Occupational Etiology of Oropharyngeal Cancer: A Literature Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection
2.2. Data Charting
3. Results
3.1. Hospitality Industry
3.2. Welders
3.3. Mechanical Wood Processing
3.4. Agro-Industry
3.5. Asphalt Industry
3.6. Mechanics
3.7. Leather Industry
3.8. Printing Industry
3.9. Workers Exposed to Solvents
3.10. 9/11 World Trade Center Responders
3.11. Other Occupational Categories
Author Year Location | Occupational Exposure Exposure Assessment | Study Design Sample Observations | Observed Effect for OPC Remarks |
---|---|---|---|
Barul et al., 2017 France [38] | Chlorinated solvents (5 types) Duration of exposure (ever, short, intermediate, long) and cumulative exposure index (low, medium, high) assessed by job-exposure matrices | Case–control study Men only OPC diagnosed 2001–2007 (ICARE data) 502 OPC cases 2780 controls from same geographical area (general population) frequency-matched for age | Ever exposure to at least one chlorinated solvent: OR 0.99 (95% CI: 0.76–1.29) Adjusted for age, residence area, tobacco, alcohol, asbestos exposure Potential non-differential misclassification bias |
Barul et al., 2019 France [39] | Petroleum-based and oxygenated solvents (10 types) Duration of exposure (ever, short, intermediate, long) and cumulative exposure index (low, medium, high) assessed by job-exposure matrices | Case–control study Men only OPC diagnosed 2001–2007 (ICARE data) 543 OPC cases 2780 controls from same geographical area (general population) frequency-matched for age | High exposure to diethyl ether: OR 7.78 (95% CI: 1.42–42.6); no elevated risk if medium or low exposure No significant increased risk of OPC associated with other solvents Adjusted for age, residence area, tobacco, alcohol, socioeconomic status Potential non-differential misclassification bias |
Barul et al., 2020 France [17] | Welders At least on job period as “welder and flame-cutter” or welding activity amounting to at least 5% of the working time in at least one job | Case–control study Men only OPC diagnosed 2001–2007 (ICARE data) 472 OPC cases 2703 controls from same geographical area (general population) frequency-matched for age | Welding OR 0.96 (95% CI: 0.67–1.38) >10 years of welding: OR 1.04 (95% CI: 0.70–1.75) Adjusted for age, area of residence, tobacco, alcohol, asbestos exposure Potential recall bias, threshold for classification as welder low. |
Carton et al., 2017 France [40] | Chlorinated, petroleum-based and oxygenated solvents Duration of exposure (ever, short, intermediate, long) and cumulative exposure index (low, medium, high) assessed by job-exposure matrices | Case–control study Women only OPC diagnosed 2001–2007 (ICARE data) 111 OPC cases 775 controls from same geographical area (general population) frequency-matched for age | Ever exposure to Perchloroethylene: OR 3.43 (95% CI: 1.01–11.8) No significant increased risk of OPC associated with other solvents 10 solvents analyzed Adjusted for age, residence area, tobacco, alcohol Potential non-differential misclassification bias, small sample size |
Cauvin et al., 1990 France [28] | Occupational exposure Ever exposed to any of the 25 categories of exposure. Farmers excluded. | Case–control study Men only OPSCC diagnosed 1975–1984 667 OPC cases 147 controls: healthy patients, or patients with cancer of another site, or another histological type not known to be strongly related to occupational risk factor | Exposure to flour: OR 0.22 (95% CI: 0.07–0.68) Adjusted for age, tobacco, alcohol, state of dentition, and other occupational exposures Potential recall bias |
Faramawi et al., 2015 USA [27] | Soup manufacturing plant Workers identified from union rosters. No employment duration limit. Employed during 1950–2003 in Baltimore at same plant. | Cohort study on mortality Reference: US general population 2431 workers 1527 men and 904 women Follow-up 1959–2006 91,987 person-years of follow-up 40 years of average follow-up 1000 deaths (41%) 4 deaths from OPC in men, none in women | SMR for men: 5.5 (95% CI: 1.5–14.1) SMR for women: 0.0 (95% CI: 0.0–19.5) No data on confounders |
Graber et al., 2019 USA [5] | WTC responders Involved in rescue operations that followed 9/11 | Cohort study on incidence Reference: US general population (age- sex-, ethnic group- and year of specific cancer rates used) 33,809 WTC responders 30,139 men and 4948 women Follow-up 2003–2012 32 cases of OPC | SIR during 2003–2008: 0.90 (95% CI: 0.49–1.50) SIR during 2009–2012: 1.73 (95% CI: 1.02–2.73) Potential surveillance bias (participation in the study may result in earlier cancer diagnosis than in the general population), short follow-up |
Greenberg 1972 UK [37] | Printing factory Printing factory workers in Greater London whose death certificates were retrieved and analyzed. Nearly all worked all their life at the printing factory | Proportional cohort study on mortality Men only Reference: Deaths among general population in greater London 670 workers who died during 1954–1966 2 OPC (tonsillar carcinoma) deaths | Proportionate mortality ratio 7.7 (95% CI 0.4–36) No data on confounders |
Johnson et al., 2010 USA [29] | Poultry slaughtering and processing workers Subjects identified from union rosters. Worked exclusively in six poultry plants during 1954–1979 | Cohort study on mortality Reference: US general population 2580 workers 1371 men and 1209 women Follow-up 1954–2003 86,407 person-years 3 deaths from OPC recorded in men, none in women | SMR for all: 3.7 (95% CI: 0.8–10.8) SMR for men: 4.6 (95% CI: 1.0–13.5) No data on confounders |
Johnson et al., 2015 USA [30] | Meat cutters and wrappers at supermarkets Subjects identified from union rosters. Worked anytime 1950–1979 in the meat and deli departments of supermarkets | Cohort study on mortality Reference: US general population 10,701 workers 6795 men and 3906 women Follow-up 1950–2006 299,295 person-years Average follow-up 37.3 years 4270 deaths (40%) 4 deaths from OPC recorded in men and 4 in women | SMR for all: 2.7 (95% CI: 1.2–5.3) SMR for men: 1.7 (95% CI: 0.5–4.3) SMR for women: 7.3 (95% CI: 2.0–18.7) No data on confounders |
Nikkilä et al., 2023 Denmark, Iceland, Finland, Iceland, Norway, and Sweden [14] | Occupational title 53 occupational categories | Cohort study on incidence Reference: Country’s general population 14.9 million people Follow-up 1961–2005 6155 OPC cases | In men: SIR for waiters: 6.28 (95% CI 4.68–8.26) SIR for artistic workers: 2.97 (95% CI 2.31–3.76) SIR for cooks and stewards: 2.64 (95% CI 1.83–3.69) SIR for seamen: 2.30 (95% CI 1.91–2.17) SIR for journalists (SIR 2.09, 95% CI: 1.33–3.14) SIR for economically inactive (SIR 1.92, 95% CI: 1.73–2.12) In women: SIR for waiters: 2.02 (95%CI 1.41–2.81) SIR for packers: 1.73 (95% CI 1.07–2.64) No data on confounders |
Radoï et al., 2019 France [35] | Leather dust Duration of exposure (ever, short, intermediate, long) and cumulative exposure index (low, medium, high) assessed by job-exposure matrices | Case–control study OPC diagnosed 2001–2007 (ICARE data) 658 OPC cases 3555 controls from same geographical area (general population) frequency-matched for sex and age | Ever exposed to leather dust: OR 0.64 (95% CI: 0.31–1.29) >7 years of exposure: OR 0.69 (95% CI: 0.22–2.16) Adjusted for age, sex, area of residence, socioeconomic status, tobacco, and alcohol Potential non-differential misclassification bias |
Santos et al., 2020 Brazil [34] | Mechanics Individuals whose occupation was coded as mechanic in national database | Cohort study on mortality Men only 3095 mechanics who died from cancer 2006–2017 274 cases of death from OPC recorded (8.5%) General population as comparison group: 123,556 cancer deaths and 6631 deaths from OPC (5.1%) | OR for all: 1.84 (95% CI: 1.66–2.11) OR elevated in all race, education, and region groups No data on confounders |
Vlajinac et al., 2006 Serbia [21] | Wood dust Exposure assessed by asking whether ever exposed | Case–control study OPC diagnosed 1998–2000 100 cases of OPC 89 men and 11 women 100 controls selected among patients treated during the same period for non-malignant diseases of the head and neck and (most frequently nasopharyngitis, sinusitis, rhinitis, and pharyngitis) matched for sex, age, and place of residence | OR 4.16 (95% CI: 1.45–11.91) Adjusted for smoking, alcohol consumption, other dental diseases, herpes simplex virus infection, occupation exposure to dry air, and smoking x alcohol consumption Selection bias (controls patients treated for non-cancerous head and neck diseases), small sample size |
Zanardi et al., 2013 Italy [31] | Asphalt roofing factory workers exposed to asbestos Two subsets: (1) All workers employed at factory using asbestos 1964–1979 until factory was closed. (2) Workers employed after 1979 and not exposed to asbestos. | Cohort study on mortality Men only Reference: General population from same region 104 blue-collar workers exposed to production line employed 1964–1979 when asbestos was used (10.6 average working years) 41 workers exposed to production line employed after 1979 (3.6 average working years) Follow-up 1964–2001 2 deaths from OPC (palatine tonsil) and 2 from pharyngeal cancer (i.e., either oropharyngeal or hypopharyngeal) recorded in production line workers exposed to asbestos (expected < 0.2) No deaths from OPC in workers employed after 1979 (expected < 0.02) | SMR of lip, oral, and pharyngeal cancer for production line workers exposed to asbestos: 21.1 (95% CI: 8.8–50.7) Short exposure time among workers employed after 1979 |
4. Discussion
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jamal, Z.; Anjum, F. Oropharyngeal Squamous Cell Carcinoma; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar] [CrossRef]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Warnakulasuriya, S. Global epidemiology of oral and oropharyngeal cancer. Oral Oncol. 2009, 45, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Elrefaey, S.; Massaro, M.; Chiocca, S.; Chiesa, F.; Ansarin, M. HPV in oropharyngeal cancer: The basics to know in clinical practice. Acta Otorhinolaryngol. Ital. 2014, 34, 299–309. [Google Scholar] [PubMed]
- Graber, J.M.; Harris, G.; Black, K.; Lucchini, R.G.; Giuliano, A.R.; Dasaro, C.R.; Shapiro, M.; Steinberg, M.B.; Crane, M.A.; Moline, J.M.; et al. Excess HPV-related head and neck cancer in the world trade center health program general responder cohort. Int. J. Cancer 2019, 145, 1504–1509. [Google Scholar] [CrossRef]
- Bosetti, C.; Carioli, G.; Santucci, C.; Bertuccio, P.; Gallus, S.; Garavello, W.; Negri, E.; La Vecchia, C. Global trends in oral and pharyngeal cancer incidence and mortality. Int. J. Cancer 2020, 147, 1040–1049. [Google Scholar] [CrossRef]
- Damgacioglu, H.; Sonawane, K.; Zhu, Y.; Li, R.; Balasubramanian, B.A.; Lairson, D.R.; Giuliano, A.R.; Deshmukh, A.A. Oropharyngeal Cancer Incidence and Mortality Trends in All 50 States in the US, 2001–2017. JAMA Otolaryngol. Neck Surg. 2022, 148, 155–165. [Google Scholar] [CrossRef]
- Mehanna, H.; Beech, T.; Nicholson, T.; El-Hariry, I.; McConkey, C.; Paleri, V.; Roberts, S. Prevalence of human papillomavirus in oropharyngeal and nonoropharyngeal head and neck cancer-systematic review and meta-analysis of trends by time and region. Head Neck 2013, 35, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Stein, A.P.; Saha, S.; Kraninger, J.L.; Swick, A.D.; Yu, M.; Lambert, P.F.; Kimple, R.J. Prevalence of Human Papillomavirus in Oropharyngeal Cancer. Cancer J. 2015, 21, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Dalianis, T. Human papillomavirus and oropharyngeal cancer, the epidemics, and significance of additional clinical biomarkers for prediction of response to therapy. Int. J. Oncol. 2014, 44, 1799–1805. [Google Scholar] [CrossRef] [PubMed]
- Mork, J.; Lie, A.K.; Glattre, E.; Clark, S.; Hallmans, G.; Jellum, E.; Koskela, P.; Møller, B.; Pukkala, E.; Schiller, J.T.; et al. Human Papillomavirus Infection as a Risk Factor for Squamous-Cell Carcinoma of the Head and Neck. N. Engl. J. Med. 2001, 344, 1125–1131. [Google Scholar] [CrossRef]
- Awan, K.H.; Hegde, R.; Cheever, V.J.; Carroll, W.; Khan, S.; Patil, S.; Warnakulasuriya, S. Oral and pharyngeal cancer risk associated with occupational carcinogenic substances: Systematic review. Head Neck 2018, 40, 2724–2732. [Google Scholar] [CrossRef] [PubMed]
- Pukkala, E.; Martinsen, J.I.; Lynge, E.; Gunnarsdottir, H.K.; Sparén, P.; Tryggvadottir, L.; Weiderpass, E.; Kjaerheim, K. Occupation and cancer—Follow-up of 15 million people in five Nordic countries. Acta Oncol. 2009, 48, 646–790. [Google Scholar] [CrossRef] [PubMed]
- Nikkilä, R.; Mäkitie, A.; Carpén, T.; Hansen, J.; Heikkinen, S.; Lynge, E.; Selander, J.; Mehlum, I.S.; Torfadottir, J.E.; Salo, T.; et al. Occupational variation in incidence of oropharyngeal cancer in the Nordic countries. Eur. Arch. Oto-Rhino-Laryngol. 2023, 1–8. [Google Scholar] [CrossRef]
- Honaryar, M.K.; Lunn, R.M.; Luce, D.; Ahrens, W.; Mannetje, A.; Hansen, J.; Bouaoun, L.; Loomis, D.; Byrnes, G.; Vilahur, N.; et al. Welding fumes and lung cancer: A meta-analysis of case-control and cohort studies. Occup. Environ. Med. 2019, 76, 422–431. [Google Scholar] [CrossRef] [PubMed]
- Riccelli, M.G.; Goldoni, M.; Poli, D.; Mozzoni, P.; Cavallo, D.; Corradi, M. Welding Fumes, a Risk Factor for Lung Diseases. Int. J. Environ. Res. Public Health 2020, 17, 2552. [Google Scholar] [CrossRef] [PubMed]
- Barul, C.; Matrat, M.; Auguste, A.; Dugas, J.; Radoï, L.; Menvielle, G.; Févotte, J.; Guizard, A.-V.; Stücker, I.; Luce, D. Welding and the risk of head and neck cancer: The ICARE study. Occup. Environ. Med. 2020, 77, 293–300. [Google Scholar] [CrossRef]
- IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Wood Dust and Formaldehyde. In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; No. 62; International Agency for Research on Cancer: Lyon, France. Available online: https://www.ncbi.nlm.nih.gov/books/NBK493455/ (accessed on 10 September 2023).
- Alonso-Sardón, M.; Chamorro, A.-J.; Hernández-García, I.; Iglesias-De-Sena, H.; Martín-Rodero, H.; Herrera, C.; Marcos, M.; Mirón-Canelo, J.A. Association between Occupational Exposure to Wood Dust and Cancer: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0133024. [Google Scholar] [CrossRef]
- Kauppinen, T.; Vincent, R.; Liukkonen, T.; Grzebyk, M.; Kauppinen, A.; Welling, I.; Arezes, P.; Black, N.; Bochmann, F.; Campelo, F.; et al. Occupational Exposure to Inhalable Wood Dust in the Member States of the European Union. Ann. Occup. Hyg. 2006, 50, 549–561. [Google Scholar] [CrossRef]
- Vlajinac, H.D.; Marinkovic, J.M.; Sipetic, S.B.; Andrejic, D.M.; Adanja, B.J.; Stosic-Divjak, S.L. Case–control study of oropharyngeal cancer. Cancer Detect. Prev. 2006, 30, 152–157. [Google Scholar] [CrossRef]
- Bohadana, A.B.; Massin, N.; Wild, P.; Toamain, J.-P.; Engel, S.; Goutet, P. Symptoms, airway responsiveness, and exposure to dust in beech and oak wood workers. Occup. Environ. Med. 2000, 57, 268–273. [Google Scholar] [CrossRef]
- Sadetzki, S.; Bensal, D.; Novikov, I.; Modan, B. The limitations of using hospital controls in cancer etiology—One more example for Berkson’s bias. Eur. J. Epidemiol. 2023, 18, 1127–1131. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-E.; Seo, J.-E.; Lee, J.-Y.; Kwon, H. Distribution of Seven N-Nitrosamines in Food. Toxicol. Res. 2015, 31, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Leibler, J.H.; Otte, J.; Roland-Holst, D.; Pfeiffer, D.U.; Magalhaes, R.S.; Rushton, J.; Graham, J.P.; Silbergeld, E.K. Industrial Food Animal Production and Global Health Risks: Exploring the Ecosystems and Economics of Avian Influenza. Ecohealth 2009, 6, 58–70. [Google Scholar] [CrossRef]
- Graham, J.P.; Leibler, J.H.; Price, L.B.; Otte, J.M.; Pfeiffer, D.U.; Tiensin, T.; Silbergeld, E.K. The Animal-Human Interface and Infectious Disease in Industrial Food Animal Production: Rethinking Biosecurity and Biocontainment. Public Health Rep. 2008, 123, 282–299. [Google Scholar] [CrossRef] [PubMed]
- Faramawi, M.F.; Ndetan, H.; Jadhav, S.; Johnson, E.S. A Cohort Mortality Study of Workers in a Second Soup Manufacturing Plant. Arch. Environ. Occup. Health 2015, 70, 279–285. [Google Scholar] [CrossRef] [PubMed]
- Cauvin, J.M.; Guènel, P.; Luce, D.; Brugère, J.; Leclerc, A. Occupational exposure and head and neck carcinoma. Clin. Otolaryngol. 1990, 15, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.S.; Zhou, Y.; Yau, C.L.; Prabhakar, D.; Ndetan, H.; Singh, K.; Preacely, N. Mortality from malignant diseases—Update of the Baltimore union poultry cohort. Cancer Causes Control 2010, 21, 215–221. [Google Scholar] [CrossRef]
- Johnson, E.; Cardarelli, K.; Jadhav, S.; Chedjieu, I.; Faramawi, M.; Fischbach, L.; Ndetan, H.; Wells, T.-C.; Patel, K.; Katyal, A. Cancer mortality in the meat and delicatessen departments of supermarkets (1950–2006). Environ. Int. 2015, 77, 70–75. [Google Scholar] [CrossRef]
- Zanardi, F.; Salvarani, R.; Cooke, R.M.; Pirastu, R.; Baccini, M.; Christiani, D.; Curti, S.; Risi, A.; Barbieri, A.; Barbieri, G.; et al. Carcinoma of the Pharynx and Tonsils in an Occupational Cohort of Asphalt Workers. Epidemiology 2013, 24, 100–103. [Google Scholar] [CrossRef]
- Lemen, R.A. Asbestos in brakes: Exposure and risk of disease. Am. J. Ind. Med. 2004, 45, 229–237. [Google Scholar] [CrossRef]
- Williams, P.R.D.; Mani, A. Benzene Exposures and Risk Potential for Vehicle Mechanics from Gasoline and Petroleum-Derived Products. J. Toxicol. Environ. Health Part B 2015, 18, 371–399. [Google Scholar] [CrossRef]
- Santos, A.S.E.; Martins, A.A.F.; Gonçalves, E.S.; Meyer, A. Mortality from Selected Cancers among Brazilian Mechanics. Asian Pac. J. Cancer Prev. 2020, 21, 1779–1786. [Google Scholar] [CrossRef] [PubMed]
- Radoï, L.; ICARE Study Group; Sylla, F.; Matrat, M.; Barul, C.; Menvielle, G.; Delafosse, P.; Stücker, I.; Luce, D. Head and neck cancer and occupational exposure to leather dust: Results from the ICARE study, a French case-control study. Environ. Health 2019, 18, 27. [Google Scholar] [CrossRef] [PubMed]
- Févotte, J.; Dananché, B.; Delabre, L.; Ducamp, S.; Garras, L.; Houot, M.; Luce, D.; Orlowski, E.; Pilorget, C.; Lacourt, A.; et al. Matgéné: A Program to Develop Job-Exposure Matrices in the General Population in France. Ann. Work. Expo. Health 2011, 55, 865–878. [Google Scholar] [CrossRef]
- Greenberg, M. A proportional mortality study of a group of newspaper workers. Occup. Environ. Med. 1972, 29, 15–20. [Google Scholar] [CrossRef]
- Barul, C.; ICARE Study Group; Fayossé, A.; Carton, M.; Pilorget, C.; Woronoff, A.-S.; Stücker, I.; Luce, D. Occupational exposure to chlorinated solvents and risk of head and neck cancer in men: A population-based case-control study in France. Environ. Health 2017, 16, 77. [Google Scholar] [CrossRef]
- Barul, C.; Carton, M.; Radoï, L.; Menvielle, G.; Pilorget, C.; Woronoff, A.-S.; Stücker, I.; Luce, D. Occupational exposure to petroleum-based and oxygenated solvents and oral and oropharyngeal cancer risk in men: A population-based case-control study in France. Cancer Epidemiol. 2019, 59, 22–28. [Google Scholar] [CrossRef]
- Carton, M.; Barul, C.; Menvielle, G.; Cyr, D.; Sanchez, M.; Pilorget, C.; Trétarre, B.; Stücker, I.; Luce, D. Occupational exposure to solvents and risk of head and neck cancer in women: A population-based case–control study in France. BMJ Open 2017, 7, e012833. [Google Scholar] [CrossRef]
- Althubaiti, A. Information bias in health research: Definition, pitfalls, and adjustment methods. J. Multidiscip. Healthcare 2016, 9, 211–217. [Google Scholar] [CrossRef]
- Gama, R.R.; Song, Y.; Zhang, Q.; Brown, M.C.; Wang, J.; Habbous, S.; Tong, L.; Huang, S.H.; O’Sullivan, B.; Waldron, J.; et al. Body mass index and prognosis in patients with head and neck cancer. Head Neck 2017, 39, 1226–1233. [Google Scholar] [CrossRef]
- Gaudet, M.M.; Patel, A.V.; Sun, J.; Hildebrand, J.S.; McCullough, M.L.; Chen, A.Y.; Gapstur, S.M. Prospective Studies of Body Mass Index with Head and Neck Cancer Incidence and Mortality. Cancer Epidemiol. Biomark. Prev. 2012, 21, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Khanna, A.; Sturgis, E.M.; Dahlstrom, K.R.; Xu, L.; Wei, Q.; Li, G.; Gross, N.D. Association of pretreatment body mass index with risk of head and neck cancer: A large single-center study. Am. J. Cancer Res. 2021, 11, 2343–2350. [Google Scholar] [PubMed]
- Corraini, P.; Olsen, M.; Pedersen, L.; Dekkers, O.M.; Vandenbroucke, J.P. Effect modification, interaction and mediation: An overview of theoretical insights for clinical investigators. Clin. Epidemiol. 2017, 9, 331–338. [Google Scholar] [CrossRef]
- Conway, I.D.; Hovanec, J.; Ahrens, W.; Ross, A.; Holcatova, I.; Lagiou, P.; Serraino, D.; Canova, C.; Richiardi, L.; Healy, C.; et al. Occupational socioeconomic risk associations for head and neck cancer in Europe and South America: Individual participant data analysis of pooled case–control studies within the INHANCE Consortium. J. Epidemiol. Community Health 2021, 75, 779–787. [Google Scholar] [CrossRef]
- Johnson, S.; McDonald, J.T.; Corsten, M.J. Socioeconomic factors in head and neck cancer. J. Otolaryngol. Head Neck Surg. 2008, 37, 597–601. [Google Scholar] [CrossRef] [PubMed]
- Rotsides, J.M.; Oliver, J.R.; Moses, L.E.; Tam, M.; Li, Z.; Schreiber, D.; Jacobson, A.S.; Hu, K.S.; Givi, B. Socioeconomic and Racial Disparities and Survival of Human Papillomavirus–Associated Oropharyngeal Squamous Cell Carcinoma. Otolaryngol. Head Neck Surg. 2021, 164, 131–138. [Google Scholar] [CrossRef]
- Pokhrel, A.; Martikainen, P.; Pukkala, E.; Rautalahti, M.; Seppä, K.; Hakulinen, T. Education, survival and avoidable deaths in cancer patients in Finland. Br. J. Cancer 2010, 103, 1109–1114. [Google Scholar] [CrossRef]
- Marks, J.A.; Switchenko, J.M.; Steuer, C.E.; Ryan, M.; Patel, M.R.; McDonald, M.W.; Higgins, K.; Beitler, J.J.; Shin, D.M.; Gillespie, T.W.; et al. Socioeconomic Factors Influence the Impact of Tumor HPV Status on Outcome of Patients with Oropharyngeal Squamous Cell Carcinoma. JCO Oncol. Pr. 2021, 17, e313–e322. [Google Scholar] [CrossRef]
- Moore, R.S.; Cunradi, C.B.; Duke, M.R.; Ames, G.M. Dimensions of Problem Drinking among Young Adult Restaurant Workers. Am. J. Drug Alcohol Abus. 2009, 35, 329–333. [Google Scholar] [CrossRef]
- Gillison, M.L.; Chaturvedi, A.K.; Anderson, W.F.; Fakhry, C. Epidemiology of Human Papillomavirus–Positive Head and Neck Squamous Cell Carcinoma. J. Clin. Oncol. 2015, 33, 3235–3242. [Google Scholar] [CrossRef]
- Ursu, R.G.; Luchian, I.; Ghetu, N.; Costan, V.V.; Stamatin, O.; Palade, O.D.; Damian, C.; Iancu, L.S.; Porumb-Andrese, E. Emerging Oncogenic Viruses in Head and Neck Cancers from Romanian Patients. Appl. Sci. 2021, 11, 9356. [Google Scholar] [CrossRef]
- Palma, S.; Gnambs, T.; Crevenna, R.; Jordakieva, G. Airborne human papillomavirus (HPV) transmission risk during ablation procedures: A systematic review and meta-analysis. Environ. Res. 2021, 192, 110437. [Google Scholar] [CrossRef] [PubMed]
- Ilmarinen, T.; Auvinen, E.; Hiltunen-Back, E.; Ranki, A.; Aaltonen, L.-M.; Pitkäranta, A. Transmission of human papillomavirus DNA from patient to surgical masks, gloves and oral mucosa of medical personnel during treatment of laryngeal papillomas and genital warts. Eur. Arch. Oto-Rhino-Laryngol. 2012, 269, 2367–2371. [Google Scholar] [CrossRef] [PubMed]
- Calero, L.; Brusis, T. Larynxpapillomatose—Erstmalige Anerkennung als Berufskrankheit bei einer OP-Schwester. Laryngo-Rhino-Otologie 2003, 82, 790–793. [Google Scholar] [CrossRef] [PubMed]
- Hallmo, P.; Naess, O. Laryngeal papillomatosis with human papillomavirus DNA contracted by a laser surgeon. Eur. Arch. Oto-Rhino-Laryngol. 1991, 248, 425–427. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikkilä, R.; Tolonen, S.; Salo, T.; Carpén, T.; Pukkala, E.; Mäkitie, A. Occupational Etiology of Oropharyngeal Cancer: A Literature Review. Int. J. Environ. Res. Public Health 2023, 20, 7020. https://doi.org/10.3390/ijerph20217020
Nikkilä R, Tolonen S, Salo T, Carpén T, Pukkala E, Mäkitie A. Occupational Etiology of Oropharyngeal Cancer: A Literature Review. International Journal of Environmental Research and Public Health. 2023; 20(21):7020. https://doi.org/10.3390/ijerph20217020
Chicago/Turabian StyleNikkilä, Rayan, Suvi Tolonen, Tuula Salo, Timo Carpén, Eero Pukkala, and Antti Mäkitie. 2023. "Occupational Etiology of Oropharyngeal Cancer: A Literature Review" International Journal of Environmental Research and Public Health 20, no. 21: 7020. https://doi.org/10.3390/ijerph20217020
APA StyleNikkilä, R., Tolonen, S., Salo, T., Carpén, T., Pukkala, E., & Mäkitie, A. (2023). Occupational Etiology of Oropharyngeal Cancer: A Literature Review. International Journal of Environmental Research and Public Health, 20(21), 7020. https://doi.org/10.3390/ijerph20217020