Time Spent Jogging/Running and Biological Aging in 4458 U.S. Adults: An NHANES Investigation
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Sample
2.3. Measures
2.3.1. Jogging/Running
2.3.2. Telomere Length
2.3.3. Covariates
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arias, E.; Xu, J. National Vital Statistics Reports. Published 22 March 2022. Available online: https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-19.pdf (accessed on 29 August 2023).
- Hauck, K.; Martin, S.; Smith, P.C. Priorities for action on the Social Determinants of Health: Empirical evidence on the strongest associations with life expectancy in 54 low-income countries, 1990–2012. Soc. Sci. Med. 2016, 167, 88–98. [Google Scholar] [CrossRef] [PubMed]
- National Center for Health Statistics. Health, United States, 2016: With Chartbook on Long-Term Trends in Health; National Center for Health Statistics: Hyattsville, MD, USA, 2017. Available online: https://www.cdc.gov/nchs/data/hus/hus16.pdf (accessed on 29 August 2023).
- Sasson, I.; Hayward, M.D. Association Between Educational Attainment and Causes of Death Among White and Black US Adults, 2010-2017. JAMA 2019, 322, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Sebastiani, P.; Perls, T.T. The genetics of extreme longevity: Lessons from the New England Centenarian Study. Front. Genet. 2012, 3, 277. [Google Scholar] [CrossRef] [PubMed]
- Dieteren, C.M.; Faber, T.; van Exel, J.; Brouwer, W.B.; Mackenbach, J.P.; Nusselder, W.J. Mixed evidence for the compression of morbidity hypothesis for smoking elimination—A systematic literature review. Eur. J. Public Health 2020, 31, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Shlisky, J.; E Bloom, D.; Beaudreault, A.R.; Tucker, K.L.; Keller, H.H.; Freund-Levi, Y.; A Fielding, R.; Cheng, F.W.; Jensen, G.L.; Wu, D.; et al. Nutritional considerations for healthy aging and reduction in age-related chronic disease. Adv. Nutr. Int. Rev. J. 2017, 8, 17–26. [Google Scholar] [CrossRef]
- Fries, J.F. On the compression of morbidity. In Handbook of the Biology of Aging, 2nd ed.; Kaeberlein, M., Martin, G., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 507–524. [Google Scholar] [CrossRef]
- Turner, K.J.; Vasu, V.; Griffin, D.K. Telomere Biology and Human Phenotype. Cells 2019, 8, 73. [Google Scholar] [CrossRef]
- Schneider, C.V.; Schneider, K.M.; Teumer, A.; Rudolph, K.L.; Hartmann, D.; Rader, D.J.; Strnad, P. Association of Telomere Length With Risk of Disease and Mortality. JAMA Intern Med. 2022, 182, 291–300. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, X.; Jiang, H.; Zhang, Y.; Liu, H.; Qin, C.; Eisner, G.M.; Jose, P.; Rudolph, L.; Ju, Z.; et al. Short telomeres and prognosis of hypertension in a Chinese population. Hypertension 2009, 53, 639–645. [Google Scholar] [CrossRef]
- Srinivas, N.; Rachakonda, S.; Kumar, R. Telomeres and telomere length: A general overview. Cancers 2020, 12, 558. [Google Scholar] [CrossRef]
- Shammas, M.A. Telomeres, lifestyle, cancer, and aging. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 28–34. [Google Scholar] [CrossRef]
- Galiè, S.; Canudas, S.; Muralidharan, J.; García-Gavilán, J.; Bulló, M.; Salas-Salvadó, J. Impact of Nutrition on Telomere Health: Systematic Review of Observational Cohort Studies and Randomized Clinical Trials. Adv. Nutr. 2020, 11, 576–601. [Google Scholar] [CrossRef] [PubMed]
- Freitas-Simoes, T.-M.; Ros, E.; Sala-Vila, A. Nutrients, foods, dietary patterns and telomere length: Update of epidemiological studies and Randomized Trials. Metabolism 2016, 65, 406–415. [Google Scholar] [CrossRef] [PubMed]
- Astuti, Y.; Wardhana, A.; Watkins, J.; Wulaningsih, W. Cigarette smoking and telomere length: A systematic review of 84 studies and meta-analysis. Environ. Res. 2017, 158, 480–489. [Google Scholar] [CrossRef] [PubMed]
- Arsenis, N.C.; You, T.; Ogawa, E.F.; Tinsley, G.M.; Zuo, L. Physical activity and telomere length: Impact of aging and potential mechanisms of action. Oncotarget 2017, 8, 45008–45019. [Google Scholar] [CrossRef] [PubMed]
- Mundstock, E.; Zatti, H.; Louzada, F.M.; Oliveira, S.G.; Guma, F.T.; Paris, M.M.; Rueda, A.B.; Machado, D.G.; Stein, R.T.; Jones, M.H.; et al. Effects of physical activity in telomere length: Systematic review and meta-analysis. Ageing Res. Rev. 2015, 22, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Tucker, L.A. Physical activity and telomere length in U.S. men and women: An NHANES investigation. Prev. Med. 2017, 100, 145–151. [Google Scholar] [CrossRef]
- FASTSTATS—Exercise or Physical Activity. Centers for Disease Control and Prevention. Published 11 June 2021. Available online: https://www.cdc.gov/nchs/fastats/exercise.htm (accessed on 29 August 2023).
- Tucker, J.M.; Welk, G.J.; Beyler, N.K. Physical activity in U.S. adults. Am. J. Prev. Med. 2011, 40, 454–461. [Google Scholar] [CrossRef]
- Gerovasili, V.; Agaku, I.T.; Vardavas, C.I.; Filippidis, F.T. Levels of physical activity among adults 18–64 years old in 28 European countries. Prev. Med. 2015, 81, 87–91. [Google Scholar] [CrossRef]
- Gebel, K.; Ding, D.; Chey, T.; Stamatakis, E.; Brown, W.J.; Bauman, A.E. Effect of Moderate to Vigorous Physical Activity on All-Cause Mortality in Middle-aged and Older Australians. JAMA Intern Med. 2015, 175, 970–977. [Google Scholar] [CrossRef]
- Mu, X.; Liu, S.; Fu, M.; Luo, M.; Ding, D.; Chen, L.; Yu, K. Associations of physical activity intensity with incident cardiovascular diseases and mortality among 366,566 UK adults. Int. J. Behav. Nutr. Phys. Act. 2022, 19, 151. [Google Scholar] [CrossRef]
- Liubaoerjijin, Y.; Terada, T.; Fletcher, K.; Boulé, N.G. Effect of aerobic exercise intensity on glycemic control in type 2 diabetes: A meta-analysis of head-to-head randomized trials. Acta Diabetol. 2016, 53, 769–781. [Google Scholar] [CrossRef]
- Wang, Y.; Lee, D.-C.; Brellenthin, A.G.; Eijsvogels, T.M.; Sui, X.; Church, T.S.; Lavie, C.J.; Blair, S.N. Leisure-time running reduces the risk of incident type 2 diabetes. Am. J. Med. 2019, 132, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Eijsvogels, T.M.H.; Molossi, S.; Lee D-chul Emery, M.S.; Thompson, P.D. Exercise at the extremes. J. Am. Coll. Cardiol. 2016, 67, 316–329. [Google Scholar] [CrossRef] [PubMed]
- Oswald, F.; Campbell, J.; Williamson, C.; Richards, J.; Kelly, P. A Scoping Review of the Relationship between Running and Mental Health. Int. J. Environ. Res. Public Health 2020, 17, 8059. [Google Scholar] [CrossRef] [PubMed]
- Sellami, M.; Al-Muraikhy, S.; Al-Jaber, H.; Al-Amri, H.; Al-Mansoori, L.; Mazloum, N.A.; Donati, F.; Botre, F.; Elrayess, M.A. Age and Sport Intensity-Dependent Changes in Cytokines and Telomere Length in Elite Athletes. Antioxidants 2021, 10, 1035. [Google Scholar] [CrossRef] [PubMed]
- Shadyab, A.H.; LaMonte, M.J.; Kooperberg, C.; Reiner, A.P.; Carty, C.L.; Manini, T.M.; Hou, L.; Di, C.; LaCroix, A.Z. Association of accelerometer-measured physical activity with leukocyte telomere length among older women. J. Gerontol. Ser. A 2017, 72, 1532–1537. [Google Scholar] [CrossRef] [PubMed]
- von Känel, R.; Bruwer, E.J.; Hamer, M.; de Ridder, J.H.; Malan, L. Association between objectively measured physical activity, chronic stress and leukocyte telomere length. J. Sports Med. Phys. Fit. 2017, 57, 1349–1358. [Google Scholar] [CrossRef]
- Lin, X.; Zhou, J.; Dong, B. Effect of different levels of exercise on telomere length: A systematic review and meta-analysis. J. Rehabil. Med. 2019, 51, 473–478. [Google Scholar] [CrossRef]
- Tudor-Locke, C.; Johnson, W.D.; Katzmarzyk, P.T. Frequently reported activities by intensity for U.S. adults. Am. J. Prev. Med. 2010, 39, E13–E20. [Google Scholar] [CrossRef]
- NHANES. The National Health and Nutrition Examination Survey: Sample Design, 1999–2006; U.S. Department of Health and Human Services: Washington, DC, USA, 2012. Available online: https://www.cdc.gov/nchs/data/series/sr_02/sr02_155.pdf (accessed on 29 August 2023).
- NHANES. 2001–2002a. National Center of Health Statistics Research Ethics Review Board (ERB) Approval. Centers for Disease Control and Prevention. Available online: http://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 29 August 2023).
- NHANES. 2001–2002b. Physical Activity, Individual Activities (PAQIAF_B): Data Documentation, Codebook, and Frequencies. Centers for Disease Control and Prevention. Available online: http://wwwn.cdc.gov/Nchs/Nhanes/2001-2002/PAQIAF_B.htm (accessed on 29 August 2023).
- Demanelis, K.; Jasmine, F.; Chen, L.S.; Chernoff, M.; Tong, L.; Delgado, D.; Zhang, C.; Shinkle, J.; Sabarinathan, M.; Lin, H.; et al. Determinants of telomere length across human tissues. Science 2020, 369, 5609. [Google Scholar] [CrossRef]
- Needham, B.L.; Adler, N.; Gregorich, S.; Rehkopf, D.; Lin, J.; Blackburn, E.H.; Epel, E.S. Socioeconomic status, health behavior, and leukocyte telomere length in the National Health and Nutrition Examination Survey, 1999–2002. Soc. Sci. Med. 2013, 85, 111. [Google Scholar] [CrossRef] [PubMed]
- Cawthon, R.M. Telomere measurement by quantitative PCR. Nucleic Acids Res. 2002, 30, e47. [Google Scholar] [CrossRef] [PubMed]
- The National Health and Nutrition Examination Survey (NHANES). 2001–2002 Data Documentation, Codebook, and Frequencies. Telomere Mean and Standard Deviation. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2001-2002/TELO_B.htm (accessed on 29 August 2023).
- Centers for Disease Control and Prevention. Defining Adult Overweight & Obesity. Available online: https://www.cdc.gov/obesity/basics/adult-defining.html (accessed on 29 August 2023).
- NHANES. National Health and Nutrition Examination Survey: Diabetes. Centers for Disease Control and Prevention. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2001-2002/DIQ_B.htm (accessed on 29 August 2023).
- NHANES. National Health and Nutrition Examination Survey: Medical Conditions. Centers for Disease Control and Prevention. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2001-2002/MCQ_B.htm (accessed on 29 August 2023).
- NHANES. Smoking: Cigarette/Tobacco Use, Adult. Centers for Disease Control and Prevention. Available online: https://wwwn.cdc.gov/Nchs/Nhanes/2001-2002/SMQ_B.htm (accessed on 29 August 2023).
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 9th ed.; American College of Sports Medicine: Indianapolis, IN, USA, 2013; ISBN 1609139550. [Google Scholar]
- Johnson, C.L.; Paulose-Ram, R.; Ogden, C.L.; Carroll, M.D.; Kruszon-Moran, D.; Dohrmann, S.M.; Curtin, L.R. National Health and Nutrition Examination Survey: Analytic Guidelines, 1999–2010; Vital and Health Statistics Series; Department of Health and Human Services: Washington, DC, USA, 2013; Volume 2, pp. 1–24. Available online: https://www.cdc.gov/nchs/data/series/sr_02/sr02_161.pdf (accessed on 29 August 2023).
- Cherkas, L.F.; Hunkin, J.L.; Kato, B.S.; Richards, J.B.; Gardner, J.P.; Surdulescu, G.L.; Kimura, M.; Lu, X.; Spector, T.D.; Aviv, A. The Association Between Physical Activity in Leisure Time and Leukocyte Telomere Length. Arch. Intern Med. 2008, 168, 154–158. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Prescott, J.; Kraft, P.; Han, J.; Giovannucci, E.; Hankinson, S.E.; De Vivo, I. Physical activity, sedentary behavior, and leukocyte telomere length in women. Am. J. Epidemiol. 2011, 175, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Shadyab, A.H.; LaMonte, M.J.; Kooperberg, C.; Reiner, A.P.; Carty, C.L.; Manini, T.M.; Hou, L.; Di, C.; Macera, C.A.; Gallo, L.C.; et al. Leisure-time physical activity and leukocyte telomere length among older women. Exp. Gerontol. 2017, 95, 141–147. [Google Scholar] [CrossRef]
- Denham, J.; O’Brien, B.J.; Prestes, P.R.; Brown, N.J.; Charchar, F.J. Increased expression of telomere-regulating genes in endurance athletes with long leukocyte telomeres. J. Appl. Physiol. 2016, 120, 148–158. [Google Scholar] [CrossRef]
- Borghini, A.; Giardini, G.; Tonacci, A.; Mastorci, F.; Mercuri, A.; Mrakic-Sposta, S.; Moretti, S.; Andreassi, M.G.; Pratali, L. Chronic and acute effects of endurance training on telomere length. Mutagenesis 2015, 30, 711–716. [Google Scholar] [CrossRef]
- Mathur, S.; Ardestani, A.; Parker, B.; Cappizzi, J.; Polk, D.; Thompson, P.D. Telomere length and cardiorespiratory fitness in marathon runners. J. Investig. Med. 2013, 61, 613–615. [Google Scholar] [CrossRef] [PubMed]
- Loprinzi, P.D.; Sng, E. Mode-specific physical activity and leukocyte telomere length among U.S. adults: Implications of running on Cellular Aging. Prev. Med. 2016, 85, 17–19. [Google Scholar] [CrossRef]
- Rode, L.; Nordestgaard, B.G.; Bojesen, S.E. Peripheral Blood Leukocyte Telomere Length and Mortality among 64,637 Individuals from the General Population. J. Natl. Cancer Inst. 2015, 107, djv074. [Google Scholar] [CrossRef]
- Yuan, X.; Kronström, M.; Hellenius, M.; Cederholm, T.; Xu, D.; Sjögren, P. Longitudinal changes in leukocyte telomere length and mortality in elderly Swedish men. Aging 2018, 10, 3005–3016. [Google Scholar] [CrossRef] [PubMed]
- D’Mello, M.J.; Ross, S.A.; Briel, M.; Anand, S.S.; Gerstein, H.; Paré, G. Association Between Shortened Leukocyte Telomere Length and Cardiometabolic Outcomes. Circ. Cardiovasc. Genet. 2015, 8, 4–7. [Google Scholar] [CrossRef] [PubMed]
- Gruber, H.J.; Semeraro, M.D.; Renner, W.; Herrmann, M. Telomeres and Age-Related Diseases. Biomedicines 2021, 9, 1335. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, B.F.; Nogueira-Machado, J.A.; Chaves, M.M. The Role of Oxidative Stress in the Aging Process. Sci. World J. 2010, 2010, 465797. [Google Scholar] [CrossRef]
- Shields, H.J.; Traa, A.; Van Raamsdonk, J.M. Beneficial and detrimental effects of reactive oxygen species on lifespan: A comprehensive review of comparative and experimental studies. Front. Cell Dev. Biol. 2021, 9, 628157. [Google Scholar] [CrossRef]
- Anik, M.I.; Mahmud, N.; Al Masud, A.; Khan, I.; Islam, N.; Uddin, S.; Hossain, M.K. Role of reactive oxygen species in aging and age-related diseases: A Review. ACS Appl. Bio Mater. 2022, 5, 4028–4054. [Google Scholar] [CrossRef]
- Schellnegger, M.; Lin, A.C.; Hammer, N.; Kamolz, L.P. Physical Activity on Telomere Length as a Biomarker for Aging: A Systematic Review. Sports Med. Open 2022, 8, 111. [Google Scholar] [CrossRef]
- Ludlow, A.T.; Roth, S.M. Physical Activity and Telomere Biology: Exploring the Link with Aging-Related Disease Prevention. J. Aging Res. 2011, 2011, 790378. [Google Scholar] [CrossRef]
- de Sousa, C.V.; Sales, M.M.; Rosa, T.S.; Lewis, J.E.; de Andrade, R.V.; Simões, H.G. The antioxidant effect of exercise: A systematic review and meta-analysis. Sports Med. 2016, 47, 277–293. [Google Scholar] [CrossRef]
- Radák, Z.; Apor, P.; Pucsok, J.; Berkes, I.; Ogonovszky, H.; Pavlik, G.; Nakamoto, H.; Goto, S. Marathon running alters the DNA base excision repair in human skeletal muscle. Life Sci. 2003, 72, 1627–1633. [Google Scholar] [CrossRef]
- Bouzid, M.A.; Filaire, E.; McCall, A.; Fabre, C. Radical Oxygen Species, Exercise and Aging: An Update. Sports Med. 2015, 45, 1245–1261. [Google Scholar] [CrossRef] [PubMed]
- Bjork, L.; Jenkins, N.T.; Witkowski, S.; Hagberg, J.M. Nitro-oxidative stress biomarkers in active and inactive men. Int. J. Sports Med. 2012, 33, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Rana, K.S.; Arif, M.; Hill, E.J.; Aldred, S.; Nagel, D.A.; Nevill, A.; Randeva, H.S.; Bailey, C.J.; Bellary, S.; Brown, J.E. Plasma irisin levels predict telomere length in healthy adults. AGE 2014, 36, 995–1001. [Google Scholar] [CrossRef] [PubMed]
- Vecchiato, M.; Zanardo, E.; Battista, F.; Quinto, G.; Bergia, C.; Palermi, S.; Duregon, F.; Ermolao, A.; Neunhaeuserer, D. The Effect of Exercise Training on Irisin Secretion in Patients with Type 2 Diabetes: A Systematic Review. J. Clin. Med. 2023, 12, 62. [Google Scholar] [CrossRef]
- Daskalopoulou, S.S.; Cooke, A.B.; Gomez, Y.-H.; Mutter, A.F.; Filippaios, A.; Mesfum, E.T.; Mantzoros, C.S. Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. Eur. J. Endocrinol. 2014, 171, 343–352. [Google Scholar] [CrossRef]
- Huh, J.Y.; Mougios, V.; Kabasakalis, A. Exercise-Induced Irisin Secretion Is Independent of Age or Fitness Level and Increased Irisin May Directly Modulate Muscle Metabolism Through AMPK Activation. J. Clin. Endocrinol. Metab. 2014, 99, E2154–E2161. [Google Scholar] [CrossRef]
Continuous Variable | Mean | SE | 10th | 25th | 50th | 75th | 90th |
---|---|---|---|---|---|---|---|
Age | 42.3 | 0.4 | 23.7 | 31.1 | 40.9 | 51.8 | 60.9 |
Jog/Run min/week | 8.1 | 1.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Smoking pack years | 3.2 | 0.2 | 0.0 | 0.0 | 0.0 | 0.0 | 10.0 |
Telomere length | 5896 | 40 | 5188 | 5447 | 5796 | 6223 | 6724 |
MET-min of other exercise | 778.5 | 63.7 | 0.0 | 0.0 | 0.0 | 691.6 | 2268.7 |
Categorical Variable | N | % | SE |
---|---|---|---|
Weekly Jogging/Running | |||
None | 4060 | 91.1 | 0.81 |
10–74 min | 241 | 5.4 | 0.56 |
≥75 min | 157 | 3.5 | 0.46 |
Sex | |||
Women | 2246 | 50.4 | 0.70 |
Men | 2212 | 49.6 | 0.70 |
Race/Ethnicity | |||
Non-Hispanic White | 3121 | 70.0 | 2.01 |
Non-Hispanic Black | 494 | 11.1 | 1.37 |
Mexican American | 364 | 8.2 | 0.87 |
Other Race/Multiracial | 160 | 3.6 | 0.61 |
Other Hispanic | 319 | 7.1 | 1.57 |
Body Mass Index | |||
Normal Weight | 1481 | 33.2 | 0.78 |
Overweight | 1530 | 34.3 | 1.19 |
Obese | 1447 | 32.5 | 1.00 |
Income | |||
<$25,000 | 1037 | 23.2 | 1.32 |
$25,000–44,999 | 862 | 19.3 | 1.07 |
$45,000–64,999 | 749 | 16.8 | 0.87 |
$65,000 or more | 1380 | 31.0 | 1.93 |
Missing | 430 | 9.7 | 1.08 |
Diabetes Status | |||
No | 4126 | 92.6 | 0.53 |
Yes | 332 | 7.4 | 0.53 |
CVD Status | |||
No | 4245 | 95.2 | 0.42 |
Yes | 213 | 4.8 | 0.42 |
Weekly Jogging/Running Time | |||||
---|---|---|---|---|---|
Covariate | None Mean ± SE | 10–74 min Mean ± SE | ≥75 min Mean ± SE | F-Value | p-Value |
Model 1 | 5875 a ± 38 | 6005 a,b ± 91 | 6091 b ± 55 | 6.5 | 0.0046 |
Model 2 | 5874 a ± 38 | 5983 a,b ± 90 | 6064 b ± 61 | 4.1 | 0.0272 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blackmon, C.M.; Tucker, L.A.; Bailey, B.W.; Davidson, L.E. Time Spent Jogging/Running and Biological Aging in 4458 U.S. Adults: An NHANES Investigation. Int. J. Environ. Res. Public Health 2023, 20, 6872. https://doi.org/10.3390/ijerph20196872
Blackmon CM, Tucker LA, Bailey BW, Davidson LE. Time Spent Jogging/Running and Biological Aging in 4458 U.S. Adults: An NHANES Investigation. International Journal of Environmental Research and Public Health. 2023; 20(19):6872. https://doi.org/10.3390/ijerph20196872
Chicago/Turabian StyleBlackmon, Christina M., Larry A. Tucker, Bruce W. Bailey, and Lance E. Davidson. 2023. "Time Spent Jogging/Running and Biological Aging in 4458 U.S. Adults: An NHANES Investigation" International Journal of Environmental Research and Public Health 20, no. 19: 6872. https://doi.org/10.3390/ijerph20196872
APA StyleBlackmon, C. M., Tucker, L. A., Bailey, B. W., & Davidson, L. E. (2023). Time Spent Jogging/Running and Biological Aging in 4458 U.S. Adults: An NHANES Investigation. International Journal of Environmental Research and Public Health, 20(19), 6872. https://doi.org/10.3390/ijerph20196872