Electrolyzed Hypochlorous Acid (HOCl) Aqueous Solution as Low-Impact and Eco-Friendly Agent for Floor Cleaning and Sanitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Area Description and Sampling Plan
2.2. Scrubbing Machine Integrated with HOCl Production System
2.3. Cleaning Test: Removal of Organic Dirt from Surface
2.4. Sanitization Test: Removal of Microbial Charge from Surface
2.5. Surface Damage Evaluation with SEM
2.6. LCA Methodology
- (1)
- Upstream processes: raw materials production for machine construction and packaging;
- (2)
- Core processes: supply chain and transportation of raw materials, production of electricity, and water consumption for semi-finished and finished machine assembling;
- (3)
- Downstream processes: machine use and maintenance, transportation to the experimental site, waste management, and machine end-of-life.
- the transport of cleaning operators involved, technical vests, and any PPE used during cleaning;
- the building and the area for machines construction;
- data quality.
3. Results
3.1. Cleaning Effectiveness
3.2. Microbial Charge Reduction Effectiveness
3.3. SEM Observation
3.4. LCA Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Landecker, H. Antimicrobials before Antibiotics: War, Peace, and Disinfectants. Palgrave Commun. 2019, 5, 45. [Google Scholar] [CrossRef]
- Acter, T.; Uddin, N.; Das, J.; Akhter, A.; Choudhury, T.R.; Kim, S. Evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) as Coronavirus Disease 2019 (COVID-19) Pandemic: A Global Health Emergency. Sci. Total Environ. 2020, 730, 138996. [Google Scholar] [CrossRef]
- Murray, A.K. The Novel Coronavirus COVID-19 Outbreak: Global Implications for Antimicrobial Resistance. Front. Microbiol. 2020, 11, 1020. [Google Scholar] [CrossRef]
- Rai, N.K.; Ashok, A.; Akondi, B.R. Consequences of Chemical Impact of Disinfectants: Safe Preventive Measures against COVID-19. Crit. Rev. Toxicol. 2020, 50, 513–520. [Google Scholar] [CrossRef]
- Abreu, A.C.; Tavares, R.R.; Borges, A.; Mergulhão, F.; Simões, M. Current and Emergent Strategies for Disinfection of Hospital Environments. J. Antimicrob. Chemother. 2013, 68, 2718–2732. [Google Scholar] [CrossRef]
- Atolani, O.; Baker, M.T.; Adeyemi, O.S.; Olanrewaju, I.R.; Hamid, A.A.; Ameen, O.M.; Oguntoye, S.O.; Usman, L.A. COVID-19: Critical Discussion on the Applications and Implications of Chemicals in Sanitizers and Disinfectants. EXCLI J. 2020, 19, 785–799. [Google Scholar]
- Bloomfield, S.F. Significance of Biocide Usage and Antimicrobial Resistance in Domiciliary Environments. J. Appl. Microbiol. 2002, 92, 144S–157S. [Google Scholar] [CrossRef]
- Getahun, H.; Smith, I.; Trivedi, K.; Paulin, S.; Balkhy, H.H. Tackling Antimicrobial Resistance in the COVID-19 Pandemic. Bull. World Health Organ. 2020, 98, 442–442A. [Google Scholar] [CrossRef]
- Li, D.; Sangion, A.; Li, L. Evaluating Consumer Exposure to Disinfecting Chemicals against Coronavirus Disease 2019 (COVID-19) and Associated Health Risks. Environ. Int. 2020, 145, 106108. [Google Scholar] [CrossRef]
- Rahim, H.; Tariq, R. Potential Spreading Risks of COVID-19 and Chemical-Based Disinfection Challenges to the Environment, Ecosystem and Human Health. Ann. Environ. Sci. Toxicol. 2020, 4, 55–57. [Google Scholar] [CrossRef]
- Samara, F.; Badran, R.; Dalibalta, S. Are Disinfectants for the Prevention and Control of COVID-19 Safe? Health Secur. 2020, 18, 496–498. [Google Scholar] [CrossRef]
- Chang, A.; Schnall, A.H.; Law, R.; Bronstein, A.C.; Marraffa, J.M.; Spiller, H.A.; Hays, H.L.; Funk, A.R.; Mercurio-Zappala, M.; Calello, D.P.; et al. Cleaning and Disinfectant Chemical Exposures and Temporal Associations with COVID-19—National Poison Data System, United States, 1 January 2020–31 March 2020. Morb. Mortal. Wkly. Rep. 2020, 69, 496–498. [Google Scholar] [CrossRef]
- Pradhan, D.; Biswasroy, P.; Kumar Naik, P.; Ghosh, G.; Rath, G. A Review of Current Interventions for COVID-19 Prevention. Arch. Med. Res. 2020, 51, 363–374. [Google Scholar] [CrossRef]
- Emmanuel, E.; Keck, G.; Blanchard, J.-M.; Vermande, P.; Perrodin, Y. Toxicological Effects of Disinfections Using Sodium Hypochlorite on Aquatic Organisms and Its Contribution to AOX Formation in Hospital Wastewater. Environ. Int. 2004, 30, 891–900. [Google Scholar] [CrossRef]
- Clausen, P.A.; Frederiksen, M.; Sejbæk, C.S.; Sørli, J.B.; Hougaard, K.S.; Frydendall, K.B.; Carøe, T.K.; Flachs, E.M.; Meyer, H.W.; Schlünssen, V.; et al. Chemicals Inhaled from Spray Cleaning and Disinfection Products and Their Respiratory Effects. A Comprehensive Review. Int. J. Hyg. Environ. Health 2020, 229, 113592. [Google Scholar] [CrossRef] [PubMed]
- Remondino, M.; Valdenassi, L. Different Uses of Ozone: Environmental and Corporate Sustainability. Literature Review and Case Study. Sustainability 2018, 10, 4783. [Google Scholar] [CrossRef]
- Fiessinger, F.; Richard, Y.; Montiel, A.; Musquere, P. Advantages and Disadvantages of Chemical Oxidation and Disinfection by Ozone and Chlorine Dioxide. Sci. Total Environ. 1981, 18, 245–261. [Google Scholar] [CrossRef] [PubMed]
- Poppendieck, D.; Hubbard, H.; Ward, M.; Weschler, C.; Corsi, R.L. Ozone Reactions with Indoor Materials during Building Disinfection. Atmos. Environ. 2007, 41, 3166–3176. [Google Scholar] [CrossRef]
- Fan, X. Gaseous ozone to preserve quality and enhance microbial safety of fresh produce: Recent developments and research needs. Compr. Rev. Food Sci. Food Saf. 2021, 20, 4993–5014. [Google Scholar] [CrossRef] [PubMed]
- Grignani, E.; Mansi, A.; Cabella, R.; Castellano, P.; Tirabasso, A.; Sisto, R.; Spagnoli, M.; Fabrizi, G.; Frigerio, F.; Tranfo, G. Safe and effective use of ozone as air and surface disinfectant in the conjuncture of COVID-19. Gases 2020, 1, 19–32. [Google Scholar] [CrossRef]
- Deshmukh, S.P.; Patil, S.M.; Mullani, S.B.; Delekar, S.D. Silver Nanoparticles as an Effective Disinfectant: A Review. Mater. Sci. Eng. C 2019, 97, 954–965. [Google Scholar] [CrossRef] [PubMed]
- Ferdous, Z.; Nemmar, A. Health Impact of Silver Nanoparticles: A Review of the Biodistribution and Toxicity Following Various Routes of Exposure. Int. J. Mol. Sci. 2020, 21, 2375. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, M.A.; Ullah, S.; Ahmad, I.; Qureshi, A.K.; Balkhair, K.S.; Rehman, M.A. Green Biocides, a Promising Technology: Current and Future Applications to Industry and Industrial Processes. J. Sci. Food Agric. 2014, 94, 388–403. [Google Scholar] [CrossRef]
- Anastas, P.T.; Kirchhoff, M.M. Origins, Current Status, and Future Challenges of Green Chemistry. Acc. Chem. Res. 2002, 35, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Rahman, S.M.E.; Ding, T.; Oh, D.-H. Effectiveness of Low Concentration Electrolyzed Water to Inactivate Foodborne Pathogens under Different Environmental Conditions. Int. J. Food Microbiol. 2010, 139, 147–153. [Google Scholar] [CrossRef]
- Takeda, Y.; Matsuda, S.; Jamsransuren, D.; Ogawa, H. Comparison of the SARS-CoV-2-Inactivating Activities of the Differently Manufactured Hypochlorous Acid Water Products with Various PH. J. Water Health 2021, 19, 448–456. [Google Scholar] [CrossRef]
- Farah, R.I.; Al-Haj Ali, S.N. Electrolyzed Water Generated On-Site as a Promising Disinfectant in the Dental Office During the COVID-19 Pandemic. Front. Public Health 2021, 9, 629142. [Google Scholar] [CrossRef]
- Thorn, R.M.S.; Lee, S.W.H.; Robinson, G.M.; Greenman, J.; Reynolds, D.M. Electrochemically Activated Solutions: Evidence for Antimicrobial Efficacy and Applications in Healthcare Environments. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 641–653. [Google Scholar] [CrossRef]
- Giarratana, N.; Rajan, B.; Kamala, K.; Mendenhall, M.; Reiner, G. A Sprayable Acid-Oxidizing Solution Containing Hypochlorous Acid (AOS2020) Efficiently and Safely Inactivates SARS-Cov-2: A New Potential Solution for Upper Respiratory Tract Hygiene. Eur. Arch. Oto-Rhino-Laryngol. 2021, 278, 3099–3103. [Google Scholar] [CrossRef] [PubMed]
- Gold, M.H.; Andriessen, A.; Bhatia, A.C.; Bitter Jr, P.; Chilukuri, S.; Cohen, J.L.; Robb, C.W. Topical Stabilized Hypochlorous Acid: The Future Gold Standard for Wound Care and Scar Management in Dermatologic and Plastic Surgery Procedures. J. Cosmet. Dermatol. 2020, 19, 270–277. [Google Scholar] [CrossRef]
- Sorroche, M.G.; López, I.R.; García-Delpech, S.; Del Castillo, J.B. Hypochlorous Acid as an Antiseptic in the Care of Patients with Suspected COVID-19 Infection. Arch. Soc. Española Oftalmol. Engl. Ed. 2022, 97, 77–80. [Google Scholar]
- Stroman, D.W.; Mintun, K.; Epstein, A.B.; Brimer, C.M.; Patel, C.R.; Branch, J.D.; Najafi-Tagol, K. Reduction in Bacterial Load Using Hypochlorous Acid Hygiene Solution on Ocular Skin. Clin. Ophthalmol. 2017, 11, 707. [Google Scholar] [CrossRef] [PubMed]
- Yahagi, N.; Kono, M.; Kitahara, M.; Ohmura, A.; Sumita, O.; Hashimoto, T.; Hori, K.; Ning-Juan, C.; Woodson, P.; Kubota, S.; et al. Effect of Electrolyzed Water on Wound Healing. Artif. Organs 2000, 24, 984–987. [Google Scholar] [CrossRef] [PubMed]
- Yildiz, I.; Yilmaz, O.; Tileklioglu, E.; Sakarya, S.; Ertabaklar, H. Stabilised Hypochlorous Acid: A New Therapeutic Strategy against Dangerous Parasitic Eye Infection Agent Acanthamoeba Spp. J. Environ. Prot. Ecol. 2018, 19, 1397–1404. [Google Scholar]
- Chen, Y.; Xie, H.; Tang, J.; Lin, M.; Hung, Y.-C.; Lin, H. Effects of Acidic Electrolyzed Water Treatment on Storability, Quality Attributes and Nutritive Properties of Longan Fruit during Storage. Food Chem. 2020, 320, 126641. [Google Scholar] [CrossRef]
- Huang, Y.-R.; Hung, Y.-C.; Hsu, S.-Y.; Huang, Y.-W.; Hwang, D.-F. Application of Electrolyzed Water in the Food Industry. Food Control. 2008, 19, 329–345. [Google Scholar] [CrossRef]
- Nguyen, K.; Bui, D.; Hashemi, M.; Hocking, D.M.; Mendis, P.; Strugnell, R.A.; Dharmage, S.C. The Potential Use of Hypochlorous Acid and a Smart Prefabricated Sanitising Chamber to Reduce Occupation-Related COVID-19 Exposure. Risk Manag. Healthc. Policy 2021, 14, 247–252. [Google Scholar] [CrossRef]
- Scarano, A.; Inchingolo, F.; Lorusso, F. Environmental Disinfection of a Dental Clinic during the COVID-19 Pandemic: A Narrative Insight. BioMed Res. Int. 2020, 2020, 8896812. [Google Scholar] [CrossRef]
- Yan, P.; Daliri, E.B.-M.; Oh, D.-H. New Clinical Applications of Electrolyzed Water: A Review. Microorganisms 2021, 9, 136. [Google Scholar] [CrossRef]
- Kusumaningrum, H.D.; Riboldi, G.; Hazeleger, W.C.; Beumer, R.R. Survival of Foodborne Pathogens on Stainless Steel Surfaces and Cross-Contamination to Foods. Int. J. Food Microbiol. 2003, 85, 227–236. [Google Scholar] [CrossRef]
- Munoz-Price, L.S.; Birnbach, D.J.; Lubarsky, D.A.; Arheart, K.L.; Fajardo-Aquino, Y.; Rosalsky, M.; Cleary, T.; DePascale, D.; Coro, G.; Namias, N. Decreasing Operating Room Environmental Pathogen Contamination through Improved Cleaning Practice. Infect. Control Hosp. Epidemiol. 2012, 33, 897–904. [Google Scholar] [CrossRef]
- Otter, J.A.; Donskey, C.; Yezli, S.; Douthwaite, S.; Goldenberg, S.D.; Weber, D.J. Transmission of SARS and MERS Coronaviruses and Influenza Virus in Healthcare Settings: The Possible Role of Dry Surface Contamination. J. Hosp. Infect. 2016, 92, 235–250. [Google Scholar] [CrossRef]
- Russotto, V.; Cortegiani, A.; Raineri, S.M.; Giarratano, A. Bacterial Contamination of Inanimate Surfaces and Equipment in the Intensive Care Unit. J. Intensive Care 2015, 3, 54. [Google Scholar] [CrossRef]
- Foschino, R.; Picozzi, C.; Giorgi, E.; Bontempi, A. Celanability of Floor Surface Materials in Terms of Removal of Microorganisms at a Low Contamination Level. Ann. Microbiol. 2003, 53, 253–265. [Google Scholar]
- Tembo, G.M.; Chaggar, G.K.; Li, X.; Teska, P.J.; Oliver, H.F. Evaluation of automated floor cleaning, disinfection, and application methods against Staphylococcus aureus. Am. J. Infect. Control 2023, 51, 380–387. [Google Scholar] [CrossRef] [PubMed]
- Rashid, T.; Vonville, H.; Hasan, I.; Garey, K.W. Mechanisms for Floor Surfaces or Environmental Ground Contamination to Cause Human Infection: A Systematic Review. Epidemiol. Infect. 2017, 145, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, M.; Hamilton-Stewart, P.; Dixon, R.A. Contaminated Operating Room Boots: The Potential for Infection. Am. J. Infect. Control 2002, 30, 179–183. [Google Scholar] [CrossRef]
- Anderson, R.L.; Mackel, D.C.; Stoler, B.S.; Mallison, G.F. Carpeting in Hospitals: An Epidemiological Evaluation. J. Clin. Microbiol. 1982, 15, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Buttner, M.P.; Cruz-Perez, P.; Stetzenbach, L.D.; Garrett, P.J.; Luedtke, A.E. Measurement of Airborne Fungal Spore Dispersal from Three Types of Flooring Materials. Aerobiologia 2002, 18, 1–11. [Google Scholar] [CrossRef]
- Whyte, W.; Whyte, W.M.; Blake, S.; Green, G. Dispersion of Microbes from Floors When Walking in Ventilated Rooms. Int. J. Vent. 2013, 12, 271–284. [Google Scholar] [CrossRef]
- EU Ecolabel—Home. Available online: https://environment.ec.europa.eu/topics/circular-economy/eu-ecolabel-home_en (accessed on 2 June 2023).
- Finkbeiner, M. From the 40s to the 70s—The Future of LCA in the ISO 14000 Family. Int. J. Life Cycle Assess. 2013, 18, 1–4. [Google Scholar] [CrossRef]
- Tamburini, E.; Bernardi, T.; Castaldelli, G.; Tumiatti, G.; Ferro, S. Green Electrochemical Approach for Delignification of Wheat Straw in Second-Generation Bioethanol Production. Energy Environ. Sci. 2011, 4, 551–557. [Google Scholar] [CrossRef]
- Deborde, M.; von Gunten, U. Reactions of Chlorine with Inorganic and Organic Compounds during Water Treatment—Kinetics and Mechanisms: A Critical Review. Water Res. 2008, 42, 13–51. [Google Scholar] [CrossRef]
- Palin, A.T. The Determination of Free and Combined Chlorine in Water by the Use of Diethyl-p-Phenylene Diamine. J. Am. Water Work. Assoc. 1957, 49, 873–880. [Google Scholar] [CrossRef]
- Brenner, A.J.; Harris, E.D. A Quantitative Test for Copper Using Bicinchoninic Acid. Anal. Biochem. 1995, 226, 80–84. [Google Scholar] [CrossRef]
- Kalogerakis, N.; Paschali, D.; Lekaditis, V.; Pantidou, A.; Eleftheriadis, K.; Lazaridis, M. Indoor Air Quality—Bioaerosol Measurements in Domestic and Office Premises. J. Aerosol Sci. 2005, 36, 751–761. [Google Scholar] [CrossRef]
- Fontana, R.; Marzola, M.; Buratto, M.; Trioschi, G.; Caproni, A.; Nordi, C.; Buffone, C.; Bandera, B.; Vogli, L.; Marconi, P. Analysis of Civil Environments Cleaning Services—Microbiological and LCA Analysis after Traditional and Sustainable Procedures. Sustainability 2023, 15, 696. [Google Scholar] [CrossRef]
- Marín, A.; Tudela, J.A.; Garrido, Y.; Albolafio, S.; Hernández, N.; Andújar, S.; Allende, A.; Gil, M.I. Chlorinated Wash Water and PH Regulators Affect Chlorine Gas Emission and Disinfection By-Products. Innov. Food Sci. Emerg. Technol. 2020, 66, 102533. [Google Scholar] [CrossRef]
- Block, M.S.; Rowan, B.G. Hypochlorous Acid: A Review. J. Oral Maxillofac. Surg. 2020, 78, 1461–1466. [Google Scholar] [CrossRef]
Parameter | Machine Setting |
---|---|
Washing brushes push (kg) | 70 |
Speed rate (km/h) | 3 |
Flow rate (L/min) | 0.9 |
Working capacity (m2/h) | 2250 |
EW consumption (L/100 m2) | 2.4 |
Specific pressure (g/cm2) | 37 |
Impact Categories | Unit |
---|---|
Ozone depletion potential (ODP) | kg CFC-11 eq. |
Photochemical ozone creation potential (POCP) | kg ethylene eq. |
Abiotic resources depletion potential (ARDP) | kg Sb eq. |
Human toxicity potential (HTP) | kg 1,4-DCB eq. |
Global warming potential (GWP) | kg CO2 eq. |
Ecotoxicity potential (ETP) | kg 1,4-DCB eq. |
Acidification potential (AP) | kg SO2 eq. |
Eutrophication potential (EP) | kg PO43− eq. |
Quartz Concrete | Ardwood Floor | |||
---|---|---|---|---|
Element | Untreated | Treated | Untreated | Treated |
C | 17.84 ± 0.19 | 15.81 ± 0.16 | 56.70 ± 0.08 | 56.42 ± 0.07 |
O | 43.51 ± 0.11 | 43.92 ± 0.10 | 26.61 ± 0.07 | 26.56 ± 0.06 |
Na | 0.70 ± 0.01 | 0.77 ± 0.01 | - | - |
Mg | 1.63 ± 0.01 | 1.63 ± 0.01 | 0.04 ± 0.00 | 0.04 ± 0.00 |
Al | 6.19 ± 0.02 | 6.61 ± 0.02 | 0.61 ± 0.00 | 0.62 ± 0.00 |
Si | 17.76 ± 0.05 | 19.13 ± 0.04 | 1.15 ± 0.00 | 1.16 ± 0.00 |
P | 0.87 ± 0.01 | 0.77 ± 0.01 | - | |
S | 0.25 ± 0.00 | 0.28 ± 0.00 | 1.40 ± 0.00 | 1.42 ± 0.00 |
Cl | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.06 ± 0.00 |
K | 1.85 ± 0.01 | 1.93 ± 0.01 | 0.07 ± 0.00 | 0.07 ± 0.00 |
Ca | 4.55 ± 0.01 | 4.22 ± 0.01 | 2.34 ± 0.01 | 2.43 ± 0.01 |
Ti | 0.37 ± 0.00 | 0.39 ± 0.00 | 4.11 ± 0.01 | 4.24 ± 0.01 |
Mn | 0.12 ± 0.00 | 0.12 ± 0.00 | - | - |
Fe | 4.04 ± 0.01 | 4.08 ± 0.01 | - | - |
Zn | 0.18 ± 0.01 | 0.15 ± 0.01 | - | - |
Sr | 0.07 ± 0.02 | 0.07 ± 0.02 | 0.11 ± 0.01 | 0.11 ± 0.01 |
Ba | - | - | 6.80 ± 0.02 | 6.92 ± 0.02 |
Total | 100 | 100 | 100 | 100 |
Impact Categories | HOCl-Based Scrubbing Machine | Detergent-Based Scrubbing Machine | Unit |
---|---|---|---|
HTP | 0.19 | 0.12 | g 1,4-DCB eq./1 m2 |
GWP | 1.37 | 0.96 | g CO2 eq./1 m2 |
ETP | 0.068 | 0.053 | g 1,4-DCB eq./1 m2 |
Process | Phase | HOCl-Based Scrubbing Machine (gCO2 eq./m2) | Detergent-Based Scrubbing Machine (gCO2 eq./m2) |
---|---|---|---|
Upstream | Raw materials production | 0.42 | 0.34 |
Core | Supply chain and transportation of raw materials | 0.03 | 0.03 |
Electricity and water consumption for machine assembling | 0.02 | 0.02 | |
Downstream | Use—energy consumption | 0.37 | 0.31 |
Use—water consumption | 0.01 | 0.01 | |
Use—detergent consumption | 0.00 | 0.48 | |
Transportation to the experimental area | 0.00 | 0.00 | |
Machine maintenance | 0.08 | 0.08 | |
Machine end-of-life | 0.01 | 0.01 | |
Waste management | 0.03 | 0.09 | |
TOTAL | 0.96 | 1.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gessi, A.; Formaglio, P.; Semeraro, B.; Summa, D.; Tamisari, E.; Tamburini, E. Electrolyzed Hypochlorous Acid (HOCl) Aqueous Solution as Low-Impact and Eco-Friendly Agent for Floor Cleaning and Sanitation. Int. J. Environ. Res. Public Health 2023, 20, 6712. https://doi.org/10.3390/ijerph20186712
Gessi A, Formaglio P, Semeraro B, Summa D, Tamisari E, Tamburini E. Electrolyzed Hypochlorous Acid (HOCl) Aqueous Solution as Low-Impact and Eco-Friendly Agent for Floor Cleaning and Sanitation. International Journal of Environmental Research and Public Health. 2023; 20(18):6712. https://doi.org/10.3390/ijerph20186712
Chicago/Turabian StyleGessi, Alessandro, Paolo Formaglio, Bruno Semeraro, Daniela Summa, Elena Tamisari, and Elena Tamburini. 2023. "Electrolyzed Hypochlorous Acid (HOCl) Aqueous Solution as Low-Impact and Eco-Friendly Agent for Floor Cleaning and Sanitation" International Journal of Environmental Research and Public Health 20, no. 18: 6712. https://doi.org/10.3390/ijerph20186712
APA StyleGessi, A., Formaglio, P., Semeraro, B., Summa, D., Tamisari, E., & Tamburini, E. (2023). Electrolyzed Hypochlorous Acid (HOCl) Aqueous Solution as Low-Impact and Eco-Friendly Agent for Floor Cleaning and Sanitation. International Journal of Environmental Research and Public Health, 20(18), 6712. https://doi.org/10.3390/ijerph20186712