Characteristics of Commercial and Raw Pellets Available on the Italian Market: Study of Organic and Inorganic Fraction and Related Chemometric Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Analytical Methods
- -
- 9 aldehydes (namely formaldehyde, acetaldehyde, acrolein, crotonaldehyde, iso-valeraldehyde, valeraldehyde, propionaldehyde, butyraldehyde and iso-butyraldehyde, hexanal): the method provides procedures for the determination of free carbonyl compounds in various matrices through derivatization with 2,4-dinitrophenylhydrazine (DNPH) [22];
- -
- physical state (pH, residue at 105 °C, residue at 600 °C, total organic carbon TOC, sulfides) [23];
- -
- total cyanides: this method is designed for the extraction of soluble and insoluble cyanides [24];
- -
- 30 metals (i.e., Al, Ag, As, B, Be, Ca, Cd, Co, total Cr, Cr VI, Cu, Fe, Hg, K, Mg, Mn, Mo, Na, Ni, Pb, Sb, Se, Si, Sn, Ta, Te, Ti, V, Zn): inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to determine trace elements in solution [25];
- -
- 10 organic aromatic compounds, 23 chlorinated aliphatic compounds and 6 halogenated aliphatic compounds: among the most commonly used techniques for volatile organic analytes, purge-and-trap followed by GC-MS analysis was used [26];
- -
- 22 PAHs, 34 organochlorinated pesticides and 20 organophosphorous pesticides: direct injection of each sample followed by GC-MS analysis was involved for analyzing such compounds [27].
3. Results
3.1. Preliminary Analysis: Radioactivity Analysis
3.2. Chemical Analysis
3.2.1. Chemical and Physical Parameters
3.2.2. Inorganic Moiety
3.2.3. Organic Fraction: Volatile Organic Compounds (VOCs) and Polycyclic Aromatic Hydrocarbons (PAHs)
3.3. Cluster Analysis and Principal Component Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, M.; Song, W.; Buhain, J. Bioenergy and Biofuels: History, Status, and Perspective. Renew. Sustain. Energy Rev. 2015, 42, 712–725. [Google Scholar] [CrossRef]
- Renewable Energy Directive. EU Renewable Energy Directive 2009/28/EC. J. Ref. 2009, 50, 16–62. [Google Scholar]
- European Parliament. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. J. Eur. Union Belg. 2018, 20, 2. [Google Scholar]
- World Energy Council. World Energy Scenarios Composing Energy Futures to 2050; PSI: London, UK, 2013. [Google Scholar]
- Thomson, H.; Liddell, C. The Suitability of Wood Pellet Heating for Domestic Households: A Review of Literature. Renew. Sustain. Energy Rev. 2015, 42, 1362–1369. [Google Scholar] [CrossRef]
- Saidur, R.; Abdelaziz, E.A.; Demirbas, A.; Hossain, M.S.; Mekhilef, S. A Review on Biomass as a Fuel for Boilers. Renew. Sustain. Energy Rev. 2011, 15, 2262–2289. [Google Scholar] [CrossRef]
- Pantaleo, A.; Villarini, M.; Colantoni, A.; Carlini, M.; Santoro, F.; Rajabi Hamedani, S. Techno-Economic Modeling of Biomass Pellet Routes: Feasibility in Italy. Energies 2020, 13, 1636. [Google Scholar] [CrossRef] [Green Version]
- Newell, R.G.; Iler, S. The Global Energy Outlook; National Bureau of Economic Research: Cambridge, MA, USA, 2013. [Google Scholar]
- Zhang, Z.; Chau, P.Y.; Lai, H.K.; Wong, C.M. A Review of Effects of Particulate Matter-Associated Nickel and Vanadium Species on Cardiovascular and Respiratory Systems. Int. J. Environ. Health Res. 2009, 19, 175–185. [Google Scholar] [CrossRef]
- Laschi, A.; Marchi, E.; González-García, S. Environmental Performance of Wood Pellets’ Production through Life Cycle Analysis. Energy 2016, 103, 469–480. [Google Scholar] [CrossRef]
- Olsson, M.; Kjällstrand, J.; Petersson, G. Specific Chimney Emissions and Biofuel Characteristics of Softwood Pellets for Residential Heating in Sweden. Biomass Bioenergy 2003, 24, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Klepacka, A.M.; Florkowski, W.J. An opportunity for renewable energy: Wood pellet use by rural households. In Handbook of Climate Change Mitigation and Adaptation; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1087–1120. [Google Scholar]
- Scarlat, N.; Dallemand, J.-F.; Taylor, N.; Banja, M. Brief on Biomass for Energy in the European Union; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar]
- Bioenergy Europe. Statistical Report 2020. Pellets Rep. Available online: https://bioenergyeurope.org (accessed on 17 May 2023).
- Calabrese, M.; Quarantotto, M.; Cantaluppi, C.; Fasson, A.; Bogoni, P. Quality Characteristics and Radioactive Contamination of Wood Pellet Imported in Italy. Open J. Appl. Sci. 2015, 2015, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Toscano, G.; Duca, D.; Amato, A.; Pizzi, A. Emission from Realistic Utilization of Wood Pellet Stove. Energy 2014, 68, 644–650. [Google Scholar] [CrossRef]
- Basu, B.J.; Anandan, C.; Rajam, K.S. Study of the Mechanism of Degradation of Pyrene-Based Pressure Sensitive Paints. Sens. Actuators B 2003, 94, 257–266. [Google Scholar] [CrossRef]
- Dolnicar, S. Using Cluster Analysis for Market Segmentation-Typical Misconceptions, Established Methodological Weaknesses and Some Recommendations for Improvement. Australas. J. Mark. Res. 2003, 11, 5–12. [Google Scholar]
- UNI EN 14961-4:2011; Biocombustibili Solidi–Specifiche e Classificazione del Combustibile—Parte 4: Cippato di Legno per uso non Industriale. Available online: https://store.uni.com/uni-en-14961-4-2011 (accessed on 13 June 2023).
- EN ISO 17225-4:2014; Solid Biofuels—Fuel Specifications and Classes—Part 4: Graded Wood Chips. Available online: https://www.iso.org/standard/59459.html (accessed on 13 June 2023).
- UNE EN ISO 18135:2018; Solid Biofuels—Sampling. Available online: https://www.iso.org/standard/66481.html (accessed on 13 June 2023).
- EPA (U.S. Environmental Protection Agency). Method 8315a: Determination of Carbonyl Compounds by High Performance Liquid Chromatography (HPLC); U.S. Environmental Protection Agency: Washington, DC, USA, 1996. [Google Scholar]
- IRSA-CNR. Metodi analitici per i fanghi—Scheda n. 16 Cromo esavalente. Quad. Ist. Ric. Acque 1986, 64, 1–48. [Google Scholar]
- EPA Method 9013A. Available online: https://www.epa.gov/sites/default/files/2015-12/documents/9013a.pdf (accessed on 2 June 2023).
- Inductively Coupled Plasma-Atomic Emission Spectrometry. Available online: https://archive.epa.gov/epawaste/hazard/testmethods/web/pdf/method%206010c%2C%20revision%203%20-%202007.pdf (accessed on 2 June 2023).
- Method 8260C: Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry (GC/MS). Available online: https://19january2017snapshot.epa.gov/sites/production/files/2015-12/documents/8260c.pdf (accessed on 2 June 2023).
- Method 8260C: Semivolatile Organic Compounds by Gas Chromatography/Mass Spectrometry. Available online: https://archive.epa.gov/epa/sites/production/files/2015-12/documents/8270d.pdf (accessed on 2 June 2023).
- Manigrasso, M.; Protano, C.; Guerriero, E.; Vitali, M.; Avino, P. May SARS-CoV-2 diffusion be favored by alkaline aerosols and ammonia emissions? Atmosphere 2020, 11, 995. [Google Scholar] [CrossRef]
- UNI EN ISO 17225-1:2021; Biocombustibili Solidi—Specifiche e Classificazione del Combustibile—Parte 1: Requisiti Generali. Available online: https://store.uni.com/p/UNI1609904/uni-en-iso-17225-12021-313443/UNI1609904_EEN (accessed on 13 June 2023).
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Nickel: Human Health and Environmental Toxicology. Int. J. Environ. Res. Public Health 2020, 17, 679. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.R.; Newhook, R.; Poole, A. Styrene Production, Use, and Human Exposure. Crit. Rev. Toxicol. 1994, 24, S1–S10. [Google Scholar] [CrossRef]
- Marchetti, S.; Longhin, E.; Bengalli, R.; Avino, P.; Stabile, L.; Buonanno, G.; Colombo, A.; Camatini, M.; Mantecca, P. In vitro lung toxicity of indoor PM10 from a stove fueled with different biomasses. Sci. Total Environ. 2019, 649, 1422–1433. [Google Scholar] [CrossRef]
- UNE 164003:2022; Solid Biofuels. Fuel Specifications and Classes. Graded Olive Stones. Available online: https://www.en-standard.eu/une-164004-2022-solid-biofuels-fuel-specifications-and-classes-graded-fruit-shells/ (accessed on 13 June 2023).
- Komarnicki, G.J. Lead and Cadmium in Indoor Air and the Urban Environment. Environ. Pollut. 2005, 136, 47–61. [Google Scholar] [CrossRef]
- Win, K.M.; Persson, T.; Bales, C. Particles and Gaseous Emissions from Realistic Operation of Residential Wood Pellet Heating Systems. Atmos. Environ. 2012, 59, 320–327. [Google Scholar] [CrossRef]
- Wittmann, O. Die Nachträgliche Formaldehydabspaltung Bei Spanplatten. Eur. J. Wood Wood Prod. 1962, 20, 221–224. [Google Scholar] [CrossRef]
- Park, B.-D.; Jeong, H.-W. Hydrolytic Stability and Crystallinity of Cured Urea–Formaldehyde Resin Adhesives with Different Formaldehyde/Urea Mole Ratios. Int. J. Adhes. Adhes. 2011, 31, 524–529. [Google Scholar] [CrossRef]
- Lammi, S.; Barakat, A.; Mayer-Laigle, C.; Djenane, D.; Gontard, N.; Angellier-Coussy, H. Dry Fractionation of Olive Pomace as a Sustainable Process to Produce Fillers for Biocomposites. Powder Technol. 2018, 326, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Bulla, G.; Perbellini, L. Le Nuove Tecniche Di Verniciatura e Rischi per La Salute. G. Ital. Med. Lav. Ergon. 2011, 33, 257–263. [Google Scholar]
- Charretton, M.; Vincent, R. Occupational exposure to organic solvents during paint stripping and painting. In Advances in Environmental Control Technology: Health and Toxicology; Elsevier: Amsterdam, The Netherlands, 1997; pp. 251–305. [Google Scholar]
- Cavallaro, G.; Lazzara, G.; Milioto, S.; Parisi, F.; Sparacino, V. Thermal and Dynamic Mechanical Properties of Beeswax-Halloysite Nanocomposites for Consolidating Waterlogged Archaeological Woods. Polym. Degrad. Stab. 2015, 120, 220–225. [Google Scholar] [CrossRef]
- Kučerová, I. Methods to Measure the Penetration of Consolidant Solutions into ‘Dry’ Wood. J. Cult. Herit. 2012, 13, S191–S195. [Google Scholar] [CrossRef]
- Traistaru, A.T.; Timar, M.C.; Câmpean, M. Studies upon Penetration of Paraloid B72 into Poplar Wood by Cold Immersion Treatments. Bull. Transilv. Univ. Bras. II For. Wood Ind. Agric. Food Eng. 2011, 4, 81–88. [Google Scholar]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 7501, Styrene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/7501 (accessed on 28 May 2023).
- Vodicka, P.; Stetina, R.; Koskinen, M.; Soucek, P.; Vodickova, L.; Hlavác, P.; Kuricova, M.; Necasová, R.; Hemminki, K. New Aspects in the Biomonitoring of Occupational Exposure to Styrene. Int. Arch. Occup. Environ. Health 2002, 75, 75–85. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Grice, K.; Lu, H.; Atahan, P.; Asif, M.; Hallmann, C.; Greenwood, P.; Maslen, E.; Tulipani, S.; Williford, K.; Dodson, J. New Insights into the Origin of Perylene in Geological Samples. Geochim. Cosmochim. Acta 2009, 73, 6531–6543. [Google Scholar] [CrossRef]
- Greene, M. Perylene Pigments. In High Performance Pigments; Smith, H.M., Ed.; Wiley-VCH: Hoboken, NJ, USA, 2009; pp. 249–261. [Google Scholar]
- Keum, C.; Becker, D.; Archer, E.; Bock, H.; Kitzerow, H.; Gather, M.C.; Murawski, C. Organic Light-Emitting Diodes Based on a Columnar Liquid-Crystalline Perylene Emitter. Adv. Opt. Mater. 2020, 8, 2000414. [Google Scholar] [CrossRef]
- Council Directive. Council Directive 67/548/EEC of 27 June 1967 on the approximation of laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances. Off. J. Eur. Comm. 1967, 196, 234–256. [Google Scholar]
- Fluoranthene. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/9154 (accessed on 28 May 2023).
- Lucero, B.; Ceballos, P.A.; Muñoz-Quezada, M.T.; Reynaldos, C.; Saracini, C.; Baumert, B.O. Validity and Reliability of an Assessment Tool for the Screening of Neurotoxic Effects in Agricultural Workers in Chile. BioMed Res. Int. 2019, 2019, 7901760. [Google Scholar] [CrossRef] [Green Version]
- Avino, P.; Casciardi, S.; Fanizza, C.; Manigrasso, M. Deep investigation of Ultrafine particles in urban air. Aerosol Air Qual. Res. 2011, 11, 654–663. [Google Scholar] [CrossRef]
- Stabile, L.; Buonanno, G.; Avino, P.; Frattolillo, A.; Guerriero, E. Indoor exposure to particles emitted by biomass-burning heating systems and evaluation of dose and lung cancer risk received by population. Environ. Pollut. 2018, 235, 65–73. [Google Scholar] [CrossRef]
- Settimo, G.; Manigrasso, M.; Avino, P. Indoor air auality: A focus on the European legislation and state-of-the-art research in Italy. Atmosphere 2020, 11, 370. [Google Scholar] [CrossRef] [Green Version]
- Svedberg, U.; Samuelsson, J.; Melin, S. Hazardous off-gassing of carbon monoxide and oxygen depletion during ocean transportation of wood pellets. Ann. Occup. Hyg. 2008, 52, 259–266. [Google Scholar]
- Kuang, X.; Shankar, T.J.; Bi, X.T.; Sokhansanj, S.; Lim, C.J.; Melin, S. Characterization and kinetics study of off-gas emissions from stored wood pellets. Ann. Occup. Hyg. 2008, 52, 675–683. [Google Scholar]
- Mejía, G.A.I.; López, O.B.L.; Sierra, L. Biodegradation of poly (vinylalcohol-co-ethylene) with the fungus phanerochaete chrysosporium. Mater. Res. Innov. 2001, 4, 148–154. [Google Scholar] [CrossRef]
- Gauthier, S.; Grass, H.; Lory, M.; Krämer, T.; Thali, M.; Bartsch, C. Lethal Carbon Monoxide Poisoning in Wood Pellet Storerooms—Two Cases and a Review of the Literature. Ann. Occup. Hyg. 2012, 56, 755–763. [Google Scholar]
- Kennedy, I.M. The Health Effects of Combustion-Generated Aerosols. Proc. Combust. Inst. 2007, 31, 2757–2770. [Google Scholar] [CrossRef]
- Ara, A.; Usmani, J.A. Lead Toxicity: A Review. Interdiscip. Toxicol. 2015, 8, 55–64. [Google Scholar]
- Buxton, S.; Garman, E.; Heim, K.E.; Lyons-Darden, T.; Schlekat, C.E.; Taylor, M.D.; Oller, A.R. Concise Review of Nickel Human Health Toxicology and Ecotoxicology. Inorganics 2019, 7, 89. [Google Scholar] [CrossRef] [Green Version]
- Juichang, R.; Freedman, B.; Coles, C.; Zwicker, B.; Holzbecker, J.; Chatt, A. Vanadium contamination of lichens and tree foliage in the vicinity of three oil-fired power plants in Eastern Canada. J. Air Waste Manag. Assoc. 1995, 45, 461–464. [Google Scholar] [CrossRef] [Green Version]
- Galbreath, K.C.; Toman, D.L.; Zygarlicke, C.J.; Huggins, F.E.; Huffman, G.P.; Wong, J.L. Nickel speciation of residual oil fly ash and ambient particulate matter using x-ray absorption spectroscopy. J. Air Waste Manag. Assoc. 2000, 50, 1876–1886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, T.-B.; Zheng, Y.-M.; Lei, M.; Huang, Z.-C.; Wu, H.-T.; Chen, H.; Fan, K.-K.; Yu, K.; Wu, X.; Tian, Q.-Z. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China. Chemosphere 2005, 60, 542–551. [Google Scholar] [CrossRef]
- Thurston, G.D.; Ito, K.; Mar, T.; Christensen, W.F.; Eatough, D.J.; Henry, R.C.; Kim, E.; Laden, F.; Lall, R.; Larson, T.V.; et al. Workgroup report: Workshop on source apportionment of particulate matter health effects—Intercomparison of results and implications. Environ. Health Perspect. 2005, 113, 1768–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodin, M.A.; Liu, Y.; Neuberg, D.; Hauser, R.; Smith, T.J.; Christiani, D.C. Acute respiratory symptoms in workers exposed to vanadium-rich fuel-oil ash. Am. J. Ind. Med. 2000, 37, 353–363. [Google Scholar] [CrossRef]
- Zwolak, I.; Wnuk, E.; Świeca, M. Identification of potential artefacts in in vitro measurement of vanadium-induced reactive oxygen species (ROS) production. Int. J. Environ. Res. Public Health 2022, 19, 15214. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Formaldehyde, 2-Butoxyethanol and 1-tert-Butoxypropan-2-ol; IARC: Lyon, France, 2004; Volume 88, pp. 37–326. [Google Scholar]
- World Health Organization (WHO). Guidelines for Indoor Air Quality: Selected Pollutants; World Health Organization. Regional Office for Europe: København, Denmark, 2010; ISBN 92-890-0213-1. [Google Scholar]
- Salthammer, T. Formaldehyde Sources, Formaldehyde Concentrations and Air Exchange Rates in European Housings. Build. Environ. 2019, 150, 219–232. [Google Scholar] [CrossRef]
- Yavari, F.; van Thriel, C.; Nitsche, M.A.; Kuo, M.-F. Effect of Acute Exposure to Toluene on Cortical Excitability, Neuroplasticity, and Motor Learning in Healthy Humans. Arch. Toxicol. 2018, 92, 3149–3162. [Google Scholar] [CrossRef] [PubMed]
- Masiol, M.; Formenton, G.; Pasqualetto, A.; Pavoni, B. Seasonal Trends and Spatial Variations of PM10-Bounded Polycyclic Aromatic Hydrocarbons in Veneto Region, Northeast Italy. Atmos. Environ. 2013, 79, 811–821. [Google Scholar] [CrossRef] [Green Version]
- Directive 2004/107/EC of the European Parliament and of the Council of 15 December 2004 relating to arsenic, cadmium, mercury, nickel and polycyclic aromatic hydrocarbons in ambient air. Off. J. 2005, L23, 3–16.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandolfi, P.; Notardonato, I.; Passarella, S.; Sammartino, M.P.; Visco, G.; Ceci, P.; De Giorgi, L.; Stillittano, V.; Monci, D.; Avino, P. Characteristics of Commercial and Raw Pellets Available on the Italian Market: Study of Organic and Inorganic Fraction and Related Chemometric Approach. Int. J. Environ. Res. Public Health 2023, 20, 6559. https://doi.org/10.3390/ijerph20166559
Pandolfi P, Notardonato I, Passarella S, Sammartino MP, Visco G, Ceci P, De Giorgi L, Stillittano V, Monci D, Avino P. Characteristics of Commercial and Raw Pellets Available on the Italian Market: Study of Organic and Inorganic Fraction and Related Chemometric Approach. International Journal of Environmental Research and Public Health. 2023; 20(16):6559. https://doi.org/10.3390/ijerph20166559
Chicago/Turabian StylePandolfi, Pietro, Ivan Notardonato, Sergio Passarella, Maria Pia Sammartino, Giovanni Visco, Paolo Ceci, Loretta De Giorgi, Virgilio Stillittano, Domenico Monci, and Pasquale Avino. 2023. "Characteristics of Commercial and Raw Pellets Available on the Italian Market: Study of Organic and Inorganic Fraction and Related Chemometric Approach" International Journal of Environmental Research and Public Health 20, no. 16: 6559. https://doi.org/10.3390/ijerph20166559
APA StylePandolfi, P., Notardonato, I., Passarella, S., Sammartino, M. P., Visco, G., Ceci, P., De Giorgi, L., Stillittano, V., Monci, D., & Avino, P. (2023). Characteristics of Commercial and Raw Pellets Available on the Italian Market: Study of Organic and Inorganic Fraction and Related Chemometric Approach. International Journal of Environmental Research and Public Health, 20(16), 6559. https://doi.org/10.3390/ijerph20166559