Tortoise or Hare? The Associations between Physical Activity Volume and Intensity Distribution and the Risk of All-Cause Mortality: A Large Prospective Analysis of the UK Biobank
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Participants
2.2. Measurements
2.2.1. Outcome Data
2.2.2. Accelerometer Data
2.2.3. Other Covariates
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- US Department of Health and Human Services. Physical Activity Guidelines Advisory Committee Scientific Report; US Public Health Service: Washington, DC, USA, 2018. [Google Scholar]
- UK Chief Medical Officers. UK Chief Medical Officers’ Physical Activity Guidelines; Department of Health and Social Care: London, UK, 2019. [Google Scholar]
- Doherty, A.; Jackson, D.; Hammerla, N.; Plötz, T.; Olivier, P.; Granat, M.H.; White, T.; Van Hees, V.T.; Trenell, M.I.; Owen, C.G. Large scale population assessment of physical activity using wrist worn accelerometers: The UK Biobank Study. PLoS ONE 2017, 12, e0169649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troiano, R.P.; McClain, J.J.; Brychta, R.J.; Chen, K.Y. Evolution of accelerometer methods for physical activity research. Br. J. Sports Med. 2014, 48, 1019–1023. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. WHO Guidelines on Physical Activity and Sedentary Behaviour; WHO: Geneva, Switzerland, 2020.
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Calrson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2020, 320, 2020–2028. [Google Scholar] [CrossRef] [PubMed]
- Kyu, H.H.; Bachman, V.F.; Alexander, L.T.; Mumford, J.E.; Afshin, A.; Estep, K.; Veerman, J.L.; Delwiche, K.; Iannarone, M.L.; Moyer, M.L.; et al. Physical activity and risk of breast cancer, colon cancer, diabetes, ischemic heart disease, and ischemic stroke events: Systematic review and dose-response meta-analysis for the Global Burden of Disease Study 2013. BMJ 2016, 354, i3857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arem, H.; Moore, S.C.; Patel, A.; Hartge, P.; Berrington de Gonzalez, A.; Visvanathan, K.; Campbell, P.T.; Freedman, M.; Weiderpass, E.; Adami, H.O.; et al. Leisure time physical activity and mortality: A detailed pooled analysis of the dose-response relationship. JAMA Intern. Med. 2015, 175, 959–967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekelund, U.; Tarp, J.; Steene-Johannessen, J.; Hansen, B.H.; Jefferis, B.; Fagerland, M.W.; Whincup, P.; Diaz, K.M.; Hooker, S.P.; Chernofsky, A.; et al. Dose-response associations between accelerometry measured physical activity and sedentary time and all cause mortality: Systematic review and harmonised meta-analysis. BMJ 2019, 366, l4570. [Google Scholar] [CrossRef] [Green Version]
- Loprinzi, P.D. Light-Intensity Physical Activity and All-Cause Mortality. Am. J. Health Promot. 2017, 31, 340–342. [Google Scholar] [CrossRef]
- Chastin, S.F.M.; De Craemer, M.; De Cocker, K.; Powell, L.; Van Cauwenberg, J.; Dall, P.; Hamer, M.; Stamatakis, E. How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. Br. J. Sports Med. 2019, 53, 370–376. [Google Scholar] [CrossRef] [Green Version]
- Amagasa, S.; Machida, M.; Fukushima, N.; Kikuchi, H.; Takamiya, T.; Odagiri, Y.; Inoue, S. Is objectively measured light-intensity physical activity associated with health outcomes after adjustment for moderate-to-vigorous physical activity in adults? A systematic review. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 65. [Google Scholar] [CrossRef] [Green Version]
- Thompson, D.; Batterham, A.M. Towards integrated physical activity profiling. PLoS ONE 2013, 8, e56427. [Google Scholar] [CrossRef]
- Boyer, W.R.; Wolff-Hughes, D.L.; Bassett, D.R.; Churilla, J.R.; Fitzhugh, E.C. Accelerometer-Derived Total Activity Counts, Bouted Minutes of Moderate to Vigorous Activity, and Insulin Resistance: NHANES 2003–2006. Prev. Chronic Dis. 2016, 13, E146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wolff-Hughes, D.L.; Fitzhugh, E.C.; Bassett, D.R.; Churilla, J.R. Total Activity Counts and Bouted Minutes of Moderate-To-Vigorous Physical Activity: Relationships With Cardiometabolic Biomarkers Using 2003–2006 NHANES. J. Phys. Act. Health 2015, 12, 694–700. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wills, K.; Laslett, L.L.; Oldenburg, B.; Jones, G.; Winzenberg, T. Moderate-to-Vigorous Physical Activity But Not Sedentary Time Is Associated With Musculoskeletal Health Outcomes in a Cohort of Australian Middle-Aged Women. J. Bone Min. Res. 2017, 32, 708–715. [Google Scholar] [CrossRef] [PubMed]
- Rowlands, A.V.; Edwardson, C.L.; Davies, M.J.; Khunti, K.; Harrington, D.M.; Yates, T. Beyond Cut Points: Accelerometer Metrics that Capture the Physical Activity Profile. Med. Sci. Sports Exerc. 2018, 50, 1323–1332. [Google Scholar] [CrossRef]
- Rowlands, A.V.; Fairclough, S.J.; Yates, T.; Edwardson, C.L.; Davies, M.; Munir, F.; Khunti, K.; Stiles, V.H. Activity Intensity, Volume, and Norms: Utility and Interpretation of Accelerometer Metrics. Med. Sci. Sports Exerc. 2019, 51, 2410–2422. [Google Scholar] [CrossRef]
- Buchan, D.S.; McLellan, G.; Donnelly, S.; Arthur, R. The use of the intensity gradient and average acceleration metrics to explore associations with BMI z-score in children. J. Sports Sci. 2019, 37, 2751–2758. [Google Scholar] [CrossRef]
- Dumuid, D.; Stanford, T.E.; Martin-Fernández, J.-A.; Pedišić, Ž.; Maher, C.A.; Lewis, L.K.; Hron, K.; Katzmarzyk, P.T.; Chaput, J.-P.; Fogelholm, M. Compositional data analysis for physical activity, sedentary time and sleep research. Stat. Methods Med. Res. 2018, 27, 3726–3738. [Google Scholar] [CrossRef] [Green Version]
- Aadland, E.; Kvalheim, O.M.; Anderssen, S.A.; Resaland, G.K.; Andersen, L.B. The multivariate physical activity signature associated with metabolic health in children. Int. J. Behav. Nutr. Phys. Act. 2018, 15, 77. [Google Scholar] [CrossRef]
- Augustin, N.H.; Mattocks, C.; Faraway, J.J.; Greven, S.; Ness, A.R. Modelling a response as a function of high-frequency count data: The association between physical activity and fat mass. Stat. Methods Med. Res. 2017, 26, 2210–2226. [Google Scholar] [CrossRef] [Green Version]
- Sudlow, C.; Gallacher, J.; Allen, N.; Beral, V.; Burton, P.; Danesh, J.; Downey, P.; Elliott, P.; Green, J.; Landray, M. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 2015, 12, e1001779. [Google Scholar] [CrossRef] [Green Version]
- Hammerla, N.Y.; Kirkham, R.; Andras, P.; Ploetz, T. On Preserving Statistical Characteristics of Accelerometry Data Using Their Empirical Cumulative Distribution. In Proceedings of the 2013 International Symposium on Wearable Computers, Zurich, Switzerland, 8–12 September 2013; Association for Computing Machinery: New York, NY, USA, 2013; pp. 65–68. [Google Scholar]
- Esliger, D.W.; Rowlands, A.V.; Hurst, T.L.; Catt, M.; Murray, P.; Eston, R.G. Validation of the GENEA Accelerometer. Med. Sci. Sports Exerc. 2011, 43, 1085–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hildebrand, M.; VT, V.H.; Hansen, B.H.; Ekelund, U. Age group comparability of raw accelerometer output from wrist-and hip-worn monitors. Med. Sci. Sports Exerc. 2014, 46, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Townsend, P.; Phillimore, P.; Beattie, A. Health and Deprivation: Inequality and the North; Croom Helm: London, UK, 1988. [Google Scholar]
- World Health Organiszation. Obesity and Overweight; World Health Organiszation: Geneva, Switzerland, 2015.
- Pedisic, Z.; Grunseit, A.; Ding, D.; Chau, J.Y.; Banks, E.; Stamatakis, E.; Jalaludin, B.B.; Bauman, A.E. High sitting time or obesity: Which came first? Bidirectional association in a longitudinal study of 31,787 Australian adults. Obesity 2014, 22, 2126–2130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, S. Generalized Additive Models: An Introduction with R; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
- Wood, S.N. Thin plate regression splines. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 2003, 65, 95–114. [Google Scholar] [CrossRef]
- Rowlands, A.V.; Mirkes, E.M.; Yates, T.; Clemes, S.; Davies, M.; Khunti, K.; Edwardson, C.L. Accelerometer-assessed physical activity in epidemiology: Are monitors equivalent? Med. Sci. Sports Exerc. 2018, 50, 257–265. [Google Scholar] [CrossRef] [Green Version]
- Batty, G.D.; Gale, C.R.; Kivimäki, M.; Deary, I.J.; Bell, S. Comparison of risk factor associations in UK Biobank against representative, general population based studies with conventional response rates: Prospective cohort study and individual participant meta-analysis. BMJ 2020, 368, m131. [Google Scholar] [CrossRef] [Green Version]
- Fry, A.; Littlejohns, T.J.; Sudlow, C.; Doherty, N.; Adamska, L.; Sprosen, T.; Collins, R.; Allen, N.E. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 2017, 186, 1026–1034. [Google Scholar] [CrossRef] [Green Version]
- Galobardes, B.; Shaw, M.; Lawlor, D.A.; Lynch, J.W.; Davey Smith, G. Indicators of socioeconomic position (part 1). J. Epidemiol. Community Health 2006, 60, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Galobardes, B.; Shaw, M.; Lawlor, D.A.; Lynch, J.W.; Davey Smith, G. Indicators of socioeconomic position (part 2). J. Epidemiol. Community Health 2006, 60, 95–101. [Google Scholar] [CrossRef] [Green Version]
- UK Chief Medical Officers. In UK Chief Medical Officers’ Low Risk Drinking Guidelines; Department of Health and Social Care: London, UK, 2016.
- Cox, D.R. Regression models and life-tables. J. R. Stat. Soc. Ser. B (Methodol.) 1972, 34, 187–220. [Google Scholar] [CrossRef]
- Hastie, T.; Tibshirani, R. Generalized additive models: Some applications. J. Am. Stat. Assoc. 1987, 82, 371–386. [Google Scholar] [CrossRef]
- Wood, S.; Pya, N.; Säfken, B. Smoothing parameter and model selection for general smooth models (with discussion). J. Am. Stat. Assoc. 2016, 111, 1548–1575. [Google Scholar] [CrossRef]
- Wood, S. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2017. [Google Scholar]
Without Accelerometer Data | With Valid Accelerometer Data | ||
---|---|---|---|
Mean (sd) or % | Mean (sd) or % | Missing (%) | |
Total | 477,806 | 84,166 | |
All-cause mortality rate (per 1000) | 61.7 (240.6) | 22.2 (147.4) | 0 |
Years from Biobank baseline to death | 8.8 (2.4) | 9.6 (1.9) | 0 |
All-cause pre-COVID a mortality rate (per 1000) | 49.3 (216.4) | 16.3 (126.5) | 0 |
Accelerometer PA volume (mg) b | 28.4 (8.3) | 0 | |
Sex (% female) | 54% | 58% | 0 |
Age at Biobank baseline | 56.5 (8.2) | 55.6 (7.8) | 0 |
Age at accelerometer collection | 61.8 (7.8) | 0 | |
Education: degree or higher | 36% | 49% | 376 (0.4%) |
Townsend index | −1.21 (3.14) | −1.73 (2.82) | 97 (0.1%) |
Self-reported health: poor | 5% | 2% | 173 (0.2%) |
Longstanding illness | 33% | 26% | 1559 (2.0%) |
Current smoker | 11% | 7% | 223 (0.3%) |
Exceeds alcohol guidelines | 33% | 32% | 71 (0.1%) |
BMI category | 172 (0.2%) | ||
Underweight/Healthy weight | 32% | 41% | |
Overweight | 43% | 41% | |
Obese | 26% | 19% |
Unadjusted | Adjusted d | |||
---|---|---|---|---|
HR | 95% CI | HR | 95% CI | |
Adjustment variables | ||||
Male (versus female) | 1.65 | (1.49, 1.83) | ||
Age (10-year increase) | 2.57 | (2.38, 2.78) | ||
Degree-educated | 0.89 | (0.81, 0.97) | ||
Townsend index (1 sd a increase) | 1.02 | (1.00, 1.04) | ||
Self-reported poor health | 1.61 | (1.27, 2.03) | ||
Longstanding illness | 1.39 | (1.25, 1.53) | ||
Current smoker | 1.85 | (1.60, 2.14) | ||
Exceeds alcohol guidelines | 1.09 | (0.98, 1.20) | ||
Overweight b | 0.93 | (0.83, 1.04) | ||
Obese b | 1.20 | (1.05. 1.36) | ||
Mean PA volume (increase of 1 mg) c | ||||
0–20 mg | 0.92 | (0.87, 0.97) | 0.91 | (0.87, 0.96) |
20–30 mg | 1.02 | (0.98, 1.06) | 1.01 | (0.98, 1.04) |
30–80 mg | 1.09 | (1.05, 1.13) | 1.05 | (1.01, 1.09) |
80 mg+ | 1.00 | (0.90, 1.11) | 0.98 | (0.88, 1.09) |
PA intensity histogram: | ||||
Move from high risk to average risk | 0.69 | (0.65, 0.73) | 0.83 | (0.79, 0.88) |
Move from average risk to low risk | 0.67 | (0.62, 0.72) | 0.80 | (0.74, 0.87) |
Move from high risk to low risk | 0.46 | (0.41, 0.52) | 0.67 | (0.58, 0.76) |
Sleep (h) | Sedentary (h) | Equivalent to Slow Walking (~3 km/h) (min) | Equivalent to Moderate Walking (~5 km/h) (min) | Equivalent to Brisk Walking or Higher (~6.5 km/h) b (min) | |
---|---|---|---|---|---|
Intensity (mg) c | <3 | 3- < 60 | 60- < 125 | 125- < 300 | 300+ |
Overall average | 7.2 | 13.2 | 140 | 62 | 7 |
Quartile 1: (mean PA volume =19.2 mg) | |||||
High-risk profile | 7.3 | 14.3 | 109 | 26 | 1 |
Average risk profile | 7.9 | 13.7 | 105 | 35 | 3 |
Low-risk profile | 8.5 | 13.1 | 94 | 42 | 4 |
Quartile 2: (mean PA volume =25.2 mg) | |||||
High-risk profile | 6.7 | 14.0 | 150 | 45 | 3 |
Average risk profile | 7.3 | 13.4 | 135 | 55 | 6 |
Low-risk profile | 8.0 | 12.9 | 117 | 60 | 9 |
Quartile 3: (mean PA volume =30.0 mg) | |||||
High-risk profile | 6.3 | 13.5 | 179 | 63 | 4 |
Average risk profile | 7.0 | 13.1 | 156 | 73 | 9 |
Low-risk profile | 7.7 | 12.6 | 130 | 76 | 14 |
Quartile 4: (mean PA volume =39.4 mg) | |||||
High-risk profile | 5.9 | 12.7 | 210 | 96 | 10 |
Average risk profile | 6.6 | 12.4 | 177 | 102 | 15 |
Low-risk profile | 7.2 | 12.3 | 144 | 94 | 24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salway, R.; Augustin, N.H.; Armstrong, M.E.G. Tortoise or Hare? The Associations between Physical Activity Volume and Intensity Distribution and the Risk of All-Cause Mortality: A Large Prospective Analysis of the UK Biobank. Int. J. Environ. Res. Public Health 2023, 20, 6401. https://doi.org/10.3390/ijerph20146401
Salway R, Augustin NH, Armstrong MEG. Tortoise or Hare? The Associations between Physical Activity Volume and Intensity Distribution and the Risk of All-Cause Mortality: A Large Prospective Analysis of the UK Biobank. International Journal of Environmental Research and Public Health. 2023; 20(14):6401. https://doi.org/10.3390/ijerph20146401
Chicago/Turabian StyleSalway, Ruth, Nicole Helene Augustin, and Miranda Elaine Glynis Armstrong. 2023. "Tortoise or Hare? The Associations between Physical Activity Volume and Intensity Distribution and the Risk of All-Cause Mortality: A Large Prospective Analysis of the UK Biobank" International Journal of Environmental Research and Public Health 20, no. 14: 6401. https://doi.org/10.3390/ijerph20146401
APA StyleSalway, R., Augustin, N. H., & Armstrong, M. E. G. (2023). Tortoise or Hare? The Associations between Physical Activity Volume and Intensity Distribution and the Risk of All-Cause Mortality: A Large Prospective Analysis of the UK Biobank. International Journal of Environmental Research and Public Health, 20(14), 6401. https://doi.org/10.3390/ijerph20146401