Similarities and Differences between Psychosocial Determinants of Bullying and Cyberbullying Perpetration among Polish Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample and Procedure
2.2. Measures
2.2.1. Bullying and Cyberbullying Perpetration
2.2.2. Socioeconomic Factors
2.2.3. Individual Factors
2.2.4. Social Factors
2.3. Statistical Analysis
3. Results
3.1. Bullying and Cyberbullying Perpetration According to Demographic and Socioeconomic Factors
3.2. Prevalence of Bullying and Cyberbullying Perpetration According to Psychosocial Factors
3.3. Correlations between the Psychosocial Determinants of Bullying and Cyberbullying Perpetration
3.4. Predictors of Bullying and Cyberbullying Perpetration: Logistic Regression
3.5. Gender-Specific Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Olweus, D. School Bullying: Development and Some Important Challenges. Annu. Rev. Clin. Psychol. 2013, 9, 751–780. [Google Scholar] [CrossRef]
- Kowalski, R.M.; Limber, S.E.; Agatston, P.W. Cyberbullying: Bullying in the Digital Age, 2nd ed.; Wiley-Blackwell: Malden, MA, USA, 2012. [Google Scholar]
- Wolke, D.; Lereya, S.T. Long-term effects of bullying. Arch. Dis. Child. 2015, 100, 879–885. [Google Scholar] [CrossRef] [Green Version]
- Kowalski, R.M.; Giumetti, G.W.; Schroeder, A.N.; Lattanner, M.R. Bullying in the Digital Age: A Critical Review and Meta-Analysis of Cyberbullying Research Among Youth. Psychol. Bull. 2014, 140, 1073–1137. [Google Scholar] [CrossRef]
- Zych, I.; Ortega-Ruiz, R.; Del Rey, R. Systematic review of theoretical studies on bullying and cyberbullying: Facts, knowledge, prevention, and intervention. Aggress. Violent Behav. 2015, 23, 1–21. [Google Scholar] [CrossRef]
- Neville, F.G.; Goodall, C.A.; Gavine, A.J.; Williams, D.J.; Donnelly, P.D. Public Health, Youth Violence, and Perpetrator Well-Being. Peace Confl. J. Peace Psychol. 2015, 21, 322–333. [Google Scholar] [CrossRef] [Green Version]
- Del Rey, R.; Elipe, P.; Ortega-Ruiz, R. Bullying and cyberbullying: Overlapping and predictive value of the co-occurrence. Psicothema 2012, 24, 608–613. [Google Scholar]
- Lazuras, L.; Barkoukis, V.; Tsorbatzoudis, H. Face-to-face bullying and cyberbullying in adolescents: Trans-contextual effects and role overlap. Technol. Soc. 2017, 48, 97–101. [Google Scholar] [CrossRef]
- Kowalski, R.M.; McCord, A. Perspectives on Cyberbullying and Traditional Bullying. Same or Different? In The Routledge Companion to Digital Media and Children; Green, L., Holloway, D., Stevenson, K., Leaver, T., Haddon, L., Eds.; Routledge: New York, NY, USA, 2021; pp. 460–468. [Google Scholar]
- Waasdorp, T.E.; Bradshaw, C.P. The Overlap between Cyberbullying and Traditional Bullying. J. Adolesc. Health 2015, 56, 483–488. [Google Scholar] [CrossRef]
- Cosma, A.; Walsh, S.D.; Chester, K.L.; Callaghan, M.; Molcho, M.; Craig, W.; Pickett, W. Bullying victimization: Time trends and the overlap between traditional and cyberbullying across countries in Europe and North America. Int. J. Public Health 2020, 65, 75–85. [Google Scholar] [CrossRef]
- Arnarsson, A.; Nygren, J.; Nyholm, M.; Torsheim, T.; Augustine, L.; Bjereld, Y.; Markkanen, I.; Schnohr, C.W.; Rasmussen, M.; Nielsen, L.; et al. Cyberbullying and traditional bullying among Nordic adolescents and their impact on life satisfaction. Scand. J. Public Health 2020, 48, 502–510. [Google Scholar] [CrossRef]
- Bergmann, M.C.; Baier, D. Prevalence and Correlates of Cyberbullying Perpetration. Findings from a German Representative Student Survey. Int. J. Environ. Res. Public Health 2018, 15, 274. [Google Scholar] [CrossRef]
- Yudes, C.; Rey, L.; Extremera, N. Predictive Factors of Cyberbullying Perpetration amongst Spanish Adolescents. Int. J. Environ. Res. Public Health 2020, 17, 3967. [Google Scholar] [CrossRef]
- Mazur, J.; Małkowska-Szkutnik, A. (Eds.) The Health of Students in 2018 on the Background of the New HBSC Research Model; Institute of Mother and Child: Warsaw, Poland, 2018. (In Polish) [Google Scholar]
- Beckman, L.; Hagquist, C.; Hellstrom, L. Discrepant gender patterns for cyberbullying and traditional bullying—An analysis of Swedish adolescent data. Comput. Hum. Behav. 2013, 29, 1896–1903. [Google Scholar] [CrossRef]
- Pichel, R.; Foody, M.; Norman, J.O.; Feijoo, S.; Varela, J.; Rial, A. Bullying, Cyberbullying and the Overlap: What Does Age Have to Do with It? Sustainability 2021, 13, 8527. [Google Scholar] [CrossRef]
- World Health Organization. Spotlight on Adolescent Health and Well-Being: Findings from the 2017/2018 Health Behaviour in School-Aged Children (HBSC) Survey in Europe and Canada; Inchley, J., Currie, D., Budisavljevic, S., Torsheim, T., Jåstad, A., Cosma, A., Kelly, C., Arnarsson, Á., Eds.; WHO Regional Office for Europe: Copenhagen, Denmark, 2020. [Google Scholar]
- Breivik, K.; Olweus, D. Adolescent’s adjustment in four post-divorce family structures: Single mother, stepfather, joint physical custody and single father families. J. Divorce Remarriage 2006, 44, 99–124. [Google Scholar] [CrossRef]
- Elgar, F.J.; Craig, W.; Boyce, W.; Morgan, A.; Vella-Zarb, R. Income Inequality and School Bullying: Multilevel Study of Adolescents in 37 Countries. J. Adolesc. Health 2009, 45, 351–359. [Google Scholar] [CrossRef]
- Hawkins, J.D.; Herrenkohl, T.I.; Farrington, D.P.; Brewer, D.; Catalano, R.F.; Harachi, T.W.; Cothern, L. Predictors of Youth Violence. In Juvenile Justice Bulletin; U.S. Department of Justice, Office of Justice Programs, Office of Juvenile Justice and Delinquency Prevention: Washington, DC, USA, 2000. [Google Scholar]
- Vogel, M.; Van Ham, M. Unpacking the Relationships between Impulsivity, Neighborhood Disadvantage, and Adolescent Violence: An Application of a Neighborhood-Based Group Decomposition. J. Youth Adolesc. 2018, 47, 859–871. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, L.; Shackleton, N.; Hale, D.; Allen, E.; Bond, L.; Christie, D.; Elbourne, D.; Fitzgerald-Yau, N.; Fletcher, A.; Jones, R.; et al. The role of family and school-level factors in bullying and cyberbullying: A cross-sectional study. BMC Pediatr. 2017, 17, 160. [Google Scholar] [CrossRef] [Green Version]
- Knaappila, N.; Marttunen, M.; Frojd, S.; Lindberg, N.; Kaltiala-Heino, R. Socioeconomic trends in school bullying among Finnish adolescents from 2000 to 2015. Child Abus. Negl. 2018, 86, 100–108. [Google Scholar] [CrossRef]
- Dahlberg, L.L. Violence: A global public health problem. In World Report on Violence and Health; Krug, E.G., Dahlberg, L.L., Mercy, J.A., Zwi, A.B., Lozano, R., Eds.; World Health Organization: Geneva, Switzerland, 2002; pp. 1–21. [Google Scholar]
- Guo, S.Y.; Liu, J.; Wang, J.D. Cyberbullying Roles Among Adolescents: A Social-Ecological Theory Perspective. J. Sch. Violence 2021, 20, 167–181. [Google Scholar] [CrossRef]
- Alvarez-Garcia, D.; Garcia, T.; Nunez, J.C. Predictors of school bullying perpetration in adolescence: A systematic review. Aggress. Violent Behav. 2015, 23, 126–136. [Google Scholar] [CrossRef]
- Bernat, D.H.; Oakes, J.M.; Pettingell, S.L.; Resnick, M. Risk and Direct Protective Factors for Youth Violence Results from the National Longitudinal Study of Adolescent Health. Am. J. Prev. Med. 2012, 43, S41–S50. [Google Scholar] [CrossRef]
- Zych, I.; Farrington, D.P.; Ttofi, M.M. Protective factors against bullying and cyberbullying: A systematic review of meta-analyses. Aggress. Violent Behav. 2019, 45, 4–19. [Google Scholar] [CrossRef]
- Chamizo-Nieto, M.T.; Rey, L.; Pellitteri, J. Gratitude and Emotional Intelligence as Protective Factors against Cyber-Aggression: Analysis of a Mediation Model. Int. J. Environ. Res. Public Health 2020, 17, 4475. [Google Scholar] [CrossRef]
- Cook, C.R.; Williams, K.R.; Guerra, N.G.; Kim, T.E.; Sadek, S. Predictors of Bullying and Victimization in Childhood and Adolescence: A Meta-analytic Investigation. Sch. Psychol. Q. 2010, 25, 65–83. [Google Scholar] [CrossRef] [Green Version]
- Mendez, I.; Jorquera, A.B.; Ruiz-Esteban, C.; Martinez-Ramon, J.P.; Fernandez-Sogorb, A. Emotional Intelligence, Bullying, and Cyberbullying in Adolescents. Int. J. Environ. Res. Public Health 2019, 16, 4837. [Google Scholar] [CrossRef] [Green Version]
- Wong, D.S.W.; Chan, H.C.; Cheng, C.H.K. Cyberbullying perpetration and victimization among adolescents in Hong Kong. Child Youth Serv. Rev. 2014, 36, 133–140. [Google Scholar] [CrossRef]
- Mitsopoulou, E.; Giovazolias, T. Personality traits, empathy and bullying behavior: A meta-analytic approach. Aggress. Violent Behav. 2015, 21, 61–72. [Google Scholar] [CrossRef]
- Zych, I.; Baldry, A.C.; Farrington, D.P.; Llorent, V.J. Are children involved in cyberbullying low on empathy? A systematic review and meta-analysis of research on empathy versus different cyberbullying roles. Aggress. Violent Behav. 2019, 45, 83–97. [Google Scholar] [CrossRef]
- Lee, C.; Shin, N. Prevalence of cyberbullying and predictors of cyberbullying perpetration among Korean adolescents. Comput. Hum. Behav. 2017, 68, 352–358. [Google Scholar] [CrossRef]
- Nozaki, Y. Why do bullies matter?: The impacts of bullying involvement on Adolescents’ life satisfaction via an adaptive approach. Child. Youth Serv. Rev. 2019, 107, 104486. [Google Scholar] [CrossRef]
- Hong, J.S.; Espelage, D.L. A review of research on bullying and peer victimization in school: An ecological system analysis. Aggress. Violent Behav. 2012, 17, 311–322. [Google Scholar] [CrossRef]
- Cross, D.; Barnes, A.; Papageorgiou, A.; Hadwen, K.; Hearn, L.; Lester, L. A social-ecological framework for understanding and reducing cyberbullying behaviours. Aggress. Violent Behav. 2015, 23, 109–117. [Google Scholar] [CrossRef]
- Lopez-Castro, L.; Priegue, D. Influence of Family Variables on Cyberbullying Perpetration and Victimization: A Systematic Literature Review. Soc. Sci. 2019, 8, 98. [Google Scholar] [CrossRef] [Green Version]
- Grunin, L.; Yu, G.; Cohen, S. The Relationship between Youth Cyberbullying Behaviors and Their Perceptions of Parental Emotional Support. Int. J. Bullying Prev. 2021, 3, 227–239. [Google Scholar] [CrossRef]
- Guo, S.Y. A meta-analysis of the predictors of cyberbullying perpetration and victimization. Psychol. Sch. 2016, 53, 432–453. [Google Scholar] [CrossRef]
- Inchley, J.; Currie, D.; Cosma, A.; Samdal, O. (Eds.) Health Behaviour in School-aged Children (HBSC). Study Protocol: Background, Methodology and Mandatory Items for the 2017/18 Survey; Child and Adolescent Health Research Unit: St. Andrews, Scotland, 2018. [Google Scholar]
- Smętkowski, M.; Płoszaj, A.; Rok, J. Local concentration of deprivation in Poland. In European Regional and Local Studies EUROREG; Center for European Regional and Local Studies EUROREG: Warsaw, Poland, 2016; p. 45. [Google Scholar]
- Olweus, D. Bullying at School: What We Know and What Can We Do; Blackwell Publishers: Oxford, UK, 1993. [Google Scholar]
- Solberg, M.E.; Olweus, D. Prevalence estimation of school bullying with the Olweus Bully/Victim Questionnaire. Aggr. Behav. 2003, 29, 239–268. [Google Scholar] [CrossRef]
- Currie, C.; Molcho, M.; Boyce, W.; Holstein, B.; Torsheim, T.; Richter, M. Researching health inequalities in adolescents: The development of the Health Behaviour in School-Aged Children (HBSC) Family Affluence Scale. Soc. Sci. Med. 2008, 66, 1429–1436. [Google Scholar] [CrossRef]
- Torsheim, T.; Cavallo, F.; Levin, K.A.; Schnohr, C.; Mazur, J.; Niclasen, B.; Currie, C. Psychometric Validation of the Revised Family Affluence Scale: A Latent Variable Approach. Child Indic. Res. 2016, 9, 771–784. [Google Scholar] [CrossRef] [Green Version]
- Sweeting, H.; West, P.; Young, R.; Kelly, S. Dimensions of adolescent subjective social status within the school community: Description and correlates. J. Adolesc. 2011, 34, 493–504. [Google Scholar] [CrossRef] [Green Version]
- Muris, P. A brief questionnaire for measuring self-efficacy in youths. J. Psychopathol. Behav. Assess. 2001, 23, 145–149. [Google Scholar] [CrossRef]
- Furlong, M.J.; You, S.; Renshaw, T.L.; Smith, D.C.; O’Malley, M.D. Preliminary development and validation of the Social and Emotional Health Survey for secondary students. Soc. Indic. Res. 2014, 117, 1011–1032. [Google Scholar] [CrossRef]
- Cantril, H. The Pattern of Human Concern; Rutgers University Press: New Brunswick, NJ, USA, 1965. [Google Scholar]
- Zimet, G.D.; Powell, S.S.; Farley, G.K.; Werkman, S.; Berkoff, K.A. Psychometric characteristics of the multidimensional scale of perceived social support. J. Pers. Assess. 1990, 55, 610e7. [Google Scholar]
- Vatcheva, K.P.; Lee, M.; McCormick, J.B.; Rahbar, M.H. Multicollinearity in Regression Analyses Conducted in Epidemiologic Studies. Epidemiol. Sunnyvale. 2016, 6, 227. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, N. Detecting Multicollinearity in Regression Analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Barlett, C.; Coyne, S.M. A Meta-Analysis of Sex Differences in Cyber-Bullying Behavior: The Moderating Role of Age. Aggress. Behav. 2014, 40, 474–488. [Google Scholar] [CrossRef]
- Craig, W.; Harel-Fisch, Y.; Fogel-Grinvald, H.; Dostaler, S.; Hetland, J.; Simons-Morton, B.; Molcho, M.; de Mato, M.G.; Overpeck, M.; Due, P.; et al. A cross-national profile of bullying and victimization among adolescents in 40 countries. Int. J. Public Health 2009, 54, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Mazur, J.; Dzielska, A.; Małkowska-Szkutnik, A. (Eds.) Health and Health Behaviors among 17 Years Old Students on the Background of Changes in the Second Decade of Life; Institute of Mother and Child: Warsaw, Poland, 2020. (In Polish) [Google Scholar]
- López-Meneses, E.; Vázquez-Cano, E.; González-Zamar, M.D.; Abad-Segura, E. Socioeconomic Effects in Cyberbullying: Global Research Trends in the Educational Context. Int. J. Environ. Res. Public. Health. 2020, 17, 4369. [Google Scholar] [CrossRef]
- Tippett, N.; Wolke, D. Socioeconomic Status and Bullying: A Meta-Analysis. Am. J. Public Health 2014, 104, E48–E59. [Google Scholar] [CrossRef]
- Craig, W.; Boniel-Nissim, M.; King, N.; Walsh, S.D.; Boer, M.; Donnelly, P.D.; Harel Fisch, Y.; Malinowska-Cieslik, M.; de Matos, M.G.; Cosma, A.; et al. Social Media Use and Cyber-Bullying: A Cross-National Analysis of Young People in 42 Countries. J. Adolesc. Health 2020, 66, S100–S108. [Google Scholar] [CrossRef]
- Martínez-Ferrer, B.; León-Moreno, C.; Musitu-Ferrer, D.; Romero-Abrio, A.; Callejas-Jerónimo, J.E.; Musitu-Ochoa, G. Parental Socialization, School Adjustment and Cyber-Aggression among Adolescents. Int. J. Environ. Res. Public Health 2019, 16, 4005. [Google Scholar] [CrossRef] [Green Version]
- Olsson, G.; Låftman, S.B.; Modin, B. School Collective Efficacy and Bullying Behaviour: A Multilevel Study. Int. J. Environ. Res. Public. Health. 2017, 14, 1607. [Google Scholar] [CrossRef]
- Bottino, S.M.B.; Bottino, C.M.C.; Regina, C.G.; Correia, A.V.L.; Ribeiro, W.S. Cyberbullying and adolescent mental health: Systematic review. Cad. De Saude Publica 2015, 31, 463–475. [Google Scholar] [CrossRef] [Green Version]
- Goldweber, A.; Waasdorp, T.E.; Bradshaw, C.P. Examining the link between forms of bullying behaviors and perceptions of safety and belonging among secondary school students. J. Sch. Psychol. 2013, 51, 469–485. [Google Scholar] [CrossRef]
- Kim, S.S.; Craig, W.M.; King, N.; Bilz, L.; Cosma, A.; Molcho, M.; Qirjako, G.; Gaspar De Matos, M.; Augustine, L.; Šmigelskas, K.; et al. Bullying, Mental Health, and the Moderating Role of Supportive Adults: A Cross-National Analysis of Adolescents in 45 Countries. Int. J. Public. Health. 2022, 67, 1604264. [Google Scholar] [CrossRef]
- Özer, A.; Totan, T.; Atik, G. Individual correlates of bullying behaviour in Turkish middle schools. J. Psychol. Couns. Sch. 2011, 21, 186–202. [Google Scholar] [CrossRef] [Green Version]
- Bussey, K.; Fitzpatrick, S.; Raman, A. The role of moral disengagement and self-efficacy in cyberbullying. J. School. Violence 2015, 14, 30–46. [Google Scholar] [CrossRef]
- Azevedo Da Silva, M.; Gonzalez, J.C.; Person, G.L.; Martins, S.S. Bidirectional Association between Bullying Perpetration and Internalizing Problems Among Youth. J. Adolesc. Health 2020, 66, 315–322. [Google Scholar] [CrossRef]
- Barton, E.A. Bully Prevention: Tips and Strategies for School Leaders and Classroom Teachers; Corwin Press, Inc. A Sage Publication Company: Thousand Oaks, CA, USA, 2006; p. 129. [Google Scholar]
- Myers, J.J.; McCaw, D.S.; Hemphill, L.S. Responding to Cyberbullying: An Action Tool for School Leaders; Corwin, A Sage Company: Thousand Oaks, CA, USA, 2011; p. 195. [Google Scholar]
Variable | Sample n (%) | Bullying | Chi-sq p | Cyberbullying | Chi-sq p |
---|---|---|---|---|---|
Gender | |||||
Boys | 1715 (47.0) | 27.7 | 60.87 | 22.9 | 71.78 |
Girls | 1935 (53.0) | 16.9 | <0.001 | 12.3 | <0.001 |
Grade | |||||
K9 | 1955 (53.6) | 26.2 | 43.82 | 19.3 | 12.80 |
K11 | 1695 (46.4) | 17.1 | <0.001 | 14.8 | <0.001 |
Family structure | |||||
Non-intact | 900 (24.7) | 25.4 | 8.26 | 20.4 | 8.24 |
Intact | 2750 (75.3) | 20.8 | 0.004 | 16.2 | 0.004 |
FAS | |||||
Low | 1022 (28.4) | 23.0 | 1.25 | 16.1 | 1.54 |
Average | 1718 (47.8) | 21.8 | 0.535 | 17.4 | 0.463 |
High | 855 (23.8) | 20.9 | 18.1 | ||
LD quintiles | |||||
Q1—poorest | 486 (13.3) | 25.3 | 19.8 | ||
Q2 | 488 (13.4) | 25.5 | 17.34 | 17.2 | 2.71 |
Q3 | 603 (16.5) | 22.9 | 0.002 | 16.7 | 0.608 |
Q4 | 670 (18.4) | 23.4 | 16.7 | ||
Q5—richest | 1403 (38.4) | 18.5 | 16.8 |
Variable | Sample n (%) | Bullying | Chi-sq p | Cyberbullying | Chi-sq p |
---|---|---|---|---|---|
School performance | |||||
Low | 706 (19.5) | 27.2 | 14.60 | 21.7 | 15.79 |
Average | 1957 (54.0) | 21.3 | 0.001 | 17.1 | <0.001 |
High | 962 (26.5) | 19.7 | 14.3 | ||
Social self-efficacy | |||||
Low | 855 (24.0) | 24.1 | 3.24 | 19.7 | 6.76 |
Average | 1914 (53.7) | 21.2 | 0.198 | 17.2 | 0.034 |
High | 793 (22.3) | 21.1 | 14.8 | ||
Empathy | |||||
Low | 631 (17.5) | 33.1 | 67.74 | 26.2 | 53.33 |
Average | 2126 (59.0) | 20.9 | <0.001 | 16.8 | <0.001 |
High | 849 (23.5) | 15.5 | 11.8 | ||
Life satisfaction | |||||
Low | 767 (21.2) | 24.7 | 4.31 | 22.3 | 18.25 |
Average | 2114 (58.3) | 21.0 | 0.116 | 16.0 | <0.001 |
High | 745 (20.5) | 21.9 | 15.2 |
Variable | Sample n (%) | Bullying | Chi-sq p | Cyberbullying | Chi-sq p |
---|---|---|---|---|---|
Family support | |||||
Low | 872 (25.3) | 26.2 | 22.01 | 21.7 | 27.79 |
Average | 1771 (51.4) | 22.2 | <0.001 | 17.5 | <0.001 |
High | 804 (23.3) | 16.8 | 12.0 | ||
Peer support | |||||
Low | 785 (21.7) | 29.3 | 27.79 | 21.0 | 12.15 |
Average | 1970 (54.3) | 20.3 | <0.001 | 17.0 | 0.002 |
High | 869 (24.0 | 19.0 | 14.6 | ||
School attachment | |||||
Very low | 422 (11.6) | 30.6 | 28.7 | ||
Rather low | 732 (20.1) | 24.7 | 29.39 | 16.1 | 44.40 |
Average or high | 2481 (68.3) | 19.7 | <0.001 | 15.6 | <0.001 |
Variables | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
| 1 | 0.192 ** | 0.109 ** | 0.123 ** | 0.033 * | 0.153 ** | 0.100 ** | 0.060 ** | 0.018 |
| 1 | 0.023 | 0.042 * | 0.083 ** | −0.026 | −0.028 | 0.037 * | 0.028 | |
| 1 | 0.110 ** | 0.085 ** | 0.219 ** | 0.173 ** | 0.117 ** | 0.153 ** | ||
| 1 | 0.181 ** | 0.238 ** | 0.281 ** | 0.442 ** | 0.193 ** | |||
| 1 | −0.032 | 0.057 ** | 0.191 ** | 0.084 ** | ||||
| 1 | 0.415** | 0.231 ** | 0.254 ** | |||||
| 1 | 0.310 ** | 0.206 ** | ||||||
| 1 | 0.286 ** | |||||||
| 1 |
Independent Variables | B | S.E. | p | Odds Ratio | 95% CI for Odds Ratio | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Gender (ref. girls) | 0.661 | 0.094 | <0.001 | 1.937 | 1.612 | 2.327 |
Grade (ref. older) | 0.570 | 0.093 | <0.001 | 1.769 | 1.474 | 2.123 |
Family structure (ref. intact) | 0.207 | 0.101 | 0.041 | 1.230 | 1.009 | 1.500 |
Family affluence (ref. low) | 0.944 | |||||
Family affluence average | −0.030 | 0.104 | 0.777 | 0.971 | 0.791 | 1.191 |
Family affluence high | −0.039 | 0.128 | 0.758 | 0.961 | 0.748 | 1.236 |
Deprivation index (ref. richest Q5) | 0.017 | |||||
Deprivation index poorest (Q1) | 0.315 | 0.140 | 0.024 | 1.370 | 1.041 | 1.803 |
Deprivation index (Q2) | 0.416 | 0.142 | 0.004 | 1.515 | 1.146 | 2.003 |
Deprivation index (Q3) | 0.256 | 0.132 | 0.052 | 1.292 | 0.997 | 1.674 |
Deprivation index (Q4) | 0.297 | 0.127 | 0.019 | 1.346 | 1.050 | 1.725 |
School performance (ref. high) | 0.116 | |||||
School performance low | 0.278 | 0.135 | 0.040 | 1.321 | 1.013 | 1.723 |
School performance average | 0.105 | 0.109 | 0.336 | 1.111 | 0.897 | 1.376 |
Social self-efficacy (ref. high) | 0.156 | |||||
Social self-efficacy low | −0.270 | 0.143 | 0.059 | 0.764 | 0.577 | 1.010 |
Social self-efficacy average | −0.174 | 0.117 | 0.138 | 0.840 | 0.668 | 1.057 |
Empathy (ref. high) | <0.001 | |||||
Empathy low | 0.627 | 0.145 | <0.001 | 1.873 | 1.408 | 2.490 |
Empathy average | 0.302 | 0.120 | 0.012 | 1.352 | 1.068 | 1.712 |
Life satisfaction (ref. high) | 0.564 | |||||
Life satisfaction low | 0.005 | 0.152 | 0.974 | 1.005 | 0.746 | 1.353 |
Life satisfaction average | −0.096 | 0.120 | 0.421 | 0.908 | 0.718 | 1.148 |
Family support (ref. high) | <0.001 | |||||
Family support low | 0.628 | 0.146 | <0.001 | 1.873 | 1.407 | 2.493 |
Family support average | 0.416 | 0.125 | <0.001 | 1.516 | 1.186 | 1.936 |
Peer support (ref. high) | 0.020 | |||||
Peer support low | 0.114 | 0.145 | 0.430 | 1.121 | 0.844 | 1.488 |
Peer support average | −0.182 | 0.119 | 0.125 | 0.833 | 0.660 | 1.052 |
School attachment (ref. average or high) | 0.011 | |||||
School attachment very low | 0.388 | 0.138 | 0.005 | 1.474 | 1.125 | 1.932 |
School attachment rather low | 0.203 | 0.112 | 0.071 | 1.225 | 0.983 | 1.528 |
Constant | −2.790 | 0.222 | <0.001 | 0.061 | ||
R-Sq Nagelkerke | 0.096 |
Independent Variables | B | S.E. | p | Odds Ratio | 95% CI for Odds Ratio | |
---|---|---|---|---|---|---|
Lower | Upper | |||||
Gender (ref. girls) | 0.779 | 0.103 | <0.001 | 2.180 | 1.780 | 2.670 |
Grade (ref. older) | 0.345 | 0.101 | <0.001 | 1.413 | 1.159 | 1.721 |
Family structure (ref. intact) | 0.269 | 0.109 | 0.013 | 1.309 | 1.057 | 1.621 |
Family affluence (ref. low) | 0.066 | |||||
Family affluence average | 0.196 | 0.117 | 0.094 | 1.217 | 0.967 | 1.531 |
Family affluence high | 0.320 | 0.140 | 0.022 | 1.377 | 1.047 | 1.812 |
Deprivation index (ref. richest Q5) | 0.912 | |||||
Deprivation index poorest (Q1) | 0.112 | 0.154 | 0.467 | 1.119 | 0.827 | 1.512 |
Deprivation index (Q2) | 0.067 | 0.158 | 0.673 | 1.069 | 0.784 | 1.457 |
Deprivation index (Q3) | 0.119 | 0.143 | 0.406 | 1.126 | 0.851 | 1.491 |
Deprivation index (Q4) | 0.081 | 0.138 | 0.559 | 1.084 | 0.827 | 1.422 |
School performance (ref. high) | 0.128 | |||||
School performance low | 0.299 | 0.149 | 0.044 | 1.349 | 1.008 | 1.805 |
School performance average | 0.171 | 0.122 | 0.159 | 1.187 | 0.935 | 1.506 |
Social self-efficacy (ref. high) | 0.674 | |||||
Social self-efficacy low | −0.024 | 0.158 | 0.879 | 0.976 | 0.716 | 1.330 |
Social self-efficacy average | 0.074 | 0.132 | 0.574 | 1.077 | 0.832 | 1.394 |
Empathy (ref. high) | <0.001 | |||||
Empathy low | 0.622 | 0.161 | <0.001 | 1.863 | 1.359 | 2.554 |
Empathy average | 0.363 | 0.135 | 0.007 | 1.437 | 1.104 | 1.871 |
Life satisfaction (ref. high) | 0.010 | |||||
Life satisfaction low | 0.352 | 0.164 | 0.032 | 1.422 | 1.031 | 1.962 |
Life satisfaction average | −0.029 | 0.134 | 0.826 | 0.971 | 0.747 | 1.262 |
Family support (ref. high) | <0.001 | |||||
Family support low | 0.647 | 0.160 | <0.001 | 1.909 | 1.396 | 2.612 |
Family support average | 0.381 | 0.139 | 0.006 | 1.464 | 1.114 | 1.923 |
Peer support (ref. high) | 0.629 | |||||
Peer support low | −0.125 | 0.161 | 0.436 | 0.882 | 0.644 | 1.209 |
Peer support average | −0.122 | 0.130 | 0.349 | 0.885 | 0.685 | 1.143 |
School attachment (ref. average or high) | <0.001 | |||||
School attachment very low | 0.636 | 0.142 | <0.001 | 1.888 | 1.430 | 2.493 |
School attachment rather low | −0.121 | 0.129 | 0.350 | 0.886 | 0.688 | 1.142 |
Constant | −3.427 | 0.251 | <0.001 | 0.032 | ||
R-Sq Nagelkerke | 0.094 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malinowska-Cieślik, M.; Kleszczewska, D.; Dzielska, A.; Ścibor, M.; Mazur, J. Similarities and Differences between Psychosocial Determinants of Bullying and Cyberbullying Perpetration among Polish Adolescents. Int. J. Environ. Res. Public Health 2023, 20, 1358. https://doi.org/10.3390/ijerph20021358
Malinowska-Cieślik M, Kleszczewska D, Dzielska A, Ścibor M, Mazur J. Similarities and Differences between Psychosocial Determinants of Bullying and Cyberbullying Perpetration among Polish Adolescents. International Journal of Environmental Research and Public Health. 2023; 20(2):1358. https://doi.org/10.3390/ijerph20021358
Chicago/Turabian StyleMalinowska-Cieślik, Marta, Dorota Kleszczewska, Anna Dzielska, Monika Ścibor, and Joanna Mazur. 2023. "Similarities and Differences between Psychosocial Determinants of Bullying and Cyberbullying Perpetration among Polish Adolescents" International Journal of Environmental Research and Public Health 20, no. 2: 1358. https://doi.org/10.3390/ijerph20021358
APA StyleMalinowska-Cieślik, M., Kleszczewska, D., Dzielska, A., Ścibor, M., & Mazur, J. (2023). Similarities and Differences between Psychosocial Determinants of Bullying and Cyberbullying Perpetration among Polish Adolescents. International Journal of Environmental Research and Public Health, 20(2), 1358. https://doi.org/10.3390/ijerph20021358