Association of D-Dimer, C-Reactive Protein, and Ferritin with COVID-19 Severity in Pregnant Women: Important Findings of a Cross-Sectional Study in Northern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Ethics Aspects
2.2. Study Design and Data Collection
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brazilian Ministry of Health (BMH). Brazilian Obstetric Observatory—COVID-19. 2021. Available online: https://portaldeboaspraticas.iff.fiocruz.br/atencao-mulher/conheca-o-observatorio-obstetrico-brasileiro-covid-19-oobr-covid-19/ (accessed on 7 December 2022).
- Ferrugini, C.L.P.; Boldrini, N.A.T.; Costa, F.L.S.; Salgueiro, M.A.O.B.; Coelho, P.D.P.; Miranda, A.E. SARS-CoV-2 infection in pregnant women assisted in a high-risk maternity hospital in Brazil: Clinical aspects and obstetric outcomes. PLoS ONE 2022, 17, e0264901. [Google Scholar] [CrossRef] [PubMed]
- Brazilian Ministry of Health (BMH). COVID-19 Infection and the Risks to Women in the Pregnancy-Puerperal Cycle. 2020. Available online: https://www.mpba.mp.br/sites/default/files/biblioteca/saude/coronavirus-material-tecnico/material_e/ou_notas_tecnicas/ms_notatecnica_12.2020_-_infeccao_covid-19_e_os_riscos_as_mulheres_no_ciclo_gravidico-puerperal.pdf/ (accessed on 5 August 2021).
- Brazilian Ministry of Health (BMH). Manual of Recommendations for Assistance to Pregnant and Postpartum Women in the Face of the COVID-19 Pandemic. 2021. Available online: https://bvsms.saude.gov.br/bvs/publicacoes/manual_assistencia_gestante_puerpera_covid-19_2ed.pdf (accessed on 5 August 2021).
- Kashanian, M.; Aghbali, F.; Mahali, N. Evaluation of the diagnostic value of the first-trimester maternal serum high-sensitivity C-reactive protein level for prediction of pre-eclampsia. J. Obstet. Gynaecol. Res. 2013, 39, 1549–1554. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, R.; Asano, H.; Umazume, T.; Takaoka, M.; Noshiro, K.; Saito, Y.; Nakagawa, K.; Chiba, K.; Nakakubo, S.; Nasuhara, Y.; et al. C-reactive protein level predicts need for medical intervention in pregnant women with SARS-CoV2 infection: A retrospective study. J. Obstet. Gynaecol. Res. 2022, 48, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Li, H.; Li, L.; Liu, C.; Yan, S.; Chen, H.; Li, Y. Ferritin in the coronavirus disease 2019 (COVID-19): A systematic review and meta-analysis. J. Clin. Lab. Anal. 2020, 34, e23618. [Google Scholar] [CrossRef]
- Silva, J.V.F.; Ferreira, R.C.; Tenório, M.B.; Tenório, M.C.S.; Silveira, J.A.C.; Amaral, A.C.M.; Goulart, M.O.F.; Moura, F.A.; Oliveira, A.C.M. Hyperferritinemia worsens the perinatal outcomes of conceptions of pregnancies with preeclampsia. Pregnancy Hypertens 2020, 19, 233–238. [Google Scholar] [CrossRef]
- Tanacan, A.; Yazihan, N.; Erol, S.A.; Anuk, A.T.; Yucel Yetiskin, F.D.; Biriken, D.; Ozgu-Erdinc, A.S.; Keskin, H.L.; Tekin, O.M.; Sahin, D. The impact of COVID-19 infection on the cytokine profile of pregnant women: A prospective case-control study. Cytokine 2021, 140, 155431. [Google Scholar] [CrossRef]
- Gómez-Mesa, J.E.; Galindo-Coral, S.; Montes, M.C.; Muñoz Martin, A.J. Thrombosis and Coagulopathy in COVID-19. Curr. Probl. Cardiol. 2021, 46, 100742. [Google Scholar] [CrossRef]
- Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020, 395, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Di Renzo, G.C.; Giardina, I. Coronavirus disease 2019 in pregnancy: Consider thromboembolic disorders and thromboprophylaxis. Am. J. Obstet. Gynecol. 2020, 223, 135. [Google Scholar] [CrossRef]
- Thompson, J.L.; Nguyen, L.M.; Noble, K.N.; Aronoff, D.M. COVID-19-Related disease severity in pregnancy. Am. J. Reprod. Immunol. 2020, 84, e13339. [Google Scholar] [CrossRef]
- Brazilian Ministry of Health (BMH). Ordinance No. 1119, Surveillance of Maternal Deaths. 5 June 2008. Available online: http://plataforma.saude.gov.br/cta-br-fic/respostas-cod-covid.pdf (accessed on 3 December 2022).
- Allotey, J.; Fernandez, S.; Bonet, M.; Stallings, E.; Yap, M.; Kew, T.; Zhou, D.; Coomar, D.; Sheikh, J.; Lawson, H.; et al. Clinical manifestations, risk factors, and maternal and perinatal outcomes of coronavirus disease 2019 in pregnancy: Living systematic review and meta-analysis. Br. Med. J. 2020, 1, m3320. [Google Scholar] [CrossRef]
- Ellington, S.; Strid, P.; Tong, V.T.; Woodworth, K.; Galang, R.R.; Zambrano, L.D.; Nahabedian, J.; Anderson, K.; Gilboa, S.M. Characteristics of Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status—United States, 22 January–7 June 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 769–775. [Google Scholar] [CrossRef] [PubMed]
- Overton, E.E.; Goffman, D.; Friedman, A.M. The Epidemiology of COVID-19 in Pregnancy. Clin. Obstet. Gynecol. 2022, 65, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Bornstein, S.R.; Rubino, F.; Khunti, K.; Mingrone, G.; Hopkins, D.; Birkenfeld, A.L.; Boehm, B.; Amiel, S.; Holt, R.I.; Skyler, J.S.; et al. Practical recommendations for the management of diabetes in patients with COVID-19. Lancet Diabetes Endocrinol. 2020, 8, 546–550. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.D.; Ding, M.; Dong, X.; Zhang, J.J.; Kursat Azkur, A.; Azkur, D.; Gan, H.; Sun, Y.-L.; Fu, W.; Li, W.; et al. Risk factors for severe and critically ill COVID-19 patients: A review. Allergy 2021, 76, 428–455. [Google Scholar] [CrossRef]
- Li, R.; Tian, J.; Yang, F.; Lv, L.; Yu, J.; Sun, G.; Ma, Y.; Yang, X.; Ding, J. Clinical characteristics of 225 patients with COVID-19 in a tertiary Hospital near Wuhan, China. J. Clin. Virol. 2020, 127, 104363. [Google Scholar] [CrossRef]
- COVID-19 Excess Mortality Collaborators. Estimating excess mortality due to the COVID-19 pandemic: A systematic analysis of COVID-19-related mortality, 2020–2021. Lancet 2022, 399, 1513–1536. [Google Scholar] [CrossRef]
- Conde-Agudelo, A.; Romero, R. SARS-CoV-2 infection during pregnancy and risk of preeclampsia: A systematic review and meta-analysis. Am. J. Obstet. Gynecol. 2022, 226, 68–89.e3. [Google Scholar] [CrossRef]
- Villar, J.; Ariff, S.; Gunier, R.B.; Thiruvengadam, R.; Rauch, S.; Kholin, A.; Roggero, P.; Prefumo, F.; Vale, M.S.D.; Cardona-Perez, J.A.; et al. Maternal and Neonatal Morbidity and Mortality Among Pregnant Women with and without COVID-19 Infection: The INTERCOVID Multinational Cohort Study. JAMA Pediatr. 2021, 175, 817–826. [Google Scholar] [CrossRef]
- Papageorghiou, A.T.; Deruelle, P.; Gunier, R.B.; Rauch, S.; García-May, P.K.; Mhatre, M.; Usman, M.A.; Abd-Elsalam, S.; Etuk, S.; Simmons, L.E.; et al. Preeclampsia and COVID-19: Results from the INTERCOVID prospective longitudinal study. Am. J. Obstet. Gynecol. 2021, 225, 289.e1–289.e17. [Google Scholar] [CrossRef]
- Giuliani, F.; Oros, D.; Gunier, R.B.; Deantoni, S.; Rauch, S.; Casale, R.; Nieto, R.; Bertino, E.; Rego, A.; Menis, C.; et al. Effects of prenatal exposure to maternal COVID-19 and perinatal care on neonatal outcome: Results from the INTERCOVID Multinational Cohort Study. Am. J. Obstet. Gynecol. 2022, 227, 488.e1–488.e17. [Google Scholar] [CrossRef]
- Eskenazi, B.; Rauch, S.; Iurlaro, E.; Gunier, R.B.; Rego, A.; Gravett, M.G.; Cavoretto, P.I.; Deruelle, P.; García-May, P.K.; Mhatre, M.; et al. Diabetes mellitus, maternal adiposity, and insulin-dependent gestational diabetes are associated with COVID-19 in pregnancy: The INTERCOVID study. Am. J. Obstet. Gynecol. 2022, 227, 74.e1–74.e16. [Google Scholar] [CrossRef] [PubMed]
- Zou, L.; Ruan, F.; Huang, M.; Liang, L.; Huang, H.; Hong, Z.; Yu, J.; Xia, J.; Kang, M.; Song, Y.; et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N. Engl. J. Med. 2020, 382, 1177–1179. [Google Scholar] [CrossRef] [PubMed]
- Thachil, J.; Tang, N.; Gando, S.; Falanga, A.; Cattaneo, M.; Levi, M.; Clark, C.; Iba, T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. J. Thromb. Haemost. 2020, 18, 1023–1026. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, A.; Duiella, S.; Li Piani, L.; Comelli, A.; Ceriotti, F.; Oggioni, M.; Muscatello, A.; Bandera, A.; Gori, A.; Ferrazzi, E. Inflammatory biomarkers in pregnant women with COVID-19: A retrospective cohort study. Sci. Rep. 2021, 11, 13350. [Google Scholar] [CrossRef] [PubMed]
- Puntmann, V.O.; Carerj, M.L.; Wieters, I.; Fahim, M.; Arendt, C.; Hoffmann, J.; Shchendrygina, A.; Escher, F.; Vasa-Nicotera, M.; Zeiher, A.M.; et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered from Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020, 5, 1265–1273. [Google Scholar] [CrossRef]
- Klok, F.A.; Kruip, M.J.H.A.; van der Meer, N.J.M.; Arbous, M.S.; Gommers, D.A.M.P.J.; Kant, K.M.; Kaptein, F.H.J.; van Paassen, J.; Stals, M.A.M.; Huisman, M.V.; et al. Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb. Res. 2020, 191, 145–147. [Google Scholar] [CrossRef]
- Sahin, O.; Aktoz, F.; Bagci, H.; Vurgun, E. The role of laboratory parameters in predicting severity of COVID-19 disease in pregnant patients. J. Obstet. Gynaecol. 2022, 42, 1917–1921. [Google Scholar] [CrossRef]
- Zeng, F.; Huang, Y.; Guo, Y.; Yin, M.; Chen, X.; Xiao, L.; Deng, G. Association of inflammatory markers with the severity of COVID-19: A meta-analysis. Int. J. Infect. Dis. 2020, 7, 467–474. [Google Scholar] [CrossRef]
- Liu, F.; Li, L.; Xu, M.; Wu, J.; Luo, D.; Zhu, Y.; Li, B.; Song, X.; Zhou, X. Prognostic value of interleukin-6, C-reactive protein, and procalcitonin in patients with COVID-19. J. Clin. Virol. 2020, 8, 104370. [Google Scholar] [CrossRef]
- Januszewski, M.; Ziuzia-Januszewska, L.; Jakimiuk, A.A.; Oleksik, T.; Pokulniewicz, M.; Wierzba, W.; Kozlowski, K.; Jakimiuk, A.J. Predictors of COVID-19 severity among pregnant patients. Bosn. J. Basic Med. Sci. 2022, 22, 1005–1015. [Google Scholar] [CrossRef]
- Malik, Y.A. Properties of Coronavirus and SARS-CoV-2. Malays. J. Pathol. 2020, 42, 3–11. [Google Scholar] [PubMed]
- Berry, M.; Wang, A.; Clark, S.M.; Harirah, H.M.; Jain, S.; Olson, G.L.; Pacheco, L.D.; Saade, G.R.; Saad, A.F. Clinical Stratification of Pregnant COVID-19 Patients based on Severity: A Single Academic Center Experience. Am. J. Perinatol. 2021, 38, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.; Sang, L.; Jiang, M.; Yang, Z.; Jia, N.; Fu, W.; Xie, J.; Guan, W.; Liang, W.; Ni, Z.; et al. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J. Allergy Clin. Immunol. 2020, 146, 89–100. [Google Scholar] [CrossRef] [PubMed]
- Alzoughool, F.; Alanagreh, L.; Abumweis, S.; Atoum, M. Cerebrovascular comorbidity, high blood levels of C-reactive protein and D-dimer are associated with disease outcomes in COVID-19 patients. Clin. Hemorheol. Microcirc. 2021, 77, 311–322. [Google Scholar] [CrossRef] [PubMed]
Characteristics | With COVID-19 | Without COVID-19 | Total | p Value | |||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | ||
Total | 121 | 53.53 | 105 | 46.46 | 226 | 100 | - |
Age | |||||||
Mean (SD) | 28.44 (6.35) | 26.54 (7.52) | 27.56 (6.97) | - | |||
Age group | |||||||
≤15 | 3 | 2.4 | 3 | 2.8 | 6 | 2.6 | |
16–25 | 37 | 30.5 | 53 | 50.4 | 90 | 39.8 | 0.0216 c |
26–34 | 60 | 49.5 | 34 | 32.3 | 94 | 41.5 | |
≥35 | 21 | 17.3 | 15 | 14.2 | 36 | 15.9 | |
Origin | |||||||
Metropolitan region | 59 | 48.7 | 55 | 52.3 | 112 | 49.5 | 0.6821 a |
Countryside | 62 | 51.2 | 50 | 47.6 | 114 | 50.4 | |
Gestational Age | |||||||
1st Trimester | 7 | 5.7 | 8 | 7.6 | 15 | 6.6 | |
2nd Trimester | 27 | 22.3 | 19 | 18.1 | 46 | 20.3 | 0.6689 c |
3rd Trimester | 87 | 71.9 | 78 | 74.2 | 165 | 73.0 | |
Comorbidities | |||||||
Pre-existing | 14 | 11.5 | 15 | 14.2 | 29 | 12.8 | |
Gestational | 22 | 18.1 | 31 | 29.5 | 53 | 23.4 | 0.0712 c |
Pre-existing/Gestational | 12 | 9.9 | 4 | 3.8 | 16 | 7.0 | |
Absent | 73 | 60.3 | 55 | 52.3 | 128 | 56.6 | |
Pre-existing Comorbidities | |||||||
Asthma | 6 | 4.9 | 6 | 5.7 | 12 | 5.3 | 0.9643 a |
Obesity | 4 | 3.3 | 1 | 0.9 | 5 | 2.2 | 0.3758 b |
Type II diabetes | 1 | 0.8 | 0 | 0.0 | 1 | 0.4 | 1.0000 b |
Arterial hypertension | 7 | 5.7 | 2 | 1.9 | 9 | 3.9 | 0.1809 b |
Acute Renal Failure | 3 | 2.4 | 0 | 0.0 | 3 | 1.3 | 0.2504 b |
Cardiovascular disease | 2 | 1.6 | 0 | 0.0 | 2 | 0.8 | 0.5003 b |
Autoimmune Disease | 1 | 0.8 | 2 | 1.9 | 3 | 1.3 | 0.5985 b |
Infectious diseases | 3 | 2.4 | 7 | 6.6 | 10 | 4.4 | 0.1942 b |
Other | 6 | 4.9 | 4 | 3.8 | 10 | 4.4 | 0.7548 b |
Gestational Comorbidities | |||||||
Pre-eclampsia | 10 | 8.2 | 19 | 18.1 | 29 | 12.8 | 0.0450 a |
Gestational Hypertensive | 24 | 19.0 | 15 | 14.2 | 39 | 17.2 | 0.3552 a |
Gestational diabetes | 2 | 1.6 | 1 | 0.9 | 3 | 1.3 | 1.0000 b |
Other | 0 | 0.0 | 2 | 1.9 | 2 | 0.8 | 0.2147 b |
Place of Hospitalization | |||||||
Ward | 86 | 71.0 | 75 | 71.4 | 161 | 71.2 | 0.9294 a |
ICU | 35 | 28.9 | 30 | 28.5 | 65 | 28.7 | |
Hospitalization Time—Average (SD) | 10.42 (8.34) | 9.02 (7.97) | 9.02 (7.97) | - | |||
Maternal Outcome | |||||||
Medical release | 110 | 90.9 | 101 | 96.1 | 211 | 93.3 | 0.1790 b |
Decease | 11 | 9.0 | 4 | 3.8 | 15 | 6.6 |
Biomarkers | With COVID-19 | Without COVID-19 | p Value * | With COVID-19 | Without COVID-19 | p Value ** | ||
---|---|---|---|---|---|---|---|---|
Ward | ICU | Ward | ICU | |||||
D-dimer (ng/mL) | ||||||||
Median | 1263 | 1521 | 1200 | 755.5 | 1316 | 1024 | ||
(IQR) | (1412.5) | (2942) | (2452.4) | (964) | 0.0122 | (1686.2) | (2235) | 0.0294 |
Sample | n = 72 | n = 26 | n = 75 | n = 30 | 98 | 105 | ||
CRP (mg/L) | ||||||||
Median | 50.6 | 55.05 | 29 | 58.75 | 52.55 | 31.1 | ||
(IQR) | (60.1) | (94.3) | (37.2) | (75.97) | 0.3752 | (71.2) | (56.3) | 0.2032 |
Sample | n = 70 | n = 34 | n = 75 | n = 30 | 104 | 105 | ||
Ferritin (ng/mL) | ||||||||
Median | 140 | 362.9 | 79.5 | 99.1 | 165.8 | 84.5 | ||
(IQR) | (235.6) | (352.45) | (78.3) | (136.6) | <0.0001 | (278.9) | (83.7) | <0.0001 |
Sample | n = 63 | n = 23 | n = 75 | n = 30 | 86 | 105 |
With COVID-19 | Without COVID-19 | Total with and without COVID-19 | p Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ward | ICU | Ward | ICU | ||||||||
n | % | n | % | n | % | n | % | n | % | ||
D-dimer (ng/mL) | |||||||||||
Normal (≤500) | 9 | 12.5 | 1 | 3.8 | 22 | 29.3 | 12 | 40.0 | 44 | 21.6 | |
Altered (501–1500) | 34 | 47.2 | 12 | 46.1 | 21 | 28.0 | 11 | 36.6 | 78 | 38.4 | 0.0015 a |
Very altered (>1500) | 29 | 40.2 | 13 | 50.0 | 32 | 42.6 | 7 | 23.3 | 81 | 39.9 | |
CRP | |||||||||||
Normal (≤8.0) | 12 | 17.1 | 8 | 23.5 | 13 | 17.3 | 8 | 26.6 | 41 | 19.6 | |
Altered (9–40) | 19 | 27.1 | 5 | 14.7 | 30 | 40.0 | 6 | 20.0 | 60 | 28.7 | 0.1233 b |
Very altered (>40) | 39 | 55.7 | 21 | 61.7 | 32 | 42.6 | 16 | 53.3 | 108 | 51.6 | |
Ferritin | |||||||||||
Normal (≤150) | 32 | 50.7 | 4 | 17.3 | 60 | 80.0 | 22 | 73.3 | 118 | 61.7 | |
Altered (151–450) | 21 | 33.3 | 12 | 52.1 | 12 | 16.0 | 7 | 23.3 | 52 | 27.2 | <0.0001 a |
Very altered (>450) | 10 | 15.8 | 7 | 30.4 | 3 | 4.0 | 1 | 3.3 | 21 | 10.9 |
Pregnant Women with COVID-19 | ||||||
---|---|---|---|---|---|---|
Characteristics | D-dimer (ng/mL) Median (IQR) | p | CRP (mg/L) Mediana (IQR) | p | Ferritin (ng/mL) Mediana (IQR) | p |
Age | 1316 (1500.75) | 0.8201 b | 52.55 (70.4) | 0.7827 b | 165.75 (270.32) | 0.7817 b |
Gestational Age | 0.0043 a | 0.6108 a | 0.4280 a | |||
1st Trimester | 580 (469.5) | 78 (69.85) | 283 (188.2) | |||
2nd Trimester | 1080 (700) | 51.3 (38.65) | 152 (265.55) | |||
3rd Trimester | 1675 (2662) | 48.6 (75.2) | 161 (285.25) | |||
Comorbidities | 0.3759 a | 0.7892 a | 0.2073 a | |||
Yes | 1207 (1286) | 51.25 (60.4) | 175 (265.8) | |||
No | 1339.5 (1914.5) | 54.95 (72.7) | 140 (267) |
Pregnant Women without COVID-19 | ||||||
---|---|---|---|---|---|---|
Characteristics | D-dimer (ng/mL) Mediana (IQR) | p | CRP (mg/L) Mediana (IQR) | p | Ferritin (ng/mL) Mediana (IQR) | p |
Age | 1024 (2234) | 0.0678 b | 31.1 (56.2) | 0.7717 b | 84.5 (81.5) | 0.4039 b |
Gestational age | 0.0818 a | 0.7034 a | 0.4449 a | |||
1st Trimester | 390 (498.75) | 19.8 (47.37) | 141.9 (173.8) | |||
2nd Trimester | 739 (679) | 29 (41.7) | 110 (89.7) | |||
3rd Trimester | 1205 (2733.75) | 35.45 (57.65) | 78.8 (71.05) | |||
Comorbidities | 0.8119 a | 0.3214 a | 0.8294 a | |||
Yes | 1054 (2326.20) | 28.8 (50.35) | 97.7 (72.7) | |||
No | 951 (2135) | 43.1 (54) | 79.5 (86.6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paixão, J.T.R.; Santos, C.d.J.S.e.; França, A.P.F.d.M.; Lima, S.S.; Laurentino, R.V.; Fonseca, R.R.d.S.; Vallinoto, A.C.R.; Oliveira-Filho, A.B.; Machado, L.F.A. Association of D-Dimer, C-Reactive Protein, and Ferritin with COVID-19 Severity in Pregnant Women: Important Findings of a Cross-Sectional Study in Northern Brazil. Int. J. Environ. Res. Public Health 2023, 20, 6415. https://doi.org/10.3390/ijerph20146415
Paixão JTR, Santos CdJSe, França APFdM, Lima SS, Laurentino RV, Fonseca RRdS, Vallinoto ACR, Oliveira-Filho AB, Machado LFA. Association of D-Dimer, C-Reactive Protein, and Ferritin with COVID-19 Severity in Pregnant Women: Important Findings of a Cross-Sectional Study in Northern Brazil. International Journal of Environmental Research and Public Health. 2023; 20(14):6415. https://doi.org/10.3390/ijerph20146415
Chicago/Turabian StylePaixão, Jenephy Thalita Rosa, Carolinne de Jesus Santos e Santos, Ana Paula Figueiredo de Montalvão França, Sandra Souza Lima, Rogério Valois Laurentino, Ricardo Roberto de Souza Fonseca, Antonio Carlos Rosário Vallinoto, Aldemir Branco Oliveira-Filho, and Luiz Fernando Almeida Machado. 2023. "Association of D-Dimer, C-Reactive Protein, and Ferritin with COVID-19 Severity in Pregnant Women: Important Findings of a Cross-Sectional Study in Northern Brazil" International Journal of Environmental Research and Public Health 20, no. 14: 6415. https://doi.org/10.3390/ijerph20146415
APA StylePaixão, J. T. R., Santos, C. d. J. S. e., França, A. P. F. d. M., Lima, S. S., Laurentino, R. V., Fonseca, R. R. d. S., Vallinoto, A. C. R., Oliveira-Filho, A. B., & Machado, L. F. A. (2023). Association of D-Dimer, C-Reactive Protein, and Ferritin with COVID-19 Severity in Pregnant Women: Important Findings of a Cross-Sectional Study in Northern Brazil. International Journal of Environmental Research and Public Health, 20(14), 6415. https://doi.org/10.3390/ijerph20146415