Comparison of hs-CRP in Adult Obesity and Central Obesity in Indonesia Based on Omega-3 Fatty Acids Intake: Indonesian Family Life Survey 5 (IFLS 5) Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects’ Characteristics
2.2. Laboratory Data of hs-CRP
2.3. Obesity and Central Obesity Assessments
2.4. Omega-3 Fatty Acid Food Source Intake Measurements
2.5. Other Variables of the Study
2.6. Statistical Analysis
3. Results
3.1. Study Population
3.2. Comparison of hs-CRP Based on Obesity Categories
3.3. Comparison of hs-CRP Based on Omega-3 Fatty Acid Intake Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 19 January 2023). [CrossRef]
- Harbuwono, D.S.; Pramono, L.A.; Yunir, E.; Subekti, I. Obesity and Central Obesity in Indonesia: Evidence from a National Health Survey. Med. J. Indones. 2018, 27, 53–59. [Google Scholar] [CrossRef]
- Kemenkes, R.I. Hasil Riset Kesehatan Dasar Tahun 2018. Kemenkes RI 2018, 53, 1689–1699. [Google Scholar]
- World Health Organization; Regional Office for the Western Pacific. The Asia-Pacific Perspective: Redefining Obesity and Its Treatment; Health Communications Australia: Sydney, Australia, 2000. [Google Scholar]
- P2PTM Kemenkes RI. Cara Mengukur Obesitas. Available online: https://p2ptm.kemkes.go.id/infographic-p2ptm/obesitas/page/17/cara-mengukur-obesitas (accessed on 19 January 2023).
- Kumar, V.; Abbas, A.K.; Aster, J.C. (Eds.) Obesity. In Robbins and Cotran Pathologic Basis of Disease; Saunders: Philadelphia, PA, USA, 2015; pp. 444–449. [Google Scholar]
- Apovian, C.M. Obesity: Definition, Comorbidities, Causes, and Burden. Am. J. Manag. Care 2016, 22, s176–s185. [Google Scholar] [PubMed]
- Apovian, C.M.; Aronne, L.J.; Bessesen, D.H.; McDonnell, M.E.; Murad, M.H.; Pagotto, U.; Ryan, D.H.; Still, C.D. Pharmacological Management of Obesity: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2015, 100, 342–362. [Google Scholar] [CrossRef]
- Paley, C.A.; Johnson, M.I. Abdominal Obesity and Metabolic Syndrome: Exercise as Medicine? BMC Sports Sci. Med. Rehabil. 2018, 10, 7. [Google Scholar] [CrossRef]
- Flier, S.J.; Maratos-Flier, E. Pathophysiology of Obesity. In Harrison’s Principles of Internal Medicine; McGraw Hill: New York, NY, USA, 2018; pp. 2837–2843. [Google Scholar]
- Skelton, J.A.; Irby, M.B.; Grzywacz, J.G.; Miller, G. Etiologies of Obesity in Children: Nature and Nurture. Pediatr. Clin. N. Am. 2011, 58, 1333–1354. [Google Scholar] [CrossRef]
- McAllister, E.J.; Dhurandhar, N.V.; Keith, S.W.; Aronne, L.J.; Barger, J.; Baskin, M.; Benca, R.M.; Biggio, J.; Boggiano, M.M.; Eisenmann, J.C.; et al. Ten Putative Contributors to the Obesity Epidemic. Crit. Rev. Food Sci. Nutr. 2009, 49, 868–913. [Google Scholar] [CrossRef]
- Sharma, P. Inflammation and the Metabolic Syndrome. Indian J. Clin. Biochem. 2011, 26, 317–318. [Google Scholar] [CrossRef]
- Ibrahim, M.M. Subcutaneous and Visceral Adipose Tissue: Structural and Functional Differences. Obes. Rev. 2010, 11, 11–18. [Google Scholar] [CrossRef]
- Oppedisano, F.; Macrì, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Bosco, F.; Nucera, S.; Zito, M.C.; Guarnieri, L.; et al. The Anti-Inflammatory and Antioxidant Properties of n-3 PUFAs: Their Role in Cardiovascular Protection. Biomedicines 2020, 8, 306. [Google Scholar] [CrossRef]
- Vendramini-Costa, B.D.; Carvalho, E.J. Molecular Link Mechanisms between Inflammation and Cancer. Curr. Pharm. Des. 2012, 18, 3831–3852. [Google Scholar] [CrossRef] [PubMed]
- Calder, P.C.; Ahluwalia, N.; Brouns, F.; Buetler, T.; Clement, K.; Cunningham, K.; Esposito, K.; Jönsson, L.S.; Kolb, H.; Lansink, M.; et al. Dietary Factors and Low-Grade Inflammation in Relation to Overweight and Obesity. Br. J. Nutr. 2011, 106, S5–S78. [Google Scholar] [CrossRef]
- Castro, A.M.; Macedo-de la Concha, L.E.; Pantoja-Meléndez, C.A. Low-Grade Inflammation and Its Relation to Obesity and Chronic Degenerative Diseases. Rev. Médica Hosp. Gen. México 2017, 80, 101–105. [Google Scholar] [CrossRef]
- Kolb, H.; Mandrup-Poulsen, T. The Global Diabetes Epidemic as a Consequence of Lifestyle-Induced Low-Grade Inflammation. Diabetologia 2010, 53, 10–20. [Google Scholar] [CrossRef]
- Schmidt, F.M.; Weschenfelder, J.; Sander, C.; Minkwitz, J.; Thormann, J.; Chittka, T.; Mergl, R.; Kirkby, K.C.; Faßhauer, M.; Stumvoll, M.; et al. Inflammatory Cytokines in General and Central Obesity and Modulating Effects of Physical Activity. PLoS ONE 2015, 10, 1–17. [Google Scholar] [CrossRef]
- Ellulu, M.S.; Patimah, I.; Khaza’ai, H.; Rahmat, A.; Abed, Y. Obesity and Inflammation: The Linking Mechanism and the Complications. Arch. Med. Sci. 2017, 13, 851–863. [Google Scholar] [CrossRef]
- Fernández-Real, J.M.; Pickup, J.C. Innate Immunity, Insulin Resistance and Type 2 Diabetes. Diabetologia 2012, 55, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Davenport, A.P.; Alexander, S.P.H.; Sharman, J.L.; Pawson, A.J.; Benson, H.E.; Monaghan, A.E.; Liew, W.C.; Mpamhanga, C.P.; Bonner, T.I.; Neubig, R.R.; et al. International Union of Basic and Clinical Pharmacology. LXXXVIII. g Protein-Coupled Receptor List: Recommendations for New Pairings with Cognate Ligands. Pharmacol. Rev. 2013, 65, 967–986. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Chen, L.; Wang, Y.; Wei, X.; Zeng, S.; Zheng, Y.; Gao, C.; Liu, H. Activation of the Omega-3 Fatty Acid Receptor GPR120 Protects against Focal Cerebral Ischemic Injury by Preventing Inflammation and Apoptosis in Mice. J. Immunol. 2019, 202, 747–759. [Google Scholar] [CrossRef]
- Ichimura, A.; Hirasawa, A.; Poulain-Godefroy, O.; Bonnefond, A.; Hara, T.; Yengo, L.; Kimura, I.; Leloire, A.; Liu, N.; Iida, K.; et al. Dysfunction of Lipid Sensor GPR120 Leads to Obesity in Both Mouse and Human. Nature 2012, 483, 350–354. [Google Scholar] [CrossRef]
- Mobraten, K.; Haug, T.M.; Kleiveland, C.R.; Lea, T. Omega-3 and Omega-6 PUFAs Induce the Same GPR120-Mediated Signalling Events, but with Different Kinetics and Intensity in Caco-2 Cells. Lipids Health Dis. 2013, 12, 1. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. C-Reactive Protein Concentrations as a Marker of Inflammation or Infection for Interpreting Biomarkers of Micronutrient Status. Vitamin and Mineral Nutrition Information System; World Health Organization: Geneva, Switzerland, 2014. Available online: http://apps.who.int/iris/bitstream/10665/133708/1/WHO_NMH_NHD_EPG_14.7_eng.pdf?ua=1 (accessed on 20 January 2023).
- Yeagle, P.L. Membrane Proteins. In The Membranes of Cells; Elsevier: Amsterdam, The Netherlands, 2016; pp. 219–268. [Google Scholar] [CrossRef]
- Li, X.; Fang, P.; Mai, J.; Choi, E.T.; Wang, H.; Yang, X.F. Targeting Mitochondrial Reactive Oxygen Species as Novel Therapy for Inflammatory Diseases and Cancers. J. Hematol. Oncol. 2013, 6, 19. [Google Scholar] [CrossRef] [PubMed]
- Cabo, J.; Alonso, R.; Mata, P. Omega-3 Fatty Acids and Blood Pressure. Br. J. Nutr. 2012, 107, S195–S200. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wu, J.H.Y. Omega-3 Fatty Acids and Cardiovascular Disease: Effects on Risk Factors, Molecular Pathways, and Clinical Events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [PubMed]
- Münzel, T.; Camici, G.G.; Maack, C.; Bonetti, N.R.; Fuster, V.; Kovacic, J.C. Impact of Oxidative Stress on the Heart and Vasculature: Part 2 of a 3-Part Series. J. Am. Coll. Cardiol. 2017, 70, 212–229. [Google Scholar] [CrossRef]
- Gliozzi, M.; Scicchitano, M.; Bosco, F.; Musolino, V.; Carresi, C.; Scarano, F.; Maiuolo, J.; Nucera, S.; Maretta, A.; Paone, S.; et al. Modulation of Nitric Oxide Synthases by Oxidized LDLs: Role in Vascular Inflammation and Atherosclerosis Development. Int. J. Mol. Sci. 2019, 20, 3294. [Google Scholar] [CrossRef]
- Strauss, J.; Witoelar, F.; Sikoki, B. The Fifth Wave of the Indonesia Family Life Survey: Overview and Field Report: Volume 1; RAND: Santa Monica, CA, USA, 2016. [Google Scholar] [CrossRef]
- Hart, P.C.; Rajab, I.M.; Alebraheem, M.; Potempa, L.A. C-Reactive Protein and Cancer—Diagnostic and Therapeutic Insights. Front. Immunol. 2020, 11, 1–17. [Google Scholar] [CrossRef]
- Luan, Y.Y.; Yao, Y.M. The Clinical Significance and Potential Role of C-Reactive Protein in Chronic Inflammatory and Neurodegenerative Diseases. Front. Immunol. 2018, 9, 1–8. [Google Scholar] [CrossRef]
- Jamal, O.; Aneni, E.C.; Shaharyar, S.; Ali, S.S.; Parris, D.; McEvoy, J.W.; Veledar, E.; Blaha, M.J.; Blumenthal, R.S.; Agatston, A.S.; et al. Cigarette Smoking Worsens Systemic Inflammation in Persons with Metabolic Syndrome. Diabetol. Metab. Syndr. 2014, 6, 4–10. [Google Scholar] [CrossRef]
- Aldaham, S.; Foote, J.A.; Chow, H.H.S.; Hakim, I.A. Smoking Status Effect on Inflammatory Markers in a Randomized Trial of Current and Former Heavy Smokers. Int. J. Inflam. 2015, 2015, 439396. [Google Scholar] [CrossRef] [PubMed]
- Fink, N.R.; Chawes, B.; Bønnelykke, K.; Thorsen, J.; Stokholm, J.; Rasmussen, M.A.; Brix, S.; Bisgaard, H. Levels of Systemic Low-Grade Inflammation in Pregnant Mothers and Their Offspring Are Correlated. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Wirestam, L.; Pihl, S.; Saleh, M.; Wetterö, J.; Sjöwall, C. Plasma C-Reactive Protein and Pentraxin-3 Reference Intervals During Normal Pregnancy. Front. Immunol. 2021, 12, 1–7. [Google Scholar] [CrossRef]
- Snyder, G.G.; Holzman, C.; Sun, T.; Bullen, B.; Bertolet, M.; Catov, J.M. Breastfeeding Greater than 6 Months Is Associated with Smaller Maternal Waist Circumference up to One Decade after Delivery. J. Women’s Health 2019, 28, 462–472. [Google Scholar] [CrossRef]
- McKinley, M.C.; Allen-Walker, V.; McGirr, C.; Rooney, C.; Woodside, J.V. Weight Loss after Pregnancy: Challenges and Opportunities. Nutr. Res. Rev. 2018, 31, 225–238. [Google Scholar] [CrossRef]
- Kementerian Kesehatan Republik Indonesia. Peraturan Menteri Kesehatan Republik Indonesia Nomor 25 Tahun 2016 Tentang Rencana Aksi Nasional Kesehatan Lanjut Usia Tahun 2016–2019. 2016. Available online: http://hukor.kemkes.go.id/uploads/produk_hukum/PMK_No._25_ttg_Rencana_Aksi_Nasional_Kesehatan_Lanjut_Usia_Tahun_2016-2019_.pdf (accessed on 31 July 2023).
- RAND IFLS Data Updates, Data Notes, Tips, and FAQs. Available online: https://www.rand.org/well-being/social-and-behavioral-policy/data/FLS/IFLS/datanotes.html#ethical (accessed on 17 January 2023).
- Herningtyas, E.H.; Hu, P.; Edenfield, M.; Strauss, J.; Crimmins, E.; Witoelar, F.; Zhang, Y.; Kim, J.K.; Thomas, D.; Sikoki, B. IFLS Wave 5 Dried Blood Spot Data User Guide; RAND: Santa Monica, CA, USA, 2018. [Google Scholar]
- Strauss, J.; Witoelar, F.; Sikoki, B. Household Survey Questionnaire for the Indonesia Family Life Survey, Wave 5; RAND: Santa Monica, CA, USA, 2016; ISBN 6227444774. [Google Scholar]
- Shahidi, F.; Ambigaipalan, P. Omega-3 Polyunsaturated Fatty Acids and Their Health Benefits. Annu. Rev. Food Sci. Technol. 2018, 9, 345–381. [Google Scholar] [CrossRef] [PubMed]
- DeFilippis, A.P.; Blaha, M.J.; Jacobson, T.A. Omega-3 Fatty Acids for Cardiovascular Disease Prevention. Curr. Treat. Options Cardiovasc. Med. 2010, 12, 365–380. [Google Scholar] [CrossRef] [PubMed]
- National Heart Foundation of Australia Sources of Omega-3. 2015. Available online: https://www.heartfoundation.org.au/getmedia/ff11afcd-ab38-48d4-802c-9f0581e44a52/Sources_of_omega_3.pdf (accessed on 31 July 2023).
- Giroli, M.G.; Werba, J.P.; Risé, P.; Porro, B.; Sala, A.; Amato, M.; Tremoli, E.; Bonomi, A.; Veglia, F. Effects of Mediterranean Diet or Low-Fat Diet on Blood Fatty Acids in Patients with Coronary Heart Disease. A Randomized Intervention Study. Nutrients 2021, 13, 2389. [Google Scholar] [CrossRef] [PubMed]
- Davis, C.; Bryan, J.; Hodgson, J.; Murphy, K. Definition of the Mediterranean Diet: A Literature Review. Nutrients 2015, 7, 9139–9153. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean Diet Pyramid Today. Science and Cultural Updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef]
- Djunaidah, I.S. Tingkat Konsumsi Ikan Di Indonesia: Ironi Di Negeri Bahari. J. Penyul. Perikan. Kelaut. 2017, 11, 12–24. [Google Scholar] [CrossRef]
- Choi, J.; Joseph, L.; Pilote, L. Obesity and C-Reactive Protein in Various Populations: A Systematic Review and Meta-Analysis. Obes. Rev. Off. J. Int. Assoc. Study Obes. 2013, 14, 232–244. [Google Scholar] [CrossRef] [PubMed]
- Paepegaey, A.-C.; Genser, L.; Bouillot, J.-L.; Oppert, J.-M.; Clément, K.; Poitou, C. High Levels of CRP in Morbid Obesity: The Central Role of Adipose Tissue and Lessons for Clinical Practice before and after Bariatric Surgery. Surg. Obes. Relat. Dis. 2015, 11, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Rocha, V.Z.; Libby, P. Obesity, Inflammation, and Atherosclerosis. Nat. Rev. Cardiol. 2009, 6, 399–409. [Google Scholar] [CrossRef] [PubMed]
- Sproston, N.R.; Ashworth, J.J. Role of C-Reactive Protein at Sites of Inflammation and Infection. Front. Immunol. 2018, 9, 1–11. [Google Scholar] [CrossRef]
- Defagó, M.D.; Elorriaga, N.; Irazola, V.E.; Rubinstein, A.L. Influence of Food Patterns on Endothelial Biomarkers: A Systematic Review. J. Clin. Hypertens. 2014, 16, 907–913. [Google Scholar] [CrossRef]
- Loprinzi, P.; Cardinal, B.; Crespo, C.; Brodowicz, G.; Andersen, R.; Sullivan, E.; Smit, E. Objectively Measured Physical Activity and C-Reactive Protein: National Health and Nutrition Examination Survey 2003-2004. Scand. J. Med. Sci. Sports 2013, 23, 164–170. [Google Scholar] [CrossRef]
- León-Latre, M.; Moreno-Franco, B.; Andrés-Esteban, E.M.; Ledesma, M.; Laclaustra, M.; Alcalde, V.; Peñalvo, J.L.; Ordovás, J.M.; Casasnovas, J.A.; Aragon Workers’ Health Study Investigators. Sedentary Lifestyle and Its Relation to Cardiovascular Risk Factors, Insulin Resistance and Inflammatory Profile. Rev. Esp. Cardiol. 2014, 67, 449–455. [Google Scholar] [CrossRef]
- Michigan, A.; Johnson, T.V.; Master, V.A. Review of the Relationship between C-Reactive Protein and Exercise. Mol. Diagn. Ther. 2011, 15, 265–275. [Google Scholar] [CrossRef]
- Johnson, T.V.; Abbasi, A.; Master, V.A. Systematic Review of the Evidence of a Relationship between Chronic Psychosocial Stress and C-Reactive Protein. Mol. Diagn. Ther. 2013, 17, 147–164. [Google Scholar] [CrossRef]
- Kiecolt-Glaser, J.K.; McGuire, L.; Robles, T.F.; Glaser, R. Emotions, Morbidity, and Mortality: New Perspectives from Psychoneuroimmunology. Annu. Rev. Psychol. 2002, 53, 83–107. [Google Scholar] [CrossRef]
- Howren, M.B.; Lamkin, D.M.; Suls, J. Associations of Depression with C-Reactive Protein, IL-1, and IL-6: A Meta-Analysis. Psychosom. Med. 2009, 71, 171–186. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.R.; Olmstead, R.; Carroll, J.E. Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation. Biol. Psychiatry 2016, 80, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Dolsen, E.A.; Crosswell, A.D.; Prather, A.A. Links Between Stress, Sleep, and Inflammation: Are There Sex Differences? Curr. Psychiatry Rep. 2019, 21, 8. [Google Scholar] [CrossRef] [PubMed]
- Kiecolt-Glaser, J.K. Stress, Food, and Inflammation: Psychoneuroimmunology and Nutrition at the Cutting Edge. Psychosom. Med. 2010, 72, 365–369. [Google Scholar] [CrossRef]
- Bierhaus, A.; Wolf, J.; Andrassy, M.; Rohleder, N.; Humpert, P.M.; Petrov, D.; Ferstl, R.; Von Eynatten, M.; Wendt, T.; Rudofsky, G.; et al. A Mechanism Converting Psychosocial Stress into Mononuclear Cell Activation. Proc. Natl. Acad. Sci. USA 2003, 100, 1920–1925. [Google Scholar] [CrossRef]
- Lakoski, S.G.; Cushman, M.; Criqui, M.; Rundek, T.; Blumenthal, R.S.; D’Agostino, R.B.; Herrington, D.M. Gender and C-Reactive Protein: Data from the Multiethnic Study of Atherosclerosis (MESA) Cohort. Am. Heart J. 2006, 152, 593–598. [Google Scholar] [CrossRef]
- Wyczalkowska-Tomasik, A.; Czarkowska-Paczek, B.; Zielenkiewicz, M.; Paczek, L. Inflammatory Markers Change with Age, but Do Not Fall Beyond Reported Normal Ranges. Arch. Immunol. Ther. Exp. 2016, 64, 249–254. [Google Scholar] [CrossRef]
- Wener, M.H.; Daum, P.R.; McQuillan, G.M. The Influence of Age, Sex, and Race on the Upper Reference Limit of Serum C-Reactive Protein Concentration. J. Rheumatol. 2000, 27, 2351–2359. [Google Scholar]
- Galmés, S.; Cifre, M.; Palou, A.; Oliver, P.; Serra, F. A Genetic Score of Predisposition to Low-Grade Inflammation Associated with Obesity May Contribute to Discern Population at Risk for Metabolic Syndrome. Nutrients 2019, 11, 298. [Google Scholar] [CrossRef]
- Ligthart, S.; Marzi, C.; Aslibekyan, S.; Mendelson, M.M.; Conneely, K.N.; Tanaka, T.; Colicino, E.; Waite, L.L.; Joehanes, R.; Guan, W.; et al. DNA Methylation Signatures of Chronic Low-Grade Inflammation Are Associated with Complex Diseases. Genome Biol. 2016, 17, 255. [Google Scholar] [CrossRef]
- Jaya-Ram, A.; Fuad, F.; Zakeyuddin, M.S.; Sah, A.S.R.M. Muscle Fatty Acid Content in Selected Freshwater Fish from Bukit Merah Reservoir, Perak, Malaysia. Trop. Life Sci. Res. 2018, 29, 103–117. [Google Scholar] [CrossRef] [PubMed]
- Larsen, D.; Quek, S.Y.; Eyres, L. Effect of Cooking Method on the Fatty Acid Profile of New Zealand King Salmon (Oncorhynchus Tshawytscha). Food Chem. 2010, 119, 785–790. [Google Scholar] [CrossRef]
- Neff, M.R.; Bhavsar, S.P.; Braekevelt, E.; Arts, M.T. Effects of Different Cooking Methods on Fatty Acid Profiles in Four Freshwater Fishes from the Laurentian Great Lakes Region. Food Chem. 2014, 164, 544–550. [Google Scholar] [CrossRef] [PubMed]
- Murff, H.J.; Shu, X.-O.; Li, H.; Yang, G.; Wu, X.; Cai, H.; Wen, W.; Gao, Y.-T.; Zheng, W. Dietary Polyunsaturated Fatty Acids and Breast Cancer Risk in Chinese Women: A Prospective Cohort Study. Int. J. Cancer 2011, 128, 1434–1441. [Google Scholar] [CrossRef] [PubMed]
- Thiébaut, A.C.M.; Chajès, V.; Gerber, M.; Boutron-Ruault, M.-C.; Joulin, V.; Lenoir, G.; Berrino, F.; Riboli, E.; Bénichou, J.; Clavel-Chapelon, F. Dietary Intakes of Omega-6 and Omega-3 Polyunsaturated Fatty Acids and the Risk of Breast Cancer. Int. J. Cancer 2009, 124, 924–931. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; John, E.M.; Ingles, S.A. 5-Lipoxygenase and 5-Lipoxygenase-Activating Protein Gene Polymorphisms, Dietary Linoleic Acid, and Risk for Breast Cancer. Cancer Epidemiol. Biomarkers Prev. 2008, 17, 2748–2754. [Google Scholar] [CrossRef]
- Lenihan-Geels, G.; Bishop, K.S.; Ferguson, L.R. Alternative Sources of Omega-3 Fats: Can We Find a Sustainable Substitute for Fish? Nutrients 2013, 5, 1301–1315. [Google Scholar] [CrossRef]
- Madsen, T.; Christensen, J.H.; Blom, M.; Schmidt, E.B. The Effect of Dietary n -3 Fatty Acids on Serum Concentrations of C-Reactive Protein: A Dose–Response Study. Br. J. Nutr. 2003, 89, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.C.; Watts, G.F.; Barrett, P.H.R.; Beilin, L.J.; Mori, T.A. Effect of Atorvastatin and Fish Oil on Plasma High-Sensitivity C-Reactive Protein Concentrations in Individuals with Visceral Obesity. Clin. Chem. 2002, 48, 877–883. [Google Scholar] [CrossRef]
- Mezzano, D.; Leighton, F.; Martínez, C.; Marshall, G.; Cuevas, A.; Castillo, O.; Panes, O.; Muñoz, B.; Pérez, D.D.; Mizón, C.; et al. Complementary Effects of Mediterranean Diet and Moderate Red Wine Intake on Haemostatic Cardiovascular Risk Factors. Eur. J. Clin. Nutr. 2001, 55, 444–451. [Google Scholar] [CrossRef]
- Saifullah, A.; Watkins, B.A.; Saha, C.; Li, Y.; Moe, S.M.; Friedman, A.N. Oral Fish Oil Supplementation Raises Blood Omega-3 Levels and Lowers C-Reactive Protein in Haemodialysis Patients - A Pilot Study. Nephrol. Dial. Transplant. 2007, 22, 3561–3567. [Google Scholar] [CrossRef] [PubMed]
- Tsitouras, P.D.; Gucciardo, F.; Salbe, A.D.; Heward, C.; Harman, S.M. High Omega-3 Fat Intake Improves Insulin Sensitivity and Reduces CRP and IL6, but Does Not Affect Other Endocrine Axes in Healthy Older Adults. Horm. Metab. Res. 2008, 40, 199–205. [Google Scholar] [CrossRef]
- Decara, J.; Rivera, P.; López-Gambero, A.J.; Serrano, A.; Pavón, F.J.; Baixeras, E.; Rodríguez de Fonseca, F.; Suárez, J. Peroxisome Proliferator-Activated Receptors: Experimental Targeting for the Treatment of Inflammatory Bowel Diseases. Front. Pharmacol. 2020, 11, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Zúñiga, J.; Cancino, M.; Medina, F.; Varela, P.; Vargas, R.; Tapia, G.; Videla, L.A.; Fernández, V. N-3 PUFA Supplementation Triggers PPAR-α Activation and PPAR-α/NF-ΚB Interaction: Anti-Inflammatory Implications in Liver Ischemia-Reperfusion Injury. PLoS ONE 2011, 6, e28502. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Frequency (n) | Percentage (%) | |
---|---|---|---|
Sex (n = 3152) | Male | 736 | 23.35 |
Female | 2416 | 76.65 | |
Age (n = 3152) | 19–44 | 1591 | 50.48 |
[45.27 ± 15.77] | 45–59 | 938 | 29.76 |
≥60 | 623 | 19.77 | |
Education (n = 442) | Elementary | 154 | 34.84 |
Junior high | 28 | 6.33 | |
Senior high | 113 | 25.57 | |
D1, D2, D3/university | 147 | 33.26 | |
Income (n = 161) | <IDR 2 million | 144 | 84.71 |
IDR 2–8 million | 15 | 8.82 | |
IDR 8–10 million | 0 | 0 | |
>IDR 10 million | 2 | 1.18 | |
Obesity categories | Normal | 1005 | 31.88 |
(n = 3152) | Overweight | 358 | 11.36 |
Obesity | 603 | 19.13 | |
Central obesity | 397 | 12.60 | |
Combination | 789 | 25.03 | |
Omega-3 fatty acid intake | Adequate | 117 | 3.71 |
(n = 3152) | Low | 3035 | 96.29 |
Fast food intake | Seldom | 182 | 58.90 |
(n = 309) | Often | 127 | 41.10 |
Physical activity | High | 1063 | 33.72 |
(n = 3152) | Moderate | 776 | 24.62 |
Low | 1313 | 41.66 |
Characteristic | Obesity Categories | p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Normal (n = 1005) | Overweight (n = 358) | Obesity (n = 603) | Central Obesity (n = 397) | Combination (n = 789) | ||||||||
n | % | n | % | n | % | n | % | n | % | |||
Sex (n = 3152) | Male | 309 | 30.75 | 130 | 36.31 | 152 | 25.21 | 32 | 8.06 | 113 | 14.32 | 0.000 * |
Female | 696 | 69.25 | 228 | 63.69 | 451 | 74.79 | 365 | 91.94 | 676 | 85.68 | ||
Age (n = 3152) | 19–44 | 606 | 60.30 | 259 | 72.35 | 552 | 91.54 | 36 | 9.07 | 138 | 17.49 | 0.000 * |
45–59 | 224 | 22.29 | 51 | 14.25 | 40 | 6.63 | 183 | 46.10 | 440 | 55.77 | ||
>60 | 175 | 17.41 | 48 | 13,41 | 11 | 1.82 | 178 | 44.84 | 211 | 26.74 | ||
Education (n = 442) | Elementary | 102 | 43.59 | 15 | 24.19 | 35 | 26.72 | 0 | 0 | 2 | 16.67 | NS † |
Junior high | 13 | 5.56 | 5 | 8,06 | 10 | 7.63 | 0 | 0 | 0 | 0 | ||
Senior high | 64 | 27.35 | 22 | 35.48 | 27 | 20.61 | 0 | 0 | 0 | 0 | ||
D1, D2, D3/university | 55 | 23.50 | 20 | 32.26 | 59 | 45.04 | 3 | 100 | 10 | 83.33 | ||
Income (n = 161) | <IDR 2 million | 44 | 93.62 | 7 | 84.50 | 23 | 92 | 22 | 91.67 | 48 | 84.21 | 0.62 † |
IDR 2–8 million | 3 | 6.38 | 1 | 12.50 | 1 | 4 | 2 | 8.33 | 8 | 14.04 | ||
IDR 8-10 million | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
>IDR 10 million | 0 | 0 | 0 | 0 | 1 | 4 | 0 | 0 | 1 | 1.75 | ||
Omega-3 fatty acid intake (n = 3152) | Adequate | 30 | 2.99 | 8 | 2.23 | 21 | 3.48 | 25 | 6.30 | 33 | 4.18 | 0.02 * |
Low | 975 | 97.01 | 350 | 97.77 | 582 | 96.52 | 372 | 93.70 | 756 | 95.82 | ||
Fast food intake (n = 309) | Seldom | 43 | 59.72 | 31 | 59.62 | 62 | 65.26 | 13 | 50 | 33 | 51.56 | 0.42 * |
Often | 29 | 40.28 | 21 | 40.38 | 33 | 34.74 | 13 | 50 | 31 | 48.44 | ||
Physical activity (n = 3152) | High | 419 | 41.69 | 151 | 42.18 | 253 | 41.96 | 172 | 43.32 | 318 | 40.30 | 0.96 * |
Moderate | 243 | 24.18 | 95 | 26.54 | 149 | 24.71 | 94 | 23.68 | 195 | 24.71 | ||
Low | 343 | 34.13 | 112 | 31.28 | 201 | 33.33 | 131 | 33.00 | 276 | 34.98 | ||
hs-CRP (mg/dL) | ||||||||||||
0.05 (0.00–4.62) | 0.07 (0.00–4.90) | 0.16 (0.00–3.21) | 0.09 (0.00–2.86) | 0.17 (0.00–3.79) |
Characteristics | Omega-3 Fatty Acid Intake | p-Value | ||||
---|---|---|---|---|---|---|
Adequate | Low | |||||
n | % | n | % | |||
Sex | Male | 32 | 27.35 | 704 | 23.20 | 0.30 * |
(n = 3152) | Female | 85 | 72.65 | 2331 | 76.80 | |
Age (n = 3152) | 19–44 | 54 | 46.15 | 1537 | 50.64 | 0.18 * |
45–59 | 32 | 27.35 | 906 | 29.85 | ||
≥60 | 31 | 26.50 | 592 | 19.51 | ||
Education (n = 442) | Elementary | 3 | 15.79 | 151 | 35.70 | 1.00 † |
Junior high | 0 | 0 | 28 | 6.62 | ||
Senior high | 5 | 26.32 | 108 | 25.53 | ||
D1, D2, D3/university | 11 | 57.89 | 136 | 32.15 | ||
Income (n = 161) | <IDR 2 million | 7 | 100 | 137 | 88.96 | 0.13 † |
IDR 2–8 million | 0 | 0 | 15 | 9.74 | ||
IDR 8–10 million | 0 | 0 | 0 | 0 | ||
>IDR 10 million | 0 | 0 | 2 | 1.30 | ||
Obesity categories | Normal | 30 | 25.64 | 975 | 32.13 | 0.02 * |
(n= 3152) | Overweight | 8 | 6.84 | 350 | 11.53 | |
Obesity | 21 | 17.95 | 582 | 19.18 | ||
Central obesity | 25 | 21.37 | 372 | 12.26 | ||
Combination | 33 | 28.21 | 756 | 24.91 | ||
Fast food intake (n = 309) | Seldom | 8 | 50 | 174 | 59.39 | 0.46 * |
Often | 8 | 50 | 119 | 40.61 | ||
Physical activity (n = 3152) | High | 51 | 43.59 | 1262 | 41.58 | 0.67 * |
Moderate | 31 | 26.50 | 745 | 24.55 | ||
Low | 35 | 29.91 | 1028 | 33.87 | ||
hs-CRP (mg/dL) | ||||||
0.12 (0.00–3.38) | 0.10 (0.00–4.90) |
Obesity Categories | hs-CRP (mg/dL) | p-Value |
---|---|---|
Normal | 0.05 (0.02–0.14) | 0.0001 |
Overweight | 0.08 (0.03–0.18) | |
Obesity | 0.16 (0.07–0.36) | |
Central obesity | 0.09 (0.04–0.21) | |
Combination | 0.17 (0.07–0.37) |
Comparison between Obesity Categories | p-Value |
---|---|
Normal and overweight | 0.0001 |
Normal and obesity | 0.0000 |
Normal and central obesity | 0.0000 |
Normal and combination | 0.0000 |
Overweight and obesity | 0.0000 |
Overweight and central obesity | 0.04 |
Overweight and combination | 0.0000 |
Obesity and central obesity | 0.0000 |
Obesity and combination | 0.43 |
Central obesity and combination | 0.0000 |
Omega-3 Fatty Acid Intake | hs-CRP (mg/dL) | p-Value |
---|---|---|
Adequate | 0.12 (0.04–0.25) | 0.93 |
Low | 0.10 (0.04–0.26) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Megawati, G.; Indraswari, N.; Johansyah, A.A.; Kezia, C.; Herawati, D.M.D.; Gurnida, D.A.; Musfiroh, I. Comparison of hs-CRP in Adult Obesity and Central Obesity in Indonesia Based on Omega-3 Fatty Acids Intake: Indonesian Family Life Survey 5 (IFLS 5) Study. Int. J. Environ. Res. Public Health 2023, 20, 6734. https://doi.org/10.3390/ijerph20186734
Megawati G, Indraswari N, Johansyah AA, Kezia C, Herawati DMD, Gurnida DA, Musfiroh I. Comparison of hs-CRP in Adult Obesity and Central Obesity in Indonesia Based on Omega-3 Fatty Acids Intake: Indonesian Family Life Survey 5 (IFLS 5) Study. International Journal of Environmental Research and Public Health. 2023; 20(18):6734. https://doi.org/10.3390/ijerph20186734
Chicago/Turabian StyleMegawati, Ginna, Noormarina Indraswari, Alexandra Aurelia Johansyah, Capella Kezia, Dewi Marhaeni Diah Herawati, Dida Achmad Gurnida, and Ida Musfiroh. 2023. "Comparison of hs-CRP in Adult Obesity and Central Obesity in Indonesia Based on Omega-3 Fatty Acids Intake: Indonesian Family Life Survey 5 (IFLS 5) Study" International Journal of Environmental Research and Public Health 20, no. 18: 6734. https://doi.org/10.3390/ijerph20186734
APA StyleMegawati, G., Indraswari, N., Johansyah, A. A., Kezia, C., Herawati, D. M. D., Gurnida, D. A., & Musfiroh, I. (2023). Comparison of hs-CRP in Adult Obesity and Central Obesity in Indonesia Based on Omega-3 Fatty Acids Intake: Indonesian Family Life Survey 5 (IFLS 5) Study. International Journal of Environmental Research and Public Health, 20(18), 6734. https://doi.org/10.3390/ijerph20186734