Aromatic Hydrocarbons by on-line Solid Phase Extraction-High Performance Liquid Chromatography-Tandem Mass Spectrometry. Anal. Bioanal. Chem. 2017, 409, 931–937. [Google Scholar] [CrossRef] [Green Version]
- Ganser, G.H.; Hewett, P. An accurate substitution method for analyzing censored data. J. Occup. Environ. Hyg. 2010, 7, 233–244. [Google Scholar] [CrossRef]
- Jin, Y.; Hein, M.J.; Deddens, J.A.; Hines, C.J. Analysis of Lognormally Distributed Exposure Data with Repeated Measures and Values below the Limit of Detection Using SAS. Ann. Occup. Hyg. 2011, 45, 309–321. [Google Scholar]
- ACGIH. Threshold Limit Values for Chemical Substances and Physical Agents and Biological Exposure Indices; American Conference of Governmental Industrial Hygienists: Cincinnati, OH, USA, 2021.
- NIOSH. NIOSH Pocket Guide to Chemical Hazards; NIOSH: Washington, DC, USA, 2020.
- Avsec, R. Is Your Hood the Weak Link in Your Firefighting Protective Ensemble? Available online: https://www.firerescue1.com/fire-products/hoods/articles/is-your-hood-the-weak-link-in-your-firefighting-protective-ensemble-X9b9exnM0LpBDlcK/ (accessed on 24 August 2022).
- Fent, K.W.; Eisenberg, J.; Snawder, J.; Sammons, D.; Pleil, J.D.; Stiegel, M.A.; Mueller, C.; Horn, G.P.; Dalton, J. Systemic exposure to PAHs and benzene in firefighters suppressing controlled structure fires. Ann. Occup. Hyg. 2014, 58, 830–845. [Google Scholar]
- VanRooij, J.G.; De Roos, J.H.; Bodelier-Bade, M.M.; Jongeneelen, F.J. Absorption of polycyclic aromatic hydrocarbons through human skin: Differences between anatomical sites and individuals. J. Toxicol. Environ. Health 1993, 38, 355–368. [Google Scholar] [CrossRef] [PubMed]
- IARC. International Agency for Research on Cancer (IARC)—Summaries & Evaluation; Acrylonitrile Ed.; IARC: Lyon, France, 1999.
- IARC. IARC Monographs Volume 128 Working Group (2020): Carcinogenicity of Acrolein, Crotonaldehyde, and Arecoline; IARC: Lyon, France, 2020.
- Fent, K.W.; Toennis, C.; Sammons, D.; Robertson, S.; Bertke, S.; Calafat, A.M.; Pleil, J.D.; Geer Wallace, M.A.; Kerber, S.; Smith, D.L.; et al. Firefighters’ and instructors’ absorption of PAHs and benzene during training exercises. Int. J. Hyg. Environ. Health 2019, 222, 991–1000. [Google Scholar] [CrossRef] [PubMed]
- Pezzagno, G.; Maestri, L.; Fiorentino, M.L. Trans,Trans-muconic acid, a biological indicator to low levels of environmental benzene: Some aspects of its specificity. Am. J. Ind. Med. 1999, 35, 511–518. [Google Scholar] [CrossRef]
- EPA. Dermal Exposure Assessment: Principles and Applications; EPA: Washington, DC, USA, 1992.
Time (min) | Human Subjects | Burn Scenario |
---|---|---|
0:00 | Stairs | Background–Exposure doors open |
1:00 | ||
2:00 | Transition to FES & Rest | |
3:00 | Rest | Close Exposure Doors, Ignition |
4:00 | Search | |
5:00 | ||
6:00 | Rest | |
7:00 | ||
8:00 | Hose advance | |
9:00 | Suppression (~15 s) | |
10:00 | Rest | Open front burner door |
11:00 | ||
12:00 | Overhaul | Open exposure doors to vent |
13:00 | ||
14:00 | Leave chamber for post-test Half of the firefighters’ unzip jacket | |
15:00 | Travel to data collection tent Other half of the firefighters’ unzip jacket | |
16:00 | ||
17:00 | ||
18:00 | ||
19:00 |
Acronym | Analyte | Parent Compound |
---|---|---|
3HPMA | N-Acetyl-S-(3-hydroxypropyl)-L-cysteine | Acrolein |
MUCA | trans, trans-Muconic acid | Benzene |
PhMA | N-Acetyl-S-(phenyl)-L-cysteine | Benzene |
MADA | Mandelic acid | Styrene |
BzMA | N-Acetyl-S-(benzyl)-L-cysteine | Toluene or benzyl alcohol |
3MHA + 4MHA | 3-Methylhippuric acid + 4-Methylhippuric acid | Xylenes |
2MHA | 2-Methylhippuric acid | Xylenes |
4HBeMA | N-Acetyl-S-(4-hydroxy-2-buten-1-yl)-L-cysteine | 1,3-Butadiene |
2CaEMA | N-Acetyl-S-(2-carbamoylethyl)-L-cysteine | Acrylamide |
MCaMA | N-Acetyl-S-(N-methylcarbamoyl)-L-cysteine | N, N-Dimethylformamide; Methyl isocyanate |
2CoEMA | N-Acetyl-S-(2-carboxyethyl)-L-cysteine | Acrolein |
2CyEMA | N-Acetyl-S-(2-cyanoethyl)-L-cysteine | Acrylonitrile |
2HEMA | N-Acetyl-S-(2-hydroxyethyl)-L-cysteine | Acrylonitrile; vinyl chloride; ethylene oxide |
HPM2 | N-Acetyl-S-(2-hydroxypropyl)-L-cysteine | Propylene oxide |
3HMPMA | N-Acetyl-S-(3-hydroxypropyl-1-methyl)-L-cysteine | Crotonaldehyde |
PhGA | Phenylglyoxylic acid | Ethylbenzene; styrene |
1-NAP | 1-hydroxynaphthalene | Naphthalene |
2-NAP | 2-hydroxynaphthalene | Naphthalene |
Analyte (Units) | PPE | Inside/Outside | Sample Location/Type | Zip | N | N of Non-Detects | Mean | Median | Range A | Workplace Protection Factors (WPFs) |
---|---|---|---|---|---|---|---|---|---|---|
Benzene (ppb) | SS | Outside | Active | 15 | 0 | 35,878 | 31,177 | 9400–114,383 | Reference | |
Inside | Hood (passive) | Zip | 8 | 0 | 38,822 | 36,538 | 15,865–76,923 | 0.85 | ||
Unzip | 7 | 0 | 41,415 | 26,442 | 19,231–120,192 | 1.18 | ||||
Jacket (active) | Zip | 6 | 0 | 24,272 | 19,319 | 10,307–46,580 | 1.61 | |||
Unzip | 8 | 0 | 23,028 | 18,101 | 10,185–66,318 | 1.72 | ||||
Pant (passive) | Zip | 10 | 0 | 37,115 | 32,692 | 16,827–67,308 | 0.95 | |||
Unzip | 12 | 1 | 46,314 | 32,452 | 1.68–125,000 | 0.96 | ||||
SL | Outside | 14 | 0 | 54,988 | 56,281 | 16,641–98,709 | Reference | |||
Inside | Hood (passive) | Zip | 5 | 0 | 70,577 | 76,923 | 45,192–86,538 | 0.73 | ||
Unzip | 8 | 0 | 53,966 | 44,952 | 18,750–105,769 | 1.25 | ||||
Jacket (active) | Zip | 6 | 0 | 40,020 | 48,148 | 14,243–53,518 | 1.17 | |||
Unzip | 8 | 0 | 30,900 | 22,897 | 9406–66,054 | 2.46 | ||||
Pant (passive) | Zip | 11 | 0 | 41,587 | 36,058 | 245.2–67,308 | 1.56 | |||
Unzip | 11 | 0 | 45,848 | 30,769 | 16,827–100,962 | 1.83 | ||||
OL | Outside | 22 | 0 | 44,732 | 33,744 | 11,810–125,333 | Reference | |||
Inside | Hood (passive) | Zip | 10 | 0 | 42,981 | 40,385 | 14,904–91,346 | 0.84 | ||
Unzip | 8 | 0 | 35,036 | 30,529 | 14,423–100,962 | 1.11 | ||||
Jacket (active) | Zip | 10 | 0 | 27,329 | 21,358 | 9539–53,599 | 1.58 | |||
Unzip | 7 | 0 | 17,668 | 13,432 | 7225–52,042 | 2.51 | ||||
Pant (passive) | Zip | 11 | 0 | 39,292 | 33,173 | 15,865–76,923 | 1.02 | |||
Unzip | 8 | 0 | 34,375 | 27,885 | 18,750–76,923 | 1.21 | ||||
Toluene (ppb) | SS | Outside | Active | 15 | 0 | 1016 | 811.3 | 231.8–3075 | Reference | |
Inside | Hood (passive) | Zip | 8 | 0 | 873.4 | 785.9 | 239.5–1834 | 1.03 | ||
Unzip | 7 | 0 | 742.1 | 598.8 | 217.1–1984 | 1.35 | ||||
Jacket (active) | Zip | 6 | 0 | 637.7 | 483.4 | 230.8–1316 | 1.68 | |||
Unzip | 8 | 0 | 549.9 | 416.6 | 243.2–1587 | 1.95 | ||||
Pant (passive) | Zip | 10 | 0 | 755.6 | 711.1 | 239.5–1347 | 1.14 | |||
Unzip | 12 | 1 | 1049 | 654.9 | 40.62–3031 | 1.24 | ||||
SL | Outside | 14 | 0 | 1592 | 1544 | 423.2–3347 | Reference | |||
Inside | Hood (passive) | Zip | 5 | 0 | 1594 | 1722 | 823.4–2246 | 0.90 | ||
Unzip | 8 | 0 | 1091 | 729.8 | 262.0–2657 | 2.12 | ||||
Jacket (active) | Zip | 6 | 0 | 1061 | 1228 | 352.2–1495 | 1.26 | |||
Unzip | 8 | 0 | 766.9 | 487.2 | 207.3–1976 | 3.17 | ||||
Pant (passive) | Zip | 11 | 1 | 874.7 | 1085 | 40.62–1572 | 1.42 | |||
Unzip | 11 | 0 | 1039 | 636.2 | 239.5–3481 | 2.43 | ||||
OL | Outside | 22 | 0 | 1266 | 882.0 | 333.7–4347 | Reference | |||
Inside | Hood (passive) | Zip | 10 | 0 | 750 | 542.66 | 153.4–1722 | 1.63 | ||
Unzip | 8 | 0 | 567.9 | 411.7 | 202.1–1946 | 2.14 | ||||
Jacket (active) | Zip | 10 | 0 | 649.9 | 510.2 | 198.0–1201 | 1.73 | |||
Unzip | 7 | 0 | 348.7 | 233.6 | 149.9–1029 | 3.78 | ||||
Pant (passive) | Zip | 11 | 0 | 695.1 | 598.8 | 310.6–1272 | 1.47 | |||
Unzip | 8 | 0 | 556.2 | 430.3 | 243.3–1572 | 2.05 | ||||
Styrene (ppb) | SS | Outside | Active | 15 | 3 | 1018 | 758.4 | 33.34–3975 | Reference | |
Inside | Hood (passive) | Zip | 8 | 0 | 433.9 | 390.6 | 91.15–989.6 | 1.94 | ||
Unzip | 7 | 0 | 410.3 | 338.5 | 104.2–1328 | 2.24 | ||||
Jacket (active) | Zip | 6 | 4 | 296.4 | 23.12 | 22.63–1019 | 32.80 | |||
Unzip | 8 | 5 | 276.2 | 22.93 | 22.69–1331 | 33.07 | ||||
Pant (passive) | Zip | 10 | 0 | 370.8 | 325.5 | 83.33–703.1 | 2.33 | |||
Unzip | 12 | 1 | 516.8 | 286.5 | 21.74–2292 | 2.65 | ||||
SL | Outside | 14 | 1 | 1832 | 1595 | 32.91–4230 | Reference | |||
Inside | Hood (passive) | Zip | 5 | 0 | 828.1 | 859.4 | 442.7–1146 | 1.86 | ||
Unzip | 8 | 0 | 529.0 | 369.8 | 72.92–1276 | 4.31 | ||||
Jacket (active) | Zip | 6 | 1 | 817.0 | 965.3 | 23.47–1368 | 1.65 | |||
Unzip | 8 | 4 | 454.6 | 171.8 | 22.32–1748 | 9.28 | ||||
Pant (passive) | Zip | 11 | 1 | 413.0 | 494.8 | 21.74–833.3 | 3.22 | |||
Unzip | 11 | 0 | 482.2 | 252.6 | 75.52–1745 | 6.31 | ||||
OL | Outside | 22 | 4 | 1334 | 830.6 | 33.37–5554 | Reference | |||
Inside | Hood (passive) | Zip | 10 | 1 | 224.8 | 183.6 | 21.74–572.9 | 4.52 | ||
Unzip | 8 | 1 | 146.9 | 65.10 | 21.74–599.0 | 12.76 | ||||
Jacket (active) | Zip | 10 | 5 | 295.2 | 236.2 | 22.58–715.4 | 3.52 | |||
Unzip | 7 | 6 | 71.45 | 23.26 | 22.56–361.4 | 35.71 | ||||
Pant (passive) | Zip | 11 | 1 | 233.0 | 250.0 | 21.74–494.8 | 3.32 | |||
Unzip | 8 | 0 | 192.7 | 170.6 | 65.10–546.9 | 4.87 | ||||
Naphtha- lene (μg/m3) | SS | Outside | Active | 15 | 0 | 10,607 | 8206 | 1705–44,563 | Reference | |
Inside | Hood (passive) | Zip | 8 | 0 | 1065 | 787.4 | 397.5–2293 | 10.42 | ||
Unzip | 7 | 0 | 1745 | 886.8 | 412.8–6422 | 9.25 | ||||
Jacket (active) | Zip | 6 | 4 | 479.6 | 132.4 | 129.6–1546 | 61.98 | |||
Unzip | 8 | 5 | 556.7 | 132.9 | 130.2–2493 | 61.75 | ||||
Pant (passive) | Zip | 10 | 7 | 196.7 | 27.56 | 27.56–703.3 | 297.75 | |||
Unzip | 12 | 5 | 1942 | 182.0 | 27.56–19,877 | 45.09 | ||||
SL | Outside | 14 | 0 | 16,236 | 16,189 | 2215–32,695 | Reference | |||
Inside | Hood (passive) | Zip | 5 | 0 | 3144 | 3058 | 733.9–5504 | 5.29 | ||
Unzip | 8 | 2 | 1784 | 1216 | 27.56–5351 | 13.31 | ||||
Jacket (active) | Zip | 6 | 1 | 1376 | 1573 | 134.4–2010 | 10.29 | |||
Unzip | 8 | 5 | 893.1 | 132.6 | 127.9–4345 | 122.09 | ||||
Pant (passive) | Zip | 11 | 3 | 556.6 | 412.8 | 27.56–1682 | 39.22 | |||
Unzip | 11 | 5 | 432.3 | 489.3 | 27.56–917.4 | 33.09 | ||||
OL | Outside | 22 | 0 | 13,399 | 8344 | 1800–47,799 | Reference | |||
Inside | Hood (passive) | Zip | 10 | 8 | 162.7 | 27.56 | 27.56–1024 | 302.76 | ||
Unzip | 8 | 6 | 290.2 | 27.56 | 27.56–1361 | 302.76 | ||||
Jacket (active) | Zip | 10 | 9 | 211.5 | 132.3 | 129.3–928.2 | 63.07 | |||
Unzip | 7 | 7 | 132.2 | 133.0 | 129.2–133.8 | 62.74 | ||||
Pant (passive) | Zip | 11 | 11 | 27.56 | 27.56 | 27.56–27.56 | 302.76 | |||
Unzip | 8 | 8 | 27.56 | 27.56 | 27.56–27.56 | 302.76 |
Analyte (Units) | PPE Configuration | Zip | Timing | N | N of Non-Detects | GM | Median | Range | p-Value (Post vs. Pre by Zip, PPE, and Analyte) | p-Value (Post vs. Pre by PPE and Analyte) | p-Value (Post vs. Pre by Analyte) |
---|---|---|---|---|---|---|---|---|---|---|---|
Benzene (ppbv) | SS | Zip | Pre | 10 | 4 | 2.36 | 3.02 | 1.38–3.87 | Reference | Reference | Reference |
Post | 10 | 0 | 21.20 | 24.2 | 8.35–72.59 | <0.0001 | <0.0001 | <0.0001 | |||
Unzip | Pre | 11 | 5 | 2.06 | 1.38 | 1.38–3.99 | Reference | ||||
Post | 12 | 0 | 26.14 | 31.46 | 5.69–117.4 | <0.0001 | |||||
SL | Zip | Pre | 12 | 5 | 2.33 | 2.78 | 1.38–6.41 | Reference | Reference | ||
Post | 12 | 0 | 31.66 | 26.62 | 6.05–111.3 | <0.0001 | <0.0001 | ||||
Unzip | Pre | 12 | 4 | 3.04 | 2.54 | 1.38–116.1 | Reference | ||||
Post | 12 | 0 | 22.90 | 15.12 | 6.53–105.3 | 0.0009 | |||||
OL | Zip | Pre | 9 | 4 | 2.13 | 2.66 | 1.38–3.63 | Reference | Reference | ||
Post | 12 | 1 | 18.02 | 21.78 | 1.38–85.9 | 0.0006 | <0.0001 | ||||
Unzip | Pre | 8 | 4 | 1.88 | 1.38 | 1.38–3.51 | Reference | ||||
Post | 8 | 0 | 20.24 | 23.59 | 5.93–55.65 | <0.0001 | |||||
Toluene (ppbv) | SS | Zip | Pre | 10 | 3 | 0.50 | 0.93 | 0.09–1.23 | Reference | Reference | Reference |
Post | 10 | 1 | 1.11 | 1.38 | 0.09–2.15 | 0.0182 | 0.0004 | <0.001 | |||
Unzip | Pre | 11 | 5 | 0.36 | 0.82 | 0.09–2.05 | Reference | ||||
Post | 12 | 1 | 1.16 | 1.13 | 0.09–3.38 | 0.0082 | |||||
SL | Zip | Pre | 12 | 6 | 0.36 | 0.47 | 0.09–2.15 | Reference | Reference | ||
Post | 12 | 1 | 1.38 | 1.79 | 0.09–3.9 | 0.0040 | 0.0110 | ||||
Unzip | Pre | 12 | 4 | 0.66 | 0.87 | 0.09–41.02 | Reference | ||||
Post | 12 | 3 | 0.76 | 1.23 | 0.09–3.49 | 0.6300 | |||||
OL | Zip | Pre | 9 | 3 | 0.49 | 0.91 | 0.09–1.64 | Reference | Reference | ||
Post | 12 | 3 | 0.69 | 1.18 | 0.09–2.15 | 0.1572 | 0.0050 | ||||
Unzip | Pre | 8 | 6 | 0.17 | 0.09 | 0.09–0.93 | Reference | ||||
Post | 8 | 2 | 0.75 | 1.08 | 0.09–3.08 | 0.0352 |
Outcome | Change in Pre- to Post-Fire Exhaled Breath Benzene Concentration | Pearson Correlation Coefficient | Change in Pre- to 3-h Post-Fire PhMA Urinary Concentration | Pearson Correlation Coefficient | ||||
---|---|---|---|---|---|---|---|---|
Covariate | Estimate | SE | p-Value | Estimate | SE | p-Value | ||
Outside Gear Samples | 0.00085 | 0.00012 | <0.001 | 0.685 | 4.9 × 10−6 | 7.9 × 10−7 | <0.001 | 0.540 |
SS | 0.00101 | 0.00012 | <0.001 | 0.910 | 4.9 × 10−6 | 1.7 × 10−6 | 0.010 | 0.605 |
SL | 0.00121 | 0.00046 | 0.019 | 0.676 | 5.8 × 10−6 | 2.9 × 10−6 | 0.067 | 0.611 |
OL | 0.00055 | 0.00015 | 0.001 | 0.638 | 4.0 × 10−6 | 1.5 × 10−6 | 0.015 | 0.489 |
Inside Jacket Samples | 0.00126 | 0.00023 | <0.001 | 0.672 | 6.7 × 10−6 | 1.4 × 10−6 | <0.001 | 0.521 |
SS | 0.00150 | 0.00027 | <0.001 | 0.835 | 8.7 × 10−6 | 2.5 × 10−6 | 0.004 | 0.674 |
SL | 0.00165 | 0.00091 | 0.127 | 0.690 | 8.8 × 10−6 | 3.4 × 10−6 | 0.023 | 0.565 |
OL | 0.00087 | 0.00031 | 0.011 | 0.553 | 6.5 × 10−6 | 3.0 × 10−6 | 0.045 | 0.431 |
Biomarker (Parent Chemical) | Collection Period | N (N of Non-Detects) | GM | Median | Min-Max | p-Value A | General Population 95% Percentile (Non-Smoker/Smoker) B,C | Biological Exposure Indices (BEI) D |
---|---|---|---|---|---|---|---|---|
3HPMA (Acrolein) | Pre | 68 (0) | 223.7 | 209.5 | 79.44–1486 | Reference 0.1034 | 835/2579 | Not Available |
3 h | 68 (0) | 255.7 | 243.7 | 100.4–967.9 | ||||
6 h | 35 (0) | 366.6 | 342.4 | 124.1–1258 | <0.0001 | |||
MUCA (Benzene) | Pre | 68 (3) | 72.82 | 49.60 | 8.14–1699 | Reference 0.0147 | Not Available | 500 |
3 h | 68 (1) | 99.62 | 75.65 | 25.94–822.0 | ||||
6 h | 35 (0) | 97.90 | 87.09 | 34.16–501.8 | 0.0008 | |||
PhMA (Benzene) | Pre | 68 (29) | 0.08 | 0.12 | 0.00–0.94 | Reference <0.0001 | 2.62/2.98 | 25 |
3 h | 68 (8) | 0.31 | 0.33 | 0.02–2.04 | ||||
6 h | 35 (3) | 0.44 | 0.54 | 0.02–1.69 | <0.0001 | |||
MADA (Styrene/ Ethylbenzene) | Pre | 68 (0) | 109.4 | 115.9 | 40.19–506.6 | Reference 0.0067 | 299/600 | 400,000 |
3 h | 68 (5) | 130.7 | 136.3 | 19.62–422.2 | ||||
6 h | 35 (0) | 153.9 | 144.0 | 85.02–305.0 | <0.0001 | |||
BzMA(Toluene or benzyl alcohol) | Pre | 68 (0) | 5.02 | 4.62 | 1.23–188.1 | Reference 0.0124 | 38.9/33.1 | Not Available |
3 h | 68 (0) | 6.28 | 5.91 | 1.74–116.1 | ||||
6 h | 35 (0) | 6.60 | 6.05 | 2.33–84.27 | 0.1173 | |||
3MHA + 4MHA (Xylene) | Pre | 68 (0) | 74.59 | 63.48 | 28.94–484.3 | Reference 0.0024 | 872/2026 | 1,500,000 |
3 h | 68 (2) | 91.97 | 84.74 | 23.48–360.2 | ||||
6 h | 35 (0) | 78.29 | 74.28 | 33.43–165.4 | 0.1017 | |||
2MHA (Xylene) | Pre | 68 (9) | 13.41 | 12.24 | 3.21–101.7 | Reference 0.0011 | 141/354 | 1,500,000 |
3 h | 68 (9) | 20.15 | 21.51 | 2.77–74.01 | ||||
6 h | 35 (8) | 16.99 | 16.13 | 6.34–66.12 | 0.0110 | |||
4HBeMA (1,3-Butadiene) | Pre | 68 (0) | 4.65 | 4.64 | 1.47–11.10 | Reference 0.0044 | 14.9/87.9 | Not Available |
3 h | 68 (0) | 5.68 | 5.71 | 2.71–16.18 | ||||
6 h | 35 (1) | 4.85 | 4.61 | 2.72–11.01 | 0.3105 | |||
2CaEMA (Acrylamide) | Pre | 68 (0) | 60.04 | 64.96 | 10.09–207.2 | Reference | 141/326 | |
3 h | 68 (0) | 63.75 | 60.48 | 16.76–233.5 | 0.3497 | |||
6 h | 35 (0) | 52.92 | 54.07 | 27.12–109.6 | 0.8786 | |||
MCaMA- (Methyl isocyanate) | Pre | 68 (0) | 94.07 | 97.91 | 13.19–312.3 | Reference | 390/1248 | |
3 h | 68 (1) | 92.05 | 90.33 | 9.32–351.8 | 0.7480 | |||
6 h | 35 (1) | 85.70 | 107.8 | 10.62–417.6 | 0.0177 | |||
2CoEMA (Acrolein) | Pre | 68 (0) | 78.64 | 80.16 | 20.54–378.2 | Reference | 212/491 | |
3 h | 68 (0) | 86.49 | 81.82 | 30.39–375.0 | 0.1461 | |||
6 h | 35 (0) | 93.61 | 90.19 | 42.54–289.2 | 0.1194 | |||
2CyEMA (Acrylonitrile) | Pre | 68 (6) | 3.21 | 3.05 | 0.50–61.51 | Reference | 8.69/416 | |
3 h | 68 (0) | 23.65 | 23.66 | 4.17–134.9 | <0.0001 | |||
6 h | 35 (0) | 21.13 | 19.24 | 7.43–68.13 | <0.0001 | |||
2HEMA (Acrolynitrile, vinyl chloride, ethylene oxide) | 68 (28) 68 (18) 35 (7) | 68 (28) | 0.38 | 0.52 | 0.03–4.22 | Reference | 3.48/9.95 | |
68 (18) | 0.57 | 0.65 | 0.03–4.11 | 0.1198 | ||||
35 (7) | 1.30 | 1.32 | 0.11–5.05 | <0.0001 | ||||
HPM2 (Propylene oxide) | Pre | 68 (2) | 26.36 | 25.99 | 5.63–92.63 | Reference | 159/152 | |
3 h | 68 (6) | 25.49 | 26.13 | 6.87–78.38 | 0.4000 | |||
6 h | 35 (1) | 27.73 | 25.35 | 11.94–70.63 | 0.6611 | |||
3HMPMA (Crotonaldehyde) | Pre 3 h 6 h | 68 (0) | 171.0 | 143.0 | 85.62–551.8 | Reference | 1450/5327 | |
68 (0) | 266.1 | 245.0 | 84.07–1530 | <0.0001 | ||||
35 (0) | 349.3 | 380.8 | 171.1–661.7 | <0.0001 | ||||
PhGA (Styrene, ethylbenzene) | Pre 3 h 6 h | 68 (0) | 173.6 | 172.7 | 51.47–452.4 | Reference | 377/764 | |
68 (0) | 197.9 | 194.0 | 79.02–423.5 | 0.0228 | ||||
35 (0) | 199.7 | 208.5 | 29.90–526.6 | 0.0271 | ||||
1-NAP (Naphthalene) | Pre 3 h 6 h | 68 (0) | 0.88 | 0.91 | 0.19–6.44 | Reference | 18.3/41.4 | |
68 (0) | 3.46 | 3.26 | 0.50–39.96 | <0.0001 | ||||
35 (0) | 2.77 | 2.84 | 0.65–7.17 | <0.0001 | ||||
2-NAP (Naphthalene) | Pre 3 h 6 h | 68 (0) | 6.63 | 7.02 | 0.57–33.65 | Reference | 18.3/34.1 | |
68 (0) | 15.49 | 19.82 | 2.59–77.72 | <0.0001 | ||||
35 (0) | 10.65 | 11.33 | 2.84–41.53 | 0.0008 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mayer, A.C.; Fent, K.W.; Wilkinson, A.F.; Chen, I.-C.; Siegel, M.R.; Toennis, C.; Sammons, D.; Meadows, J.; Kesler, R.M.; Kerber, S.; et al. Evaluating Exposure to VOCs and Naphthalene for Firefighters Wearing Different PPE Configurations through Measures in Air, Exhaled Breath, and Urine. Int. J. Environ. Res. Public Health 2023, 20, 6057. https://doi.org/10.3390/ijerph20126057
Mayer AC, Fent KW, Wilkinson AF, Chen I-C, Siegel MR, Toennis C, Sammons D, Meadows J, Kesler RM, Kerber S, et al. Evaluating Exposure to VOCs and Naphthalene for Firefighters Wearing Different PPE Configurations through Measures in Air, Exhaled Breath, and Urine. International Journal of Environmental Research and Public Health. 2023; 20(12):6057. https://doi.org/10.3390/ijerph20126057
Chicago/Turabian StyleMayer, Alexander C., Kenneth W. Fent, Andrea F. Wilkinson, I-Chen Chen, Miriam R. Siegel, Christine Toennis, Deborah Sammons, Juliana Meadows, Richard M. Kesler, Steve Kerber, and et al. 2023. "Evaluating Exposure to VOCs and Naphthalene for Firefighters Wearing Different PPE Configurations through Measures in Air, Exhaled Breath, and Urine" International Journal of Environmental Research and Public Health 20, no. 12: 6057. https://doi.org/10.3390/ijerph20126057
APA StyleMayer, A. C., Fent, K. W., Wilkinson, A. F., Chen, I. -C., Siegel, M. R., Toennis, C., Sammons, D., Meadows, J., Kesler, R. M., Kerber, S., Smith, D. L., Masoud, F., Bhandari, D., Wang, Y., Blount, B. C., Calafat, A. M., & Horn, G. P. (2023). Evaluating Exposure to VOCs and Naphthalene for Firefighters Wearing Different PPE Configurations through Measures in Air, Exhaled Breath, and Urine. International Journal of Environmental Research and Public Health, 20(12), 6057. https://doi.org/10.3390/ijerph20126057