Characterization of Environmental Levels of Pesticide Residues in Household Air and Dust Samples near a Bioenergy Plant Using Treated Seed as Feedstock
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Air and Dust Sampling
2.3. Sample Preparation and Analysis
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Cimino, A.M.; Boyles, A.L.; Thayer, K.A.; Perry, M.J. Effects of Neonicotinoid Pesticide Exposure on Human Health: A Systematic Review. Environ. Health Perspect. 2017, 125, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Wu-Smart, J.; Spivak, M. Sub-lethal effects of dietary neonicotinoid insecticide exposure on honey bee queen fecundity and colony development. Sci. Rep. 2016, 6, 32108. [Google Scholar] [CrossRef] [PubMed]
- Mendy, A.; Pinney, S.M. Exposure to neonicotinoids and serum testosterone in men, women, and children. Environ. Toxicol. 2022, 37, 1521–1528. [Google Scholar]
- Lin, C.H.; Sponsler, D.B.; Richardson, R.T.; Watters, H.D.; Glinski, D.A.; Henderson, W.M.; Minucci, J.M.; Lee, E.H.; Purucker, S.T.; Johnson, R.M. Honey Bees and Neonicotinoid-Treated Corn Seed: Contamination, Exposure, and Effects. Environ. Toxicol. Chem. 2021, 40, 1212–1221. [Google Scholar]
- Weiss, B.; Amler, S.; Amler, R.W. Pesticides. Pediatrics 2004, 113 (Suppl. S4), 1030–1036. [Google Scholar] [PubMed]
- Smalling, K.L.; Hladik, M.L.; Sanders, C.J.; Kuivila, K.M. Leaching and sorption of neonicotinoid insecticides and fungicides from seed coatings. J. Environ. Sci. Health B 2018, 53, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Unglesbee, E. Treated Seed Troubles. Progressive Farmer DTN, 14 July 2021. [Google Scholar]
- Gillam, C. Outrage as Regulators Let Pesticides from Factory Pollute US Town for Years. The Guardian, 29 May 2021. [Google Scholar]
- Kruzman, D. How a Nebraska Ethanol Plant Turned Seeds into Toxic Waste. Grist, 21 April 2022; p. 18. [Google Scholar]
- Anderson, J.C.; Dubetz, C.; Palace, V.P. Neonicotinoids in the Canadian aquatic environment: A literature review on current use products with a focus on fate, exposure, and biological effects. Sci. Total Environ. 2015, 505, 409–422. [Google Scholar]
- Hladik, M.L.; Kolpin, D.W.; Kuivila, K.M. Widespread occurrence of neonicotinoid insecticides in streams in a high corn and soybean producing region, USA. Environ. Pollut. 2014, 193, 189–196. [Google Scholar]
- Bennett, B.; Workman, T.; Smith, M.N.; Griffith, W.C.; Thompson, B.; Faustman, E.M. Longitudinal, Seasonal, and Occupational Trends of Multiple Pesticides in House Dust. Environ. Health Perspect. 2019, 127, 17003. [Google Scholar]
- Wang, A.; Mahai, G.; Wan, Y.; Jiang, Y.; Meng, Q.; Xia, W.; He, Z.; Xu, S. Neonicotinoids and carbendazim in indoor dust from three cities in China: Spatial and temporal variations. Sci. Total Environ. 2019, 695, 133790. [Google Scholar]
- Zhang, H.; Shen, K.; Wu, R.; Li, Z.; Wang, X.; Wang, D.; Zhan, M.; Xu, W.; Gao, Y.; Lu, L. Occurrence and distribution of neonicotinoids and characteristic metabolites in paired urine and indoor dust from young adults: Implications for human exposure. Environ. Res. 2021, 199, 111175. [Google Scholar]
- Klarich, K.L.; Pflug, N.C.; DeWald, E.M.; Hladik, M.L.; Kolpin, D.W.; Cwiertny, D.M.; LeFevre, G.H. Occurrence of Neon-icotinoid Insecticides in Finished Drinking Water and Fate during Drinking Water Treatment. Environ. Sci. Technol. Lett. 2017, 4, 168–173. [Google Scholar]
- Li, A.J.; Kannan, K. Profiles of urinary neonicotinoids and dialkylphosphates in populations in nine countries. Environ. Int. 2020, 145, 106120. [Google Scholar]
- Ospina, M.; Wong, L.Y.; Baker, S.E.; Serafim, A.B.; Morales-Agudelo, P.; Calafat, A.M. Exposure to neonicotinoid insecticides in the U.S. general population: Data from the 2015-2016 national health and nutrition examination survey. Environ. Res 2019, 176, 108555. [Google Scholar]
- Marfo, J.T.; Fujioka, K.; Ikenaka, Y.; Nakayama, S.M.; Mizukawa, H.; Aoyama, Y.; Ishizuka, M.; Taira, K. Relationship between Urinary N-Desmethyl-Acetamiprid and Typical Symptoms including Neurological Findings: A Prevalence Case-Control Study. PLoS ONE 2015, 10, e0142172. [Google Scholar]
- Carmichael, S.L.; Yang, W.; Roberts, E.; Kegley, S.E.; Padula, A.M.; English, P.B.; Lammer, E.J.; Shaw, G.M. Residential agricultural pesticide exposures and risk of selected congenital heart defects among offspring in the San Joaquin Valley of California. Environ. Res. 2014, 135, 133–138. [Google Scholar]
- Caron-Beaudoin, E.; Viau, R.; Sanderson, J.T. Effects of Neonicotinoid Pesticides on Promoter-Specific Aromatase (CYP19) Expression in Hs578t Breast Cancer Cells and the Role of the VEGF Pathway. Environ. Health Perspect. 2018, 126, 047014. [Google Scholar]
- Godbole, A.M.; Moonie, S.; Coughenour, C.; Zhang, C.; Chen, A.; Vuong, A.M. Exploratory analysis of the associations between neonicotinoids and measures of adiposity among US adults: NHANES 2015-2016. Chemosphere 2022, 300, 134450. [Google Scholar] [PubMed]
- Keil, A.P.; Daniels, J.L.; Hertz-Picciotto, I. Autism spectrum disorder, flea and tick medication, and adjustments for exposure misclassification: The CHARGE (CHildhood Autism Risks from Genetics and Environment) case-control study. Environ. Health 2014, 13, 3. [Google Scholar]
- Vuong, A.M.; Zhang, C.; Chen, A. Associations of neonicotinoids with insulin and glucose homeostasis parameters in US adults: NHANES 2015-2016. Chemosphere 2022, 286 Pt 1, 131642. [Google Scholar]
- Yang, C.; Liang, J. Associations between neonicotinoids metabolites and hematologic parameters among US adults in NHANES 2015-2016. Environ. Sci. Pollut. Res. Int. 2023, 30, 26327–26337. [Google Scholar]
- Yang, W.; Carmichael, S.L.; Roberts, E.M.; Kegley, S.E.; Padula, A.M.; English, P.B.; Shaw, G.M. Residential agricultural pesticide exposures and risk of neural tube defects and orofacial clefts among offspring in the San Joaquin Valley of California. Am. J. Epidemiol. 2014, 179, 740–748. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention (CDC). National Report on Human Exposure to Environmental Chemicals; Human, Ed.; USDO Services: Atlanta, GA, USA, 2022. [Google Scholar]
- Satiroff, J.A.; Messer, T.L.; Mittelstet, A.R.; Snow, D.D. Pesticide occurrence and persistence entering recreational lakes in watersheds of varying land uses. Environ. Pollut. 2021, 273, 116399. [Google Scholar]
- Snow, D.D.; Chakraborty, P.; Uralbekov, B.; Satybaldiev, B.; Sallach, J.B.; Thornton Hampton, L.M.; Jeffries, M.; Kolok, A.S.; Bartelt-Hunt, S.B. Legacy, and current pesticide residues in Syr Darya, Kazakhstan: Contamination status, seasonal variation and preliminary ecological risk assessment. Water Res. 2020, 184, 116141. [Google Scholar] [CrossRef]
- Deziel, N.C.; Viet, S.M.; Rogers, J.W.; Camann, D.E.; Marker, D.A.; Heikkinen, M.S.; Yau, A.Y.; Stout, D.M., II; Dellarco, M.D. Comparison of wipe materials and wetting agents for pesticide residue collection from hard surfaces. Sci. Total Environ. 2011, 409, 4442–4448. [Google Scholar] [CrossRef]
- USEPA. Definition and Procedure for the Determination of the Method Detection Limit, Revision 2; U.S. Environmental Protection Agency: Washington, DC, USA, 2016; pp. 1–8. [Google Scholar]
- Huang, Y.; Zhang, B.; Xue, J.; Lan, B.; Guo, Y.; Xu, L.; Zhang, T. A Pilot Nationwide Survey on the Concentrations of Neonicotinoids and Their Metabolites in Indoor Dust from China: Application for Human Exposure. Bull. Environ. Contam. Toxicol. 2022, 109, 900–909. [Google Scholar]
- Salis, S.; Testa, C.; Roncada, P.; Armorini, S.; Rubattu, N.; Ferrari, A.; Miniero, R.; Brambilla, G. Occurrence of imidacloprid, carbendazim, and other biocides in Italian house dust: Potential relevance for intakes in children and pets. J. Environ. Sci. Health B 2017, 52, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Zhang, R.; Zeng, X.; Wang, X.; Wang, D.; Jia, H.; Xu, W.; Gao, Y. Exposure to neonicotinoid insecticides and their characteristic metabolites: Association with human liver cancer. Environ. Res. 2022, 208, 112703. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wan, Y.; Jiang, Y.; Xia, W.; He, Z.; Xu, S. Occurrence of azole and strobilurin fungicides in indoor dust from three cities of China. Environ. Pollut. 2022, 304, 119168. [Google Scholar] [CrossRef]
- Lafon, P.A.; Wang, Y.; Arango-Lievano, M.; Torrent, J.; Salvador-Prince, L.; Mansuy, M.; Mestre-Frances, N.; Givalois, L.; Liu, J.; Mercader, J.V.; et al. Fungicide Residues Exposure, and beta-amyloid Aggregation in a Mouse Model of Alzheimer’s Disease. Environ. Health Perspect. 2020, 128, 17011. [Google Scholar] [CrossRef]
- Draskau, M.K.; Boberg, J.; Taxvig, C.; Pedersen, M.; Frandsen, H.L.; Christiansen, S.; Svingen, T. In vitro and in vivo endocrine disrupting effects of the azole fungicides triticonazole and flusilazole. Environ. Pollut. 2019, 255 Pt 2, 113309. [Google Scholar] [CrossRef]
- Miret, N.V.; Pontillo, C.A.; Zarate, L.V.; Kleiman de Pisarev, D.; Cocca, C.; Randi, A.S. Impact of endocrine disruptor hexachlorobenzene on the mammary gland and breast cancer: The story thus far. Environ. Res. 2019, 173, 330–341. [Google Scholar] [CrossRef] [PubMed]
- Hladik, M.L.; Main, A.R.; Goulson, D. Environmental Risks and Challenges Associated with Neonicotinoid Insecticides. Environ. Sci. Technol. 2018, 52, 3329–3335. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, Y.; Chen, W.J.; Wu, S.; Lei, Q.; Zhou, Z.; Zhang, W.; Mishra, S.; Bhatt, P.; Chen, S. Environmental occurrence, toxicity concerns, and biodegradation of neonicotinoid insecticides. Environ. Res. 2023, 218, 114953. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Dyer, D.G.; McConnell, L.L.; Bondarenko, S.; Allen, R.; Heinemann, O. Clothianidin in agricultural soils and uptake into corn pollen and canola nectar after multiyear seed treatment applications. Environ. Toxicol. Chem. 2016, 35, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Hladik, M.L.; Bradbury, S.; Schulte, L.A.; Helmers, M.; Witte, C.; Kolpin, D.W.; Harris, M. Neonicotinoid insecticide removal by prairie strips in row-cropped watersheds with historical seed coating use. Agric. Ecosyst. Environ. 2017, 241, 160–167. [Google Scholar] [CrossRef]
- Coronado, G.D.; Holte, S.; Vigoren, E.; Griffith, W.C.; Barr, D.B.; Faustman, E.; Thompson, B. Organophosphate pesticide exposure and residential proximity to nearby fields: Evidence for the drift pathway. J. Occup. Environ. Med. 2011, 53, 884–891. [Google Scholar] [CrossRef]
- Nezikova, B.; Degrendele, C.; Cupr, P.; Hohenblum, P.; Moche, W.; Prokes, R.; Vankova, L.; Kukucka, P.; Martinik, J.; Audy, O.; et al. Bulk atmospheric deposition of persistent organic pollutants and polycyclic aromatic hydrocarbons in Central Europe. Environ. Sci. Pollut. Res. Int. 2019, 26, 23429–23441. [Google Scholar] [CrossRef]
- Hwang, H.M.; Park, E.K.; Young, T.M.; Hammock, B.D. Occurrence of endocrine-disrupting chemicals in indoor dust. Sci. Total Environ. 2008, 404, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, Y.; Su, G. Comparative study of neonicotinoid insecticides (NNIs) and NNI-Related substances (r-NNIs) in foodstuffs and indoor dust. Environ. Int. 2022, 166, 107368. [Google Scholar] [CrossRef]
- U.S. EPA. Pesticides Fact Sheet for Clothianidin. U.S. Environmental Protection Agency. Available online: https://www3.epa.gov/pesticides/chem_search/reg_actions/registration/fs_PC-044309_30-May-03.pdf (accessed on 5 October 2023).
- Zhou, Y.; Guo, J.; Wang, Z.; Zhang, B.; Sun, Z.; Yun, X.; Zhang, J. Levels and inhalation health risk of neonicotinoid insecticides in fine particulate matter (PM2.5) in urban and rural areas of China. Environ. Int. 2020, 142, 105822. [Google Scholar] [CrossRef] [PubMed]
Indoor Dust | Outdoor Dust | ||||
---|---|---|---|---|---|
Contaminant | Study | Control | Study | Control | |
Clothianidin | (N = 11) | (N = 3) | (N = 10) | (N = 1) | |
Mean (SD) | 7.03 (5.63) | 1.42 (1.14) | 14.15 (22.69) | 0.17 | |
Median (IQR) | 5.06 (2.40, 11.58) | 1.81 (0.14, 2.31) | 3.23 (0.24, 14.54) | 0.17 (0.17, 0.17) | |
Dinotefuran | (N = 6) | (N = 2) | (N = 2) | (N = 2) | |
Mean (SD) | 1.90 (2.83) | 2.26 | 0.15 | 0.42 | |
Median (IQR) | 0.67 (0.25, 2.06) | 2.26 (0.32, 4.21) | 0.15 (0.15, 0.15) | 0.42 (0.17, 0.68) | |
Imidacloprid | (N = 5) | (N = 4) | (N = 3) | (N = 2) | |
Mean(SD) | 1.57 (1.63) | 0.38 (0.15) | 1.39 (1.90) | 3.09 | |
Median (IQR) | 1.48 (0.23, 1.77) | 0.38 (0.26, 0.49) | 0.45 (0.15, 3.58) | 3.09 (0.12, 6.05) | |
Imidacloprid Olefin * | (N = 0) | (N = 0) | (N = 0) | (N = 1) | |
Mean (SD) | 0.44 | ||||
Median (IQR) | 0.44 (0.44, 0.44) | ||||
Imidacloprid Desnitro * | (N = 4) | (N = 0) | (N = 1) | (N = 1) | |
Mean (SD) | 0.33 (0.12) | 0.37 | 0.32 | ||
Median (IQR) | 0.28 (0.28, 0.40) | 0.37 (0.37, 0.37) | 0.32 (0.32, 0.32) | ||
Imidacloprid Urea * | (N = 2) | (N = 0) | (N = 1) | (N = 1) | |
Mean (SD) | 0.39 (0.14) | 0.38 (0) | 0.32 (0) | ||
Median (IQR) | 0.39 (0.29, 0.50) | 0.38 (0.38, 0.38) | 0.32 (0.32, 0.32) | ||
Thiamethoxam | (N = 11) | (N = 2) | (N = 8) | (N = 1) | |
Mean (SD) | 1.76 (1.71) | 1.13 (1.00) | 3.19 (4.47) | 0.09 (0) | |
Median (IQR) | 1.23 (0.52, 2.88) | 1.13 (0.43, 1.84) | 0.59 (0.15, 5.98) | 0.09 (0.09, 0.09) | |
Thiamethoxam Urea * | (N = 0) | (N = 0) | (N = 3) | (N = 0) | |
Mean (SD) | 0.65 (0.44) | ||||
Median (IQR) | 0.55 (0.26, 1.13) |
Indoor Dust | Outdoor Dust | ||||
---|---|---|---|---|---|
Contaminant | Study | Control | Study | Control | |
Azoxystrobin | (N = 8) | (N = 1) | (N = 11) | (N = 5) | |
Mean (SD) | 3.52 (4.49) | 0.53 | 11.83 (16.23) | 4.09 (3.02) | |
Median (IQR) | 1.15 (0.67, 5.74) | 0.53 (0.53, 0.53) | 7.28 (3.05, 13.60) | 4.78 (1.71, 5.68) | |
Metalaxyl * | (N = 1) | (N = 0) | (N = 2) | (N = 0) | |
Mean (SD) | 1.74 (.) | 0.33 (0.08) | |||
Median (IQR) | 1.74 (1.74, 1.74) | 0.33 (0.27, 0.39) | |||
Pyraclostrobin * | (N = 2) | (N = 0) | (N = 2) | (N = 2) | |
Mean (SD) | 2.55 (2.96) | 0.61 (0.31) | 1.70 (0.53) | ||
Median (IQR) | 2.55 (0.45, 4.64) | 0.61 (0.39, 0.83) | 1.70 (1.33, 2.08) |
Indoor Air | Outdoor Air | ||||
---|---|---|---|---|---|
Contaminant | Study | Control | Study | Control | |
6-Chloronicotinic acid * | (N = 0) | (N = 2) | (N = 0) | (N = 1) | |
Mean (SD) | 0.09 (0.02) | 0.02 (0) | |||
Median (IQR) | 0.09 (0.07, 0.11) | 0.02 (0.02, 0.02) | |||
Clothianidin | (N = 10) | (N = 4) | (N = 9) | (N = 5) | |
Mean (SD) | 0.19 (0.27) | 0.02 (0.01) | 0.12 (0.17) | 0.02 (0.01) | |
Median (IQR) | 0.05 (0.04, 0.21) | 0.02 (0.01, 0.03) | 0.05 (0.04, 0.06) | 0.02 (0.01, 0.02) | |
Imidacloprid * | (N = 2) | (N = 1) | (N = 2) | (N = 0) | |
Mean (SD) | 0.07 (0.03) | 0.04 (0) | 0.05 (0.01) | ||
Median (IQR) | 0.07 (0.05, 0.09) | 0.04 (0.04, 0.04) | 0.05 (0.04, 0.06) | ||
Imidacloprid Desnitro * | (N = 1) | (N = 0) | (N = 2) | (N = 0) | |
Mean (SD) | 0.02 (0) | 0.02 (0.01) | |||
Median (IQR) | 0.02 (0.02, 0.02) | 0.02 (0.01, 0.02) | |||
Thiamethoxam * | (N = 6) | (N = 0) | (N = 6) | (N = 0) | |
Mean (SD) | 0.09 (0.03) | 0.11 (0.10) | |||
Median (IQR) | 0.09 (0.07, 0.10) | 0.06 (0.04, 0.19) |
Indoor Air | Outdoor Air | ||||
---|---|---|---|---|---|
Contaminant | Study | Control | Study | Control | |
Azoxystrobin | (N = 5) | (N = 2) | (N = 6) | (N = 1) | |
Mean (SD) | 0.15 (0.25) | 0.02 (0) | 0.19 (0.20) | 0.02 (0) | |
Median (IQR) | 0.03 (0.02, 0.09) | 0.02 (0.01, 0.02) | 0.13 (0.06, 0.20) | 0.02 (0.02, 0.02) | |
Picoxystrobin * | (N = 1) | (N = 0) | (N = 0) | (N = 0) | |
Mean (SD) | 0.01 (0) | ||||
Median (IQR) | 0.01 (0.01, 0.01) |
Indoor Dust | Outdoor Dust | ||||||
---|---|---|---|---|---|---|---|
Contaminant | Study | Control | p-value | Study | Control | p-value | |
Clothianidin | (N = 11) | (N = 6) | (N = 11) | (N = 6) | |||
DL, n (%) | 0.0294 1 | 0.0054 1 | |||||
No | 0 (0.0%) | 3 (50%) | 1 (9.1%) | 5 (83.3%) | |||
Yes | 11 (100%) | 3 (50%) | 10 (90.9%) | 1 (16.7%) | |||
Thiamethoxam | (N = 11) | (N = 6) | (N = 11) | (N = 6) | |||
DL, n (%) | 0.0063 1 | 0.0498 1 | |||||
No | 0 (0.0%) | 4 (66.7%) | 3 (27.3%) | 5 (83.3%) | |||
Yes | 11 (100%) | 2 (33.3%) | 8 (72.7%) | 1 (16.7%) | |||
Azoxystrobin | (N = 11) | (N = 6) | (N = 11) | (N = 6) | |||
DL, n (%) | 0.0498 1 | 0.3529 1 | |||||
No | 3 (27.3%) | 5 (83.3%) | 0 (0.0%) | 1 (16.7%) | |||
Yes | 8 (72.7%) | 1 (16.7%) | 11 (100%) | 5 (83.3%) | |||
Contaminant | Indoor Air | Outdoor Air | |||||
Thiamethoxam | (N = 10) | (N = 6) | (N = 10) | (N = 6) | |||
DL, n (%) | 0.0338 1 | 0.0338 1 | |||||
No | 4 (40.0%) | 6 (100%) | 4 (40.0%) | 6 (100%) | |||
Yes | 6 (60.0%) | 0 (0.0%) | 6 (60.0%) | 0 (0.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taiba, J.; Rogan, E.G.; Snow, D.D.; Achutan, C.; Zahid, M. Characterization of Environmental Levels of Pesticide Residues in Household Air and Dust Samples near a Bioenergy Plant Using Treated Seed as Feedstock. Int. J. Environ. Res. Public Health 2023, 20, 6967. https://doi.org/10.3390/ijerph20216967
Taiba J, Rogan EG, Snow DD, Achutan C, Zahid M. Characterization of Environmental Levels of Pesticide Residues in Household Air and Dust Samples near a Bioenergy Plant Using Treated Seed as Feedstock. International Journal of Environmental Research and Public Health. 2023; 20(21):6967. https://doi.org/10.3390/ijerph20216967
Chicago/Turabian StyleTaiba, Jabeen, Eleanor G. Rogan, Daniel D. Snow, Chandran Achutan, and Muhammad Zahid. 2023. "Characterization of Environmental Levels of Pesticide Residues in Household Air and Dust Samples near a Bioenergy Plant Using Treated Seed as Feedstock" International Journal of Environmental Research and Public Health 20, no. 21: 6967. https://doi.org/10.3390/ijerph20216967
APA StyleTaiba, J., Rogan, E. G., Snow, D. D., Achutan, C., & Zahid, M. (2023). Characterization of Environmental Levels of Pesticide Residues in Household Air and Dust Samples near a Bioenergy Plant Using Treated Seed as Feedstock. International Journal of Environmental Research and Public Health, 20(21), 6967. https://doi.org/10.3390/ijerph20216967