The Analysis of 222Rn and 220Rn Natural Radioactivity for Local Hazard Estimation: The Case Study of Cerveteri (Central Italy)
Abstract
:1. Introduction
2. Geological Overview
3. 222Rn and 220Rn Radiological Risk
4. Materials and Methods
5. Results
5.1. Soil Gas 222Rn and 220Rn
5.2. Indoor 222Rn
5.3. Dissolved 222Rn in Water
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Darby, S.; Hill, D.; Doll, R. Radon: A likely carcinogen at all exposures. Ann. Oncol. 2001, 12, 1341–1351. [Google Scholar] [CrossRef]
- Oh, S.S.; Koh, S.; Kang, H.; Lee, J. Radon exposure and lung cancer: Risk in nonsmokers among cohort studies. Ann. Occup. Environ. Med. 2016, 28, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jönsson, G.; Baixeras, C.; Devantier, R.; Enge, W.; Font, L.L.; Freyer, K.; Ghose, R.; Treutler, H.-C. Soil radon levels measured with SSNTD’s and the soil radium content. Radiat. Meas. 1999, 31, 291–294. [Google Scholar] [CrossRef]
- Cinelli, G.; Tositti, L.; Capaccioni, B.; Brattich, E.; Mostacci, D. Soil gas radon assessment and development of a radon risk map in Bolsena, Central Italy. Environ. Geochem. Health 2015, 37, 305–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pfanz, H.; Yüce, G.; Gulbay, A.H.; Gokgoz, A. Deadly CO2 gases in the Plutonium of Hierapolis (Denizli, Turkey). Archaeol. Anthr. Sci. 2018, 11, 1359–1371. [Google Scholar] [CrossRef]
- Ajiboye, Y.; Isinkaye, M.O.; Khanderkar, M.U. Spatial distribution mapping and radiological hazard assessment of groundwater and soil gas radon in Ekiti State, Southwest Nigeria. Environ. Earth Sci. 2018, 77, 1–15. [Google Scholar]
- Zhuo, W.; Lida, T.; Morizumi, S. Simulation of the concentration levels and distributions of indoor radon and thoron. Radiat. Prot. Dosim. 2001, 93, 357–368. [Google Scholar] [CrossRef]
- Tokonami, S. Characteristics of thoron (220Rn) and its progeny in the indoor environment. Int. J. Environ. Res. Public Health 2020, 17, 8769. [Google Scholar] [CrossRef]
- Mishra, R.; Sapra, B.K.; Mayya, Y.S. Multi-parametric approach towards the assessment of radon and thoron progeny exposures. Rev. Sci. Instrum. 2014, 85, 022105. [Google Scholar] [CrossRef]
- Voltattorni, N. Il radon e la radioattività ambientale: Risultati del progetto di Alternanza Scuola-Lavoro “Misure dell’attività del gas radon nei suoli e nelle acque nel territorio di Cerveteri (Roma, Italia centrale)”. Misc. INGV 2019, 47, 1–24. [Google Scholar] [CrossRef]
- Bertagnini, A.; De Rita, D.; Landi, P. Mafic inclusions in the silica-rich rocks of the Tolfa-Ceriti-Manziana volcanic district (Tuscan Province, Central Italy): Chemistry and mineralogy. Mineral. Petrol. 1995, 54, 261–276. [Google Scholar] [CrossRef]
- Pinarelli, L. Geochemical and isotopic (Sr, Pb) evidence of crust-mantle interaction in acidic melts—The Tolfa-Cerveteri-Manziana volcanic complex (central Italy): A case history. Chem. Geol. 1991, 92, 177–195. [Google Scholar] [CrossRef]
- Compagnoni, B.; Giardini, G.; Jacobacci, A.; Malatesta, A.; Molinari Paganelli, V.; Valletta, M. Note Illustrative del F° 373 Cerveteri; Servizio Geologico D’Italia—Istituto Poligrafico e Zecca dello Stato: Rome, Italy, 1986. [Google Scholar]
- Alfeld, M.; Baraldi, C.; Gamberini, M.C.; Walter, P. Investigation of the pigment use in the Tomb of the Reliefs and other tombs in the Etruscan Banditaccia Necropolis. X-Ray Spectrom. 2019, 48, 262–273. [Google Scholar] [CrossRef]
- Singla, A.K.; Kansal, S.; Rani, S.; Mehra, R. Radiological risk assessment due to attached/unattached fractions of radon and thoron progeny in Hanumangarh district, Rajasthan. J. Radioanalytic. Nucl. Chem. 2021, 330, 1473–1483. [Google Scholar] [CrossRef]
- UNSCEAR. Sources and effects of ionizing radiation. In United Nations Scientific Committee on the Effects of Atomic Radiation; Report to the General Assembly, with Scientific Annexes; United Nations: New York, NY, USA, 2000. [Google Scholar]
- World Health Organization. WHO Handbook on Indoor Radon: A Public Health Perspective; World Health Organization: Geneva, Switzerland, 2009. [Google Scholar]
- Chauhan, R.P.; Kumar, A.; Chauhan, N.; Joshi, M.; Aggarwal, P.; Sahoo, B.K. Ventilation effect on indoor radon–thoron levels in dwellings and correlation with soil exhalation rates. Indoor Built Environ. 2016, 25, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Kansal, S.; Mehra, R.; Singh, N.P. Life time fatality risk assessment due to variation of indoor radon concentration in dwellings in western Haryana, India. Appl. Radiat. Isot. 2012, 70, 1110–1112. [Google Scholar] [CrossRef]
- Cavallo, A. The radon equilibrium factor and comparative dosimetry in homes and mines. Radiat. Prot. Dosim. 2000, 92, 295–298. [Google Scholar] [CrossRef]
- Fatima, I.; Zaidi, J.H.; Arif, M.; Tahir, S.N.A. Measurement of natural radioactivity in bottled drinking water in Pakistan and consequent dose estimates. Radiat. Prot. Dosim. 2007, 123, 234–240. [Google Scholar] [CrossRef]
- Hevey, D. Radon risk and remediation: A psychological perspective. Front. Public Health 2017, 5, 63. [Google Scholar] [CrossRef] [Green Version]
- Galli, G.; Cannelli, V.; Nardi, A.; Piersanti, A. Implementing soil radon detectors for long term continuous monitoring. Appl. Radiat. Isot. 2019, 153, 108813. [Google Scholar] [CrossRef]
- Galli, G.; Guadoni, C.; Mancini, C. Radon grab sampling in water by means of radon transfer in activated charcoal collector. Nuovo Cim. 1999, 22, 583–588. [Google Scholar]
- De Luca, A.; Mancini, C. The measurement system for 222Rn monitoring with charcoal adsorption collectors. Health Phys. 1991, 61, 543–546. [Google Scholar] [CrossRef]
- Sinclair, A.J. A fundamental approach to threshold estimation in exploration geochemistry: Probability plots revisited. J. Geochem. Expl. 1991, 41, 1–22. [Google Scholar] [CrossRef]
- Przylibski, T.A. Concentration of 226Ra in rocks of the southern part of Lower Silesia (SW Poland). J. Environ. Radioact. 2004, 75, 171–191. [Google Scholar] [CrossRef]
- Chen, J.; Ford, K.L. A study on the correlation between soil radon potential and average indoor radon potential in Canadian cities. J. Environ. Radioact. 2017, 166, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Directive Council. Council Directive 2013/51/EURATOM of 22 October 2013. Laying down requirements for the protection of the health of the general public with regard to radioactive substances in water intended for human consumption. J. Eur. Union 2013, 7, 56. [Google Scholar]
- Cinti, D.; Vaselli, O.; Poncia, P.P.; Brusca, L.; Grassa, F.; Procesi, M.; Tassi, F. Anomalous concentrations of arsenic, fluoride and radon in volcanic-sedimentary aquifers from central Italy: Quality indexes for management of the water resource. Environ. Pollut. 2019, 253, 525–537. [Google Scholar] [CrossRef] [PubMed]
- Gringarten, E.; Deutsch, C.V. Teacher’s aide variogram interpretation and modeling. Math. Geol. 2001, 33, 507–534. [Google Scholar] [CrossRef]
- Torelli, M. The History. In Caere; University of Texas Press: Austin, TX, USA, 2021; pp. 5–14. [Google Scholar]
- Padilla, G.D.; Hernández, P.A.; Padrón, E.; Barrancos, J.; Pérez, N.M.; Melián, G.; Nolasco, D.; Dionis, S.; Rodríguez, F.; Calvo, D.; et al. Soil gas radon emissions and volcanic activity at El Hierro (Canary Islands): The 2011–2012 submarine eruption. Geochem. Geophys. Geosystems 2013, 14, 432–447. [Google Scholar] [CrossRef]
- Yang, T.; Walia, V.; Chyi, L.; Fu, C.; Chen, C.-H.; Liu, T.; Song, S.; Lee, C.; Lee, M. Variations of soil radon and thoron concentrations in a fault zone and prospective earthquakes in SW Taiwan. Radiat. Meas. 2005, 40, 496–502. [Google Scholar] [CrossRef]
- Friedmann, H.; Baumgartner, A.; Bernreiter, M.; Gräser, J.; Gruber, V.; Kabrt, F.; Kaineder, H.; Maringer, F.J.; Ringer, W.; Seidel, C.; et al. Indoor radon, geogenic radon surrogates and geology–Investigations on their correlation. J. Environ. Radioact. 2017, 166, 382–389. [Google Scholar] [CrossRef] [PubMed]
- Adelikhah, M.; Shahrokhi, A.; Imani, M.; Chalupnik, S.; Kovács, T. Radiological assessment of indoor radon and thoron concentrations and indoor radon map of dwellings in Mashhad, Iran. Int. J. Environ. Res. Public Health 2021, 18, 141. [Google Scholar] [CrossRef] [PubMed]
- Djeufack, L.B.; Kendjou, L.T.; Bineng, G.S.; Modibo, O.B.; Abba, H.Y.; Saïdou Zhukovsky, M. Study of correlation between radon (222Rn) gas in soil and indoor radon with dose assessment in the bauxite bearing area of Fongo-Tongo, Western Cameroon. Int. J. Environ. Anal. Chem. 2022, 1–21. [Google Scholar] [CrossRef]
- Voltattorni, N.; Lombardi, S.; Rizzo, S. 222Rn and CO2 soil–gas geochemical characterization of thermally altered clays at Orciatico (Tuscany, Central Italy). Appl. Geochem. 2010, 25, 1248–1256. [Google Scholar] [CrossRef]
- Righi, S.; Bruzzi, L. Natural radioactivity and radon exhalation in building materials used in Italian dwellings. J. Environ. Radioact. 2006, 88, 158–170. [Google Scholar] [CrossRef]
- Mentes, G.; Eper-Pápai, I. Investigation of temperature and barometric pressure variation effects on radon concentration in the Sopronbánfalva Geodynamic Observatory, Hungary. J. Environ. Radioact. 2015, 149, 64–72. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Ward, I.C. Radon entry, migration and reduction in houses with cellars. Build. Environ. 2002, 37, 1153–1165. [Google Scholar] [CrossRef]
222Rn (Bq/m3) | 220Rn (Bq/m3) | |
---|---|---|
Samples | 75 | 75 |
Min value | 634 | 848 |
Max value | 51,000 | 312,000 |
Mean | 13,987 | 76,616 |
Median | 10,000 | 65,200 |
Anomaly threshold | 17,000 | 150,000 |
Variance | 1.36 × 108 | 4.29 × 109 |
Standard deviation | 11,661 | 65,533 |
Skewness | 1.4 | 1.6 |
Kurtosis | 2.1 | 3.1 |
Kolmogorov–Smirnov | 0.2 | 0.2 |
Indoor Rn (Bq/m3) | N | Min | Max | Median | Mean | CV | LQ | UQ | SD |
---|---|---|---|---|---|---|---|---|---|
Cellar | 7 | 45 | 304 | 149 | 157 | 0.5 | 101 | 227 | 89 |
1st floor | 5 | 35 | 222 | 164 | 142 | 0.5 | 79 | 202 | 77 |
Ground floor | 5 | 43 | 197 | 80 | 99 | 0.6 | 50 | 142 | 63 |
Basement | 7 | 49 | 1144 | 248 | 327 | 1.1 | 78 | 341 | 380 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Voltattorni, N.; Gasparini, A.; Galli, G. The Analysis of 222Rn and 220Rn Natural Radioactivity for Local Hazard Estimation: The Case Study of Cerveteri (Central Italy). Int. J. Environ. Res. Public Health 2023, 20, 6420. https://doi.org/10.3390/ijerph20146420
Voltattorni N, Gasparini A, Galli G. The Analysis of 222Rn and 220Rn Natural Radioactivity for Local Hazard Estimation: The Case Study of Cerveteri (Central Italy). International Journal of Environmental Research and Public Health. 2023; 20(14):6420. https://doi.org/10.3390/ijerph20146420
Chicago/Turabian StyleVoltattorni, Nunzia, Andrea Gasparini, and Gianfranco Galli. 2023. "The Analysis of 222Rn and 220Rn Natural Radioactivity for Local Hazard Estimation: The Case Study of Cerveteri (Central Italy)" International Journal of Environmental Research and Public Health 20, no. 14: 6420. https://doi.org/10.3390/ijerph20146420
APA StyleVoltattorni, N., Gasparini, A., & Galli, G. (2023). The Analysis of 222Rn and 220Rn Natural Radioactivity for Local Hazard Estimation: The Case Study of Cerveteri (Central Italy). International Journal of Environmental Research and Public Health, 20(14), 6420. https://doi.org/10.3390/ijerph20146420