Telerehabilitation in Low-Resource Settings to Improve Postural Balance in Older Adults: A Non-Inferiority Randomised Controlled Clinical Trial Protocol
Abstract
:1. Background
2. Method
2.1. Design
2.2. Study Setting
2.3. Sample Size
2.4. Eligibility Criteria
2.5. Interventions
2.6. Outcomes
2.6.1. Primary Outcome
2.6.2. Secondary Outcome
2.6.3. Clinical Measurements Outcome
2.7. Recruitment
2.8. Allocation
2.9. Management
2.10. Data Collection
2.11. Data Analysis
2.12. Data Monitoring
2.13. Patient and Public Involvement
2.14. Ethics
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montero-Odasso, M.M.; Kamkar, N.; Pieruccini-Faria, F.; Osman, A.; Sarquis-Adamson, Y.; Close, J.; Hogan, D.B.; Hunter, S.W.; Kenny, R.A.; Lipsitz, L.A.; et al. Evaluation of Clinical Practice Guidelines on Fall Prevention and Management for Older Adults: A Systematic Review. JAMA Netw. Open 2021, 4, e213891. [Google Scholar] [CrossRef] [PubMed]
- Chittrakul, J.; Siviroj, P.; Sungkarat, S.; Sapbamrer, R. Multi-System Physical Exercise Intervention for Fall Prevention and Quality of Life in Pre-Frail Older Adults: A Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, 3102. [Google Scholar] [CrossRef] [PubMed]
- Sen, E.I.; Eyigor, S.; Yagli, M.D.; Ozcete, Z.A.; Aydin, T.; Kesiktas, F.N.; Aydin, F.Y.; Vural, M.; Sahin, N.; Karan, A. Effect of Home-Based Exercise Program on Physical Function and Balance in Older Adults with Sarcopenia: A Multicenter Randomized Controlled Study. J. Aging Phys. Act. 2021, 29, 1010–1017. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, H.; Jehu, D.A.; Daneshjoo, A.; Shakoor, E.; Razeghi, M.; Amani, A.; Hakim, M.N.; Yusof, A. Effects of 8 Weeks of Balance Training, Virtual Reality Training, and Combined Exercise on Lower Limb Muscle Strength, Balance, and Functional Mobility Among Older Men: A Randomized Controlled Trial. Sports Health 2021, 13, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Villalobos, P.; Izquierdo, C.; Guzmán, R.; Gálvez, M.J.; Santander, S. Defining ‘older people’in Chile: Challenges in planning policies for ageing populations. Health Policy Plan. 2021, 35, 1347–1353. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Babarro, A.; Arbillaga-Etxarri, A.; Gutiérrez-Santamaría, B.; Coca, A. Physical Activity Change during COVID-19 Confinement. Int. J. Environ. Res. Public Health 2020, 17, 6878. [Google Scholar] [CrossRef]
- Robinson, E.; Boyland, E.; Chisholm, A.; Harrold, J.; Maloney, N.G.; Marty, L.; Mead, B.R.; Noonan, R.; Hardman, C.A. Obesity, eating behavior and physical activity during COVID-19 lockdown: A study of UK adults. Appetite 2021, 156, 104853. [Google Scholar] [CrossRef]
- Borges-Machado, F.; Silva, N.; Farinatti, P.; Poton, R. Effectiveness of multicomponent exercise interventions in older adults with dementia: A Meta-Analysis. Gerontologist 2021, 61, e449–e462. [Google Scholar] [CrossRef]
- Buyukavci, R.; Akturk, S.; Evren, B.; Ersoy, Y. Impacts of combined osteopenia/osteoporosis and sarcopenia on balance and quality of life in older adults. North. Clin. Istanb. 2020, 7, 585–590. [Google Scholar]
- Kato, T.; Ikezoe, T.; Tabara, Y.; Matsuda, F. Differences in lower limb muscle strength and balance ability between sarcopenia stages depend on sex in community-dwelling older adults. Aging Clin. Exp. Res. 2022, 34, 527–534. [Google Scholar] [CrossRef]
- Escriche-Escuder, A.; Fuentes-Abolafio, J.; Roldán-Jiménez, C.; Cuesta-Vargas, A. Effects of exercise on muscle mass, strength, and physical performance in older adults with sarcopenia: A systematic review and meta-analysis according to the EWGSOP criteria. Exp. Gerontol. 2021, 151, 111420. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.J.; Wang, Z.Y.; Gao, H.E.; Zhou, X.F.; Li, F.H. Impact of high-intensity interval training on cardiorespiratory fitness, body composition, physical fitness, and metabolic parameters in older adults: A meta-analysis of randomized controlled trials. Exp. Gerontol. 2021, 150, 111345. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Gómez, D.; Del Pozo-Cruz, J.; Noetel, M.; Álvarez-Barbosa, F.; Alfonso-Rosa, R.M.; Del Pozo Cruz, B. Optimal dose and type of exercise to improve cognitive function in older adults: A systematic review and bayesian model-based network meta-analysis of RCTs. Ageing Res. Rev. 2022, 76, 101591. [Google Scholar] [CrossRef] [PubMed]
- Gatica, V.; Elgueta, E.; Vidal, C.; Cantín, M.; Fuentealba, J. Impacto del Entrenamiento del Balance a través de Realidad Virtual en una Población de Adultos Mayores. Int. J. Morphol. 2010, 28, 303–308. [Google Scholar] [CrossRef]
- Gatica-Rojas, V.; Cartes-Velásquez, R.; Salgado-Méndez, R.; Castro-Ramírez, R. Correlation between centre of pressure and functional balance tests in nonfallers elderly practitioners of Tai Chi Chuan. J. Phys. Ther. Sci. 2016, 28, 2350–2352. [Google Scholar] [CrossRef]
- Gatica-Rojas, V.; Cartes-Velásquez, R.; Albornoz-Verdugo, M.E.; Soto-Poblete, A.; Monteiro-Junior, R.S.; Elgueta-Cancino, E. Effects of a Nintendo Wii Exercise program versus Tai Chi Chuan on standing balance in older adults: A preliminary study. J. Phys. Ther. Sci. 2019, 31, 1–4. [Google Scholar] [CrossRef]
- Harris, D.M.; Rantalainen, T.; Muthalib, M.; Johnson, L.; Teo, W.-P. Exergaming as a viable therapeutic tool to improve static and dynamic balance among older adults and people with idiopathic Parkinson’s disease: A systematic review and meta-analysis. Front. Aging Neurosci. 2015, 7, 167. [Google Scholar] [CrossRef]
- Nieman, D.C.; Wentz, L.M. The compelling link between physical activity and the bodies defense system. J. Sport Health Sci. 2019, 8, 201–217. [Google Scholar] [CrossRef]
- Amatriain-Fernández, S.; Gronwald, T.; Murillo-Rodríguez, E.; Imperatori, C.; Solano, A.F.; Latini, A.; Budde, H. Physical exercise potencials against viral disease like Covid-19 in the elderly. Front. Med. 2020, 7, 379. [Google Scholar] [CrossRef]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Chase, J.D.; Otmanowski, J.; Rowland, S.; Cooper, P.S. A systematic review and meta-analysis of interventions to reduce sedentary behavior among older adults. Transl. Behav. Med. 2020, 10, 1078–1085. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, F.V.; Gavin, J.P.; Wainwright, T.; McConnell, A. The effects of 8 weeks of inspiratory muscle training on the balance of healthy older adults: A randomized, double-blind, placebo-controlled study. Physiol. Rep. 2019, 7, e14076. [Google Scholar] [CrossRef]
- Afridi, A.; Rathore, F.A.; Nazir, S.N.B. Wii Fit for Balance Training in Elderly: A Systematic Review. J. Coll. Physicians Surg. Pak. 2021, 30, 559–566. [Google Scholar] [PubMed]
- Zhu, S.; Sui, Y.; Shen, Y.; Zhu, Y.; Ali, N.; Guo, C.; Wang, T. Effects of Virtual Reality Intervention on Cognition and Motor Function in Older Adults with Mild Cognitive Impairment or Dementia: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2021, 13, 586999. [Google Scholar] [CrossRef] [PubMed]
- Truijen, S.; Abdullahi, A.; Bijsterbosch, D.; van Zoest, E.; Conijn, M.; Wang, Y.; Struyf, N.; Saeys, W. Effect of home-based virtual reality training and telerehabilitation on balance in individuals with Parkinson disease, multiple sclerosis, and stroke: A systematic review and meta-analysis. Neurol. Sci. 2022, 43, 2995–3006. [Google Scholar] [CrossRef] [PubMed]
- Iosa, M.; Verrelli, C.M.; Gentile, A.E.; Ruggieri, M.; Polizzi, A. Gaming Technology for Pediatric Neurorehabilitation: A Systematic Review. Front. Pediatr. 2022, 10, 775356. [Google Scholar] [CrossRef] [PubMed]
- Mugisha, S.; Job, M.; Zoppi, M.; Testa, M.; Molfino, R. Computer-Mediated Therapies for Stroke Rehabilitation: A Systematic Review and Meta-Analysis. J. Stroke Cerebrovasc. Dis. 2022, 31, 106454. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, L.; Lin, C.; Zhu, S.; Yao, L.; Fan, H.; Gong, J.; Yan, X.; Wang, T. Effects of Virtual Reality-Based Intervention on Cognition, Motor Function, Mood, and Activities of Daily Living in Patients with Chronic Stroke: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Aging Neurosci. 2021, 13, 766525. [Google Scholar] [CrossRef]
- Novo, A.; Fonsêca, J.; Barroso, B.; Guimarães, M.; Louro, A.; Fernandes, H.; Lopes, R.P.; Leitão, P. Virtual Reality Rehabilitation’s Impact on Negative Symptoms and Psychosocial Rehabilitation in Schizophrenia Spectrum Disorder: A Systematic Review. Healthcare 2021, 9, 1429. [Google Scholar] [CrossRef]
- Zhang, Q.; Fu, Y.; Lu, Y.; Zhang, Y.; Huang, Q.; Yang, Y.; Zhang, K.; Li, M. Impact of Virtual Reality-Based Therapies on Cognition and Mental Health of Stroke Patients: Systematic Review and Meta-analysis. J. Med. Internet Res. 2021, 23, e31007. [Google Scholar] [CrossRef] [PubMed]
- Gazendam, A.; Zhu, M.; Chang, Y.; Phillips, S.; Bhandari, M. Virtual reality rehabilitation following total knee arthroplasty: A systematic review and meta-analysis of randomized controlled trials. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 2548–2555. [Google Scholar] [CrossRef]
- Falconbridge, M.; Falconbridge, P.; Badcock, D.R. Controlled Rotation of Human Observers in a Virtual Reality Environment. J. Vis. Exp. 2022, 182. [Google Scholar] [CrossRef]
- Rosero-Herrera, J.D.; Acuña-Bravo, W. A lower limb rehabilitation platform with mirror therapy, electrical stimulation and virtual reality for people with limited dorsiflexion movement. HardwareX 2022, 11, e00285. [Google Scholar] [CrossRef] [PubMed]
- Hocking, D.R.; Ardalan, A.; Abu-Rayya, H.M.; Farhat, H.; Andoni, A.; Lenroot, R.; Kachnowski, S. Feasibility of a virtual reality-based exercise intervention and low-cost motion tracking method for estimation of motor proficiency in youth with autism spectrum disorder. J. Neuroeng. Rehabil. 2022, 19, 1. [Google Scholar] [CrossRef]
- Saeedi, S.; Ghazisaeedi, M.; Rezayi, S. Applying Game-Based Approaches for Physical Rehabilitation of Poststroke Patients: A Systematic Review. J. Healthc. Eng. 2021, 2021, 9928509. [Google Scholar] [CrossRef]
- Soares, V.N.; Yoshida, H.M.; Magna, T.S.; Sampaio, R.A.C.; Fernandes, P.T. Comparison of exergames versus conventional exercises on the cognitive skills of older adults: A systematic review with meta-analysis. Arch. Gerontol. Geriatr. 2021, 97, 104485. [Google Scholar] [CrossRef] [PubMed]
- Stander, J.; du Preez, J.C.; Kritzinger, C.; Obermeyer, N.M.; Struwig, S.; van Wyk, N.; Zaayman, J.; Burger, M. Effect of virtual reality therapy, combined with physiotherapy for improving motor proficiency in individuals with Down syndrome: A systematic review. S. Afr. J. Physiother. 2021, 77, 1516. [Google Scholar] [CrossRef]
- Montoro-Cárdenas, D.; Cortés-Pérez, I.; Zagalaz-Anula, N.; Osuna-Pérez, M.C.; Obrero-Gaitán, E.; Lomas-Vega, R. Nintendo Wii Balance Board therapy for postural control in children with cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child. Neurol. 2021, 63, 1262–1275. [Google Scholar] [CrossRef]
- Chan, A.W.; Tetzlaff, J.M.; Altman, D.G.; Laupacis, A.; Gøtzsche, P.C.; Krleža-Jerić, K.; Hróbjartsson, A.; Mann, H.; Dickersin, K.; Berlin, J.A.; et al. SPIRIT 2013 statement: Defining standard protocol items for clinical trials. Ann. Intern. Med. 2013, 158, 200–207. [Google Scholar] [CrossRef]
- Duarte, M.; Freitas, S.M. Revision of posturography based on force plate for balance evaluation. Rev. Bras. Fisioter. 2010, 14, 183–192. [Google Scholar] [CrossRef]
- Kenny, R.P.W.; Atkinson, G.; Eaves, D.L.; Martin, D.; Burn, N.; Dixon, J. The effects of textured materials on static balance in healthy young and older adults: A systematic review with meta-analysis. Gait Posture 2019, 71, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Ioffe, M.E.; Ustinova, K.I.; Chernikova, L.A.; Kulikov, M.A. Supervised learning of postural tasks in patients with poststroke hemiparesis, Parkinson’s disease or cerebellar ataxia. Exp. Brain Res. 2006, 168, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Rocchi, L.; Chiari, L.; Cappello, A.; Horak, F. Identification of distinct characteristics of postural sway in Parkinson’s disease: A feature selection procedure based on principal component analysis. Neurosci. Lett. 2006, 394, 140–145. [Google Scholar] [CrossRef]
- Donker, S.F.; Ledebt, A.; Roerdink, M.; Savelsbergh, G.J.P.; Beek, P.J. Children with cerebral palsy exhibit greater and more regular postural sway than typically developing children. Exp. Brain Res. 2008, 184, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Cherng, R.J.; Su, F.C.; Chen, J.J.; Kuan, T.S. Performance of static standing balance in children with spastic diplegic cerebral palsy under altered sensory environments. Am. J. Phys. Med. Rehabil. 2007, 78, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Gatica, V.F.; Irene Velásquez, S.; Méndez, G.A.; Guzmán, E.E.; Manterola, C.G. Differences in standing balance in patients with cerebral palsy and typically developing children. Biomedica 2014, 34, 102–109. [Google Scholar] [CrossRef]
- Gatica-Rojas, V.; Cartes-Velásquez, R.; Méndez-Rebolledo, G.; Olave-Godoy, F.; Villalobos-Rebolledo, D. Change in functional balance after an exercise program with Nintendo Wii in Latino patients with cerebral palsy: A case series. J. Phys. Ther. Sci. 2016, 28, 2414–2417. [Google Scholar] [CrossRef]
- Gatica-Rojas, V.; Cartes-Velásquez, R.; Guzmán-Muñoz, E.; Méndez-Rebolledo, G.; Soto-Poblete, A.; Pacheco-Espinoza, A.C.; Amigo-Mendoza, C.; Albornoz-Verdugo, M.E.; Elgueta-Cancino, E. Effectiveness of a Nintendo Wii balance board exercise programme on standing balance of children with cerebral palsy: A randomised clinical trial protocol. Contemp. Clin. Trials Commun. 2017, 6, 17–21. [Google Scholar] [CrossRef]
- Marques-Sule, E.; Arnal-Gómez, A.; Buitrago-Jiménez, G.; Suso-Martí, L.; Cuenca-Martínez, F.; Espí-López, G.V. Effectiveness of Nintendo Wii and Physical Therapy in Functionality, Balance, and Daily Activities in Chronic Stroke Patients. J. Am. Med. Dir. Assoc. 2021, 22, 1073–1080. [Google Scholar] [CrossRef]
- Omaña, H.; Bezaire, K.; Brady, K.; Davies, J.; Louwagie, N.; Power, S.; Santin, S.; Hunter, S.W. Functional Reach Test, Single-Leg Stance Test, and Tinetti Performance-Oriented Mobility Assessment for the Prediction of Falls in Older Adults: A Systematic Review. Phys. Ther. 2021, 101, pzab173. [Google Scholar] [CrossRef]
- Eslami Jahromi, M.; Ayatollahi, H. Impact of telecare interventions on quality of life in older adults: A systematic review. Aging Clin. Exp. Res. 2023, 35, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Ding, J.; Yang, Y.; Wu, X.; Xiao, B.; Ma, L.; Xu, Y. The telehealth program of occupational therapy among older people: An up-to-date scoping review. Aging Clin. Exp. Res. 2023, 35, 23–40. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Tomás, M.T.; Burillo-Lafuente, M.; Vicente-Parra, A.; Sanz-Rubio, M.C.; Suarez-Serrano, C.; Marcén-Román, Y.; Franco-Sierra, M.Á. Telerehabilitation as a Therapeutic Exercise Tool versus Face-to-Face Physiotherapy: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 4358. [Google Scholar] [CrossRef] [PubMed]
- Chandan, J.S.; Brown, K.R.; Simms-Williams, N.; Bashir, N.Z.; Camaradou, J.; Heining, D.; Turner, G.M.; Rivera, S.C.; Hotham, R.; Minhas, S.; et al. Non-Pharmacological Therapies for Post-Viral Syndromes, Including Long COVID: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 3477. [Google Scholar] [CrossRef]
- Brigo, E.; Rintala, A.; Kossi, O.; Verwaest, F.; Vanhoof, O.; Feys, P.; Bonnechère, B. Using Telehealth to Guarantee the Continuity of Rehabilitation during the COVID-19 Pandemic: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 10325. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Shin, K.H.; Lee, G.B.; Son, S.; Jang, K.M. Comparison of Functional Outcomes between Supervised Rehabilitation and Telerehabilitation in Female Patients with Patellofemoral Pain Syndrome during the COVID-19 Pandemic. Int. J. Environ. Res. Public Health 2023, 20, 2233. [Google Scholar] [CrossRef]
- Flannery, T.; Brady-Sawant, H.; Tarrant, R.; Davison, J.; Shardha, J.; Halpin, S.; Sivan, M.; Ross, D. A Mixed-Methods Evaluation of a Virtual Rehabilitation Program for Self-Management in Post-COVID-19 Syndrome (Long COVID). Int. J. Environ. Res. Public Health 2022, 19, 12680. [Google Scholar] [CrossRef]
- Estebanez-Pérez, M.J.; Pastora-Bernal, J.M.; Martín-Valero, R. The Effectiveness of a Four-Week Digital Physiotherapy Intervention to Improve Functional Capacity and Adherence to Intervention in Patients with Long COVID-19. Int. J. Environ. Res. Public Health 2022, 19, 9566. [Google Scholar] [CrossRef]
- Zak, M.; Sikorski, T.; Krupnik, S.; Wasik, M.; Grzanka, K.; Courteix, D.; Dutheil, F.; Brola, W. Physiotherapy Programmes Aided by VR Solutions Applied to the Seniors Affected by Functional Capacity Impairment: Randomised Controlled Trial. Int. J. Environ. Res. Public Health 2022, 19, 6018. [Google Scholar] [CrossRef]
- Wu, W.Y.; Zhang, Y.G.; Zhang, Y.Y.; Peng, B.; Xu, W.G. Clinical Effectiveness of Home-Based Telerehabilitation Program for Geriatric Hip Fracture Following Total Hip Replacement. Orthop. Surg. 2023, 15, 423–431. [Google Scholar] [CrossRef]
- Md Fadzil, N.H.; Shahar, S.; Rajikan, R.; Singh, D.K.A.; Mat Ludin, A.F.; Subramaniam, P.; Ibrahim, N.; Vanoh, D.; Mohamad Ali, N. A Scoping Review for Usage of Telerehabilitation among Older Adults with Mild Cognitive Impairment or Cognitive Frailty. Int. J. Environ. Res. Public Health 2022, 19, 4000. [Google Scholar] [CrossRef] [PubMed]
- Zak, M.; Sikorski, T.; Wasik, M.; Courteix, D.; Dutheil, F.; Brola, W. Frailty Syndrome-Fall Risk and Rehabilitation Management Aided by Virtual Reality (VR) Technology Solutions: A Narrative Review of the Current Literature. Int. J. Environ. Res. Public Health 2022, 19, 2985. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatica-Rojas, V.; Cartes-Velásquez, R. Telerehabilitation in Low-Resource Settings to Improve Postural Balance in Older Adults: A Non-Inferiority Randomised Controlled Clinical Trial Protocol. Int. J. Environ. Res. Public Health 2023, 20, 6726. https://doi.org/10.3390/ijerph20186726
Gatica-Rojas V, Cartes-Velásquez R. Telerehabilitation in Low-Resource Settings to Improve Postural Balance in Older Adults: A Non-Inferiority Randomised Controlled Clinical Trial Protocol. International Journal of Environmental Research and Public Health. 2023; 20(18):6726. https://doi.org/10.3390/ijerph20186726
Chicago/Turabian StyleGatica-Rojas, Valeska, and Ricardo Cartes-Velásquez. 2023. "Telerehabilitation in Low-Resource Settings to Improve Postural Balance in Older Adults: A Non-Inferiority Randomised Controlled Clinical Trial Protocol" International Journal of Environmental Research and Public Health 20, no. 18: 6726. https://doi.org/10.3390/ijerph20186726
APA StyleGatica-Rojas, V., & Cartes-Velásquez, R. (2023). Telerehabilitation in Low-Resource Settings to Improve Postural Balance in Older Adults: A Non-Inferiority Randomised Controlled Clinical Trial Protocol. International Journal of Environmental Research and Public Health, 20(18), 6726. https://doi.org/10.3390/ijerph20186726