Early-Life Exposure to Perfluoroalkyl Substances (PFAS) and Child Language and Communication Development: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria and Research Definition
2.2. Information Sources and Search Methods
2.3. Study Selection
2.4. Data Extraction
2.5. Risk of Bias Assessment
- -
- “Were the participants recruited acceptably?”
- -
- “Was the exposure accurately measured to minimize bias?”
- -
- “Was the outcome accurately measured to minimize bias?”
- -
- “Have the authors identified all the important confounding factors?”
- -
- “Have they taken into account the confounding factors in the design and/or analysis?”
3. Results
3.1. Study Selection
3.2. Study Characteristics
Author Year | Geographical Area | Cohort | Enrollment Year | Age 1 at Outcome Assessment | Number of Participants 2 | Sex Distribution boys, % |
---|---|---|---|---|---|---|
Carrizosa et al., 2021 [53] | Europe, Spain | INfancia y Medio Ambiente (Environment and Childhood) (INMA) | 2003–2008 | 14 months 4–5 years | 1131 1192 | 51 |
Chen et al., 2013 [54] | Asia, Taiwan | Taiwan Birth Panel Study (TBPS) | 2004–2005 | 2 years | 239 | 55 |
Goudarzi et al., 2016 [55] | Asia, Japan | The Hokkaido Study on Environment and Children’s health | 2002–2005 | 6 months 18 months | 173 133 | 48 50 |
Harris et al., 2018 [56] | USA, Boston | Project Viva | 1999–2002 | 3 years 7 years | 986 865 | 52 52 |
Jeddy et al., 2017 [50] | Europe, England | The Avon Longitudinal Study of Parents and Children (ALSPAC) | 1991–1992 | 15 months 38 months | 432 | 0 |
Liew et al., 2018 [57] | Europe, Denmark | Lifestyle During Pregnancy Study nested within the Danish National Birth Cohort | 2003–2008 | 5 years | 1592 | 52 |
Luo et al., 2022 [51] | Asia, China | Shanghai Birth Cohort (SBC) | 2013–2016 | 2 years | 2257 | 51 |
Oh et al., 2022 [58] | Asia, Japan | Hamamutsu Birth Cohort (HBC Study) | 2007–2012 | Eight times between 4 to 40 months | ~550 | 52 |
Skogheim et al., 2020 [59] | Europe, Norway | ADHD Study nested within the Norwegian Mother, Father, and Child Cohort Study | 1999–2008 | 3.5 years | 944 | 51 |
Spratlen et al., 2020 [46] | USA, New York | A cohort with prenatal exposure to the World Trade Center disaster | 2001–2002 | 1 year 2 years 3 years 4 years 6 years | 156 157 127 124 110 | 50 |
Stein et al., 2013 [47] | USA, West Virginia, and Ohio | A child subcohort from the C8 Health Project | 2005–2010 | 6–12 years (mean age 10 years) | 320 | 47 |
Stübner et al., 2023 [49] | Europe, Sweden | Register-based cohort study in Ronneby, Sweden | 1998–2013 | 3.2–4.6 years | 11,895 | 54 |
Vuong et al., 2019 [60] | USA, Ohio | Health Outcomes and Measures of the Environment (HOME) | 2003–2006 | 8 years | 221 | 45 |
Wang et al., 2015 [38] | Asia, Taiwan | The Taiwan Maternal and Infant Cohort Study | 2000–2001 | 5 years 8 years | 120 120 | 52 3 50 |
Wang et al., 2023 [52] | Asia, China | Shanghai Birth Cohort | 2013–2016 | 4 years | 2031 | 52 |
Author Year | PFAS Included in Statistical Analysis | Sampling Period | Matrix | PFOA (ng/mL) | PFOS (ng/mL) | PFHxS (ng/mL) | PFNA (ng/mL) |
---|---|---|---|---|---|---|---|
Carrizosa et al., 2021 [53] | PFOA, PFOS, PFHxS, PFNA | Trimester 1 | Maternal plasma | Median (IQR) 2.4 (1.6, 3.3) | Median (IQR) 6.1 (4.4, 7.8) | Median (IQR) 0.6 (0.4, 0.8) | Median (IQR) 0.7 (0.5, 0.9) |
Chen et al., 2013 [54] | PFOA, PFOS | Delivery | Plasma from cord blood | Mean (SD) 2.5 (2.6) | Mean (SD) 7.0 (5.8) | - | - |
Goudarzi et al., 2016 [55] | PFOA, PFOS | After 2nd trimester | Maternal serum | Median (IQR) 1.2 (0.8, 1.7) | Median (IQR) 5.7 (4.4, 7.4) | - | - |
Harris et al., 2018 [56] | PFOA, PFOS, PFHxS, PFNA, PFDeA, MeFOSAA, EtFOSAA, | Trimester 1, 2 Postnatal | Maternal plasma Child plasma midchildhood at Median age 7.7 years (6.6–10.9 year) | Maternal Median (IQR) 5.6 (4.1, 7.7) Childhood Median (IQR) 4.4 (3.1, 6.0) | Maternal Median (IQR) 24.9 (18.4, 34.4) Childhood Median (IQR) 6.2 (4.2, 9.7) | Maternal Median (IQR) 2.4 (1.6, 3.7) Childhood Median (IQR) 1.9 (1.2, 3.4) | Maternal Median (IQR) 0.6 (0.5, 0.9) Childhood Median (IQR) 1.5 (1.1, 2.3) |
Jeddy et al., 2017 [50] | PFOA, PFOS, PFNA, PFHxS, | Median week 15 | Maternal serum | Median (IQR) 3.7 (2.8, 4.8) | Median (IQR) 19.8 (15.0, 24.95) | Median (IQR) 1.6 (1.2, 2.2) | Median (IQR) 0.5 (0.4, 0.7) |
Liew et al., 2018 [57] | PFOA, PFOS, PFHxS, PFNA, PFHpS, PFDA, PFOSA | Trimester 1 | Maternal plasma | Median (IQR) 4.3 (3.2, 5.5) | Median (IQR) 28.1 (21.6, 35.8) | Median (IQR) 1.1 (0.8, 1.4) | Median (IQR) 0.46 (0.36, 0.57) |
Luo et al., 2022 [51] | PFOA, PFOS, PFHxS, PFNA PFHpA, PFDeA, PFUnDA, PFDoA, PFBS | Trimester 1 | Maternal plasma | Median (IQR) 11.90 (9.30, 15.20) | Median (IQR) 9.56 (6.65, 13.87) | Median (IQR) 0.54 (0.42, 0.68) | Median (IQR) 1.74 (1.25, 2.39) |
Oh et al., 2022 [58] | PFOA, PFOS | Postnatal | Serum from cord blood | Median (IQR) 1.2 (0.8, 1.8) | Median (IQR) 1.2 (0.9, 1.7) | - | - |
Skogheim et al., 2020 [59] | PFOA, PFOS, PFHxS, PFNA, PFHpS, PFDA, PFUnDA | Trimester 2 | Maternal plasma | Median (IQR) 2.5 (1.8, 3.2) | Median (IQR) 11.5 (8.8, 14.8) | Median (IQR) 0.7 (0.5, 0.9) | Median (IQR) 0.4 (0.3, 0.5) |
Spratlen et al., 2020 [46] | PFOA, PFOS, PFHxS, PFNA | Delivery | Serum from cord blood and maternal blood day after delivery | Geometric Mean (Range) Cord: 2.31 (0.18, 8.14) Maternal 2.42 (0.88, 5.06) | Geometric Mean (Range) Cord: 6.03 (1.05, 33.7) Maternal: 11.9 (2.90, 30.9) | Geometric Mean (Range) Cord: 0.67 (0.08, 15.8) Maternal: 0.94 (0.35, 3.20) | Geometric Mean (Range) Cord: 0.43 (<LOQ, 10.3) Maternal: 0.43 (<LOQ, 10.3) |
Stein et al., 2013 [47] | PFOA | Estimated prenatal Postnatal | Modeled prenatal exposure Serum collected postnatally at mean age 5.7 years | Estimated in utero mean (SD) 115.9 (164.6) Childhood mean (SD) 91.1 (139.8) | Measured childhood mean (SD) 21.1 (13.3) | Measured childhood mean (SD) 9.8 (14.1) | Measured childhood mean (SD) 1.9 (1.1) |
Stübner et al., 2023 [49] | PFOA, PFOS, PFHxS | Estimated early life | Maternal residential history, i.e., with or without highly PFAS-contaminated drinking water, during the five-year period before childbirth was used as a proxy for early-life exposure. | High exposure Median 9 ng/mL Intermediate Median 3 ng/mL Background Median 2 ng/mL | High exposure Median 169 ng/mL Intermediate Median 48 ng/mL Background Median 4 ng/mL | High exposure Median129 ng/mL Intermediate Median 40 ng/mL Background Median 0.8 ng/mL | - |
Vuong et al., 2019 [60] | PFOA, PFOS, PFHxS, PFNA | Trimester 2 or 3 Postnatal | Maternal serum, gestation week 16 ± 3, or 26, or within 24 h of parturition. If more than one measure were taken, an average of were used. Child serum, 3 and 8 years of age | Prenatal 2nd Tertile <3.9 4.0, 6.3 ≥ 6.4 3 years 2nd Tertile <4.1 4.1, 6.7 ≥ 6.8 8 years 2nd Tertile <2.0 2.0, 2.8 ≥ 2.9 | Prenatal 2nd Tertile <10.0 10.0, 15.6 ≥ 15.7 3 years 2nd Tertile <5.0 5.0, 7.9 ≥ 8.0 8 years 2nd Tertile <3.0 3.0, 4.5 ≥ 4.6 | Prenatal 2nd Tertile <0.9 0.9, 1.8 ≥ 1.9 3 years 2nd Tertile <1.2 1.2, 2.4 ≥ 2.5 8 years 2nd Tertile <1.0 1.0, 1.5 ≥ 1.6 | Prenatal 2ndTertile <0.7 0.7, 0.9 ≥ 1.0 3 years 2nd Tertile <1.0 1.0, 1.5 ≥ 1.6 8 years 2nd Tertile <0.6 0.6, 0.8 ≥ 0.9 |
Wang et al., 2015 [38] | PFOA, PFOS, PFHxS, PFNA, PFDeA, PFUnDA, PFDoDA | Trimester 3 | Maternal serum | 5 years Median (IQR) 2.5 (1.5, 3.4) Geometric mean (95% CI) 2.0 (1.8, 2.3) 8 years Median (IQR) 2.5 (1.5, 3.3) Geometric mean (95% CI) 2.0 (1.7, 2.3) | 5 years Median (IQR) 13.3 (9.8, 17.5) Geometric mean (95% CI) 11.9 (10.4–13.6) 8 years Median (IQR) 12.3 (9.5, 16.3) Geometric mean (95% CI) 11.5 (10.2, 13.1) | 5 years Median (IQR) 0.7 (0.1, 1.1) Geometric mean (95% CI) 0.4 (0.3, 0.6) 8 years Median (IQR) 0.7 (0.1, 1.1) Geometric mean (95% CI) 0.5 (0.4, 0.6) | 5 years Median (IQR) 1.6 (0.8, 2.4) Geometric mean (95% CI) 1.4 (1.2, 1.7) 8 years Median (IQR) 1.4 (0.8, 2.3) Geometric mean (95% CI) 1.3 (1.1, 1.6) |
Wang et al., 2023 [52] | PFOA, PFOS, PFHxS, PFNA, PFHpA PFDeA, PFUnDA, PFDoA, PFBS | Trimester 1-2 | Maternal plasma | Median (IQR) 13.1 (9.4, 15.5) | Median (IQR) 11.3 (6.7, 13.7) | Median (IQR) 0.6 (0.4, 0.7) | Median (IQR) 2.1 (1.3, 2.5) |
3.3. Exposure
3.4. Outcome Assessment
Acronym | Outcome Test | Developmental Domains Tested | Scoring 1 | Subtests Including Language and Communication Domains | Validated Age Range | Used by |
---|---|---|---|---|---|---|
BSID-I | Bayley Scales of Infant and Toddler Development (Bayley, 1969, ref 1993) [62] | Developmental functioning, mental scale and motor scale | Standard scores (M = 100, SD = 15) | Receptive and expressive language presented in the mental scale | 3–28 months | Carrizosa et al., 2021 [53] |
BSID-II | Bayley Scales of Infant and Toddler Development -2nd Edition, (Bayley, 1993) [6] | Developmental functioning, mental developmental index [MDI]) and motor development psychomotor developmental index (PDI) | Standard scores (M = 100, SD = 15) | Receptive and expressive language presented in the mental developmental index (MDI) | 1–42 months | Goudarzi et al., 2016 [55] Spratlen et al., 2020 [46] |
BSID-III | Bayley Scales of Infant and Toddler Development –Third Edition, Chinese version, (Hua et al., 2019, Yue et al., 2019) [63,64] | Developmental functioning in five domains, cognitive, language, motor, social–emotional, and adaptive behavior scales. | Standard scores (M = 100, SD = 15) | Receptive and expressive communication | 1–42 months | Luo et al., 2022 [51] |
CDIIT | Comprehensive Developmental Inventory for Infants and Toddlers (Liao et al., 2008) [65] | Developmental areas cognition, language, motor, social, and self-care skills | Standard scores (M = 100, SD = 15) | 62 items (language) | 3–71 months | Chen et al., 2013 [54] |
KBIT-2 | Kaufman brief intelligence test–second edition (KBIT-2) (Kaufman, 2004) [66] | Cognitive ability and processing skills | Standard scores (M = 100, SD = 15), age equivalents, and percentile ranks | Verbal standard score consists of verbal knowledge, answers given by pointing to pictures. For the riddles subtest, answers given by pointing to a picture or saying a word | 4–90 years | Harris et al., 2018 [56] |
MSEL | Mullen scale of early learning (Mullen, 1995) [67] | Visual reception, fine motor, receptive language, and expressive language | T-scores (M = 50, SD = 10), percentile ranks, and age equivalents for each of the five domains and the single composite (M = 100, SD = 15) | Expressive language, and receptive language | 0–68 months | Oh et al., 2022 [58] |
MSCA | McCarthy Scales of Children’s Abilities, (Kaufman and Kaufman, 1977) [68] | Cognitive ability | Standard scores (M = 100, SD = 15) | Verbal scale including subtests of pictorial memory, word knowledge, verbal memory, verbal fluency, and opposite analogies | 2–8 years | Carrizosa et al., 2021 [53] |
NEPSY-II | Developmental Neuropsychological Assessment 2 edition, NEPSY-II, (Korkman et al., 2007) [69] | Neurocognitive processes, 32 subtests for use in a neuropsychological assessment with preschoolers, children, and adolescents. | Scale scores (1–19, M = 10, SD = 3) | Body part naming and identification comprehension of instructions, Oro motor sequences, phonological processing, the repetition of nonsense words, speeded naming and word generation | 3–16 years | Stein et al., 2013 [47] |
PPVT-III | Peabody Picture Vocabulary Test, (Dunn, 1997) [70] | Vocabulary | Raw scores to percentile ranks, age equivalents, or standard scores (M = 100, SD = 15) | Receptive vocabulary | 2–90 years | Harris et al., 2018 [65] |
SB-5 | Stanford-Binet Intelligence Scale, Fifth Edition, (Roid, 2003) [71] | Cognitive strengths and weaknesses | Standard scores (M = 100, SD = 15) scaled scores (M = 10, SD = 3), percentile scores, confidence intervals, age equivalents | Verbal fluid reasoning, verbal knowledge, verbal quantitative reasoning, verbal visual-spatial processing, verbal working memory | 2–85 year | Skogheim et al., 2020 [59] |
WASI | The Wechsler Abbreviated Scale of Intelligence, (Wechsler, 1999) [72] | General intellectual ability | Standard scores (M = 100, SD = 15) | Vocabulary, similarities | 6–90 year | Stein et al., 2013 [47] |
WPPSI-R | Wechsler Preschool and Primary Scale of Intelligence–Revised, (Wechsler, 1990) [73] | Intellectual ability | Standard scores (M = 100, SD = 15) | Verbal scale subtests: information, comprehension, arithmetic, vocabulary, similarities, and sentences | 3–7 years | Liew et al., 2018 [57] Spratlen et al., 2020 [46] Wang et al., 2015 [38] (5 year assessment) |
WPPSI-IV | Wechsler Preschool and Primary Scale of Intelligence (Wechsler, 2012) [74] | Intellectual ability | Standard scores (M = 100, SD = 15) | Verbal scale subtests: information, similarities | 2–7 years | Wang et al., 2023 [52] |
WISC III | Wechsler Intelligence Scale for Children 3rd. edition, (Wechsler, 1991) [75] | General cognitive ability | Standard scores (M = 100, SD = 15) | The verbal scale mandatory subtests: information, similarities, arithmetic, vocabulary, and comprehension. The supplementary subtest: digit span | 6–16 year | Wang et al., 2015 [38] (8 year assessment) |
WISC-IV | Wechsler Intelligence Scale for Children 4th edition, (Wechsler, 2003) [76] | General cognitive ability | Standard scores (M = 100, SD = 15) | The verbal scale core subtest: similarities, vocabulary, comprehension, supplementary: information, word reasoning | 6–16 year | Vuong et al., 2019 [60] Stein 2013 [47] |
Outcome questionnaire | ||||||
CDI | Child Development Inventory, (Ireton and Glascoe, 1995) [77] | Teacher questionnaires. Measure the child’s present development in eight areas. Include general Development Scale and items to identify parent’s concerns about child’s health and growth, vision and hearing, development, and behavior | Percentile scores, age equivalents | Expressive language | 15 months– 6 years | Skogheim et al., 2020 [59] |
MCDI/MB-CDI | MacArthur-Bates Communicative Development Inventories, Second Edition, (Fenson et al., 2007) [78] | Parent questionnaire. Evaluate communication in young children | Percentile scores | Communicative skills, comprehension, early vocabulary, and early grammar | 8–30 months | Jeddy et al., 2017 [50] |
3.5. Association between PFAS Exposure and Language and Communication Outcomes
Author Year | Associations between PFAS Exposure and Language Development 1 | Overall Summary of Results 2 | Consistency between Outcome Assessment at Different Ages | Consistency between Repeated Exposure Measurements | Consistency between PFAS Compounds | Effect Modification by Sex | |
---|---|---|---|---|---|---|---|
Favorable 3 | Adverse 4 | ||||||
Carrizosa et al., 2021 [53] | No associations at age 14 months for PFOS, PFHxS, PFOA, or PFNA. At age 4–5 years, a favorable association between PFOS and verbal subscale was also indicated for PFNA. | Yes | No | No | n.a. 5 | No | No |
Chen et al., 2013 [54] | No association at age 2 years for PFOA or PFOS. | No | No | n.a. | n.a. | Yes | n.a. |
Goudarzi et al., 2016 [55] | No associations at age 6 and 18 years for PFOA or PFOS. | No | No | Yes | n.a. | Yes | Girls in highest PFOA quartile had a tendency to produce lower scores at 6 months, but not at 18 months |
Harris et al., 2018 [56] | No associations at age 3 and 8 years between verbal IQ scores and PFOS, PFHxS, PFOA, or PFNA | No | No | Yes | Yes | Yes | No |
Jeddy et al., 2017 [50] | At 15 months, there is a favorable association between verbal comprehension and vocabulary. At 38 months, both a favorable and adverse association for PFOS, PFHxS, PFOA, or PFNA is found. | Yes | Yes | No | n.a. | Yes | n.a. |
Liew et al., 2018 [57] | No associations for PFOS, PFHxS or PFOA at age 5 years. Indication of favorable association between verbal IQ score and PFNA at age 5 years. | Yes | No | n.a. | n.a. | No | No |
Luo et al., 2022 [51] | Adverse association between PFHxS and PFNA, but not PFOS and PFOA for language scores at age 2 years. | No | Yes | n.a. | n.a. | No | n.a. |
Oh et al., 2022 [58] | No associations were observed except an adverse association between PFOA and receptive language at 10 months and a favorable association between PFOS and expressive language at 24 and 32 months. Longitudinal changes in scores from 4 to 40 months of age indicated a favorable association between receptive and expressive language and PFOA and PFOS. | Yes | Yes | No | n.a. | No | Effect modification with a worse outcome for girls at 10, 18 and 40 months, but not at other timepoints |
Skogheim et al., 2020 [59] | No associations for PFOS, PFHxS, PFOA or PFNA at age 3.5 years. | No | No | n.a. | n.a. | Yes | No |
Spratlen et al., 2020 [46] | No association between PFOS, PFHxS, PFOA or PFNA and MDI at age 1 year, but a tendency for favorable scores at age 2 and 3 years. No associations were observed for the verbal IQ score at age 4 years | No | No | No | n.a. | Yes | Stronger positive association between PFOS and MDI for girls at age 2 years. |
Stein et al., 2013 [47] | No associations for PFOA at age 6–12 years. | No | No | n.a. | Yes | n.a. | No |
Stübner et al., 2023 [49] | Adverse association between PFAS exposure and a clinical diagnosis of delayed language disorder in pre-school girls, but not in boys. | No | Yes | n.a. | n.a. | n.a. | Adverse effect in girls but not boys |
Vuong et al., 2019 [60] | No associations for PFOS, PFHxS and PFOA and verbal comprehension at age 8 years. For PFNA, a trend for a favorable outcome was indicated. | No | No | n.a. | No | No | No |
Wang et al., 2015 [38] | No associations for PFOS, PFHxS, PFOA or PFNA at age 5 years. At 8 years, no associations except an adverse association for PFNA | No | Yes | No | n.a. | No | n.a. |
Wang et al., 2023 [52] | No associations for PFOS, PFHxS, PFOA or PFNA at age 4 years. | No | No | n.a. | n.a. | Yes | No |
3.6. Quality Assessment
3.6.1. Selection Bias
3.6.2. Information Bias
3.6.3. Confounding
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lightfoot, C.M.; Cole, S.R. Development of Children, 8th ed.; Worth Publishers Inc.: New York, NY, USA, 2018. [Google Scholar]
- Gervain, J. Plasticity in early language acquisition: The effects of prenatal and early childhood experience. Curr. Opin. Neurobiol. 2015, 35, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Karmiloff, K.; Karmiloff-Smith, A.; Karmiloff, K. Pathways to Language: From Fetus to Adolescent; Harvard University Press: Cambridge, MA, USA, 2009. [Google Scholar]
- Moon, C.; Lagercrantz, H.; Kuhl, P.K. Language experienced in utero affects vowel perception after birth: A two-country study. Acta Paediatr. 2013, 102, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Rescorla, L.; Mirak, J. Normal language acquisition. Semin. Pediatr. Neurol. 1997, 4, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Nippold, M.A. Language development during the adolescent years: Aspects of pragmatics, syntax, and semantics. Top. Lang. Disord. 2000, 20, 15–28. [Google Scholar] [CrossRef]
- Norbury, C.F.; Gooch, D.; Wray, C.; Baird, G.; Charman, T.; Simonoff, E.; Vamvakas, G.; Pickles, A. The impact of nonverbal ability on prevalence and clinical presentation of language disorder: Evidence from a population study. J. Child Psychol. Psychiatry 2016, 57, 1247–1257. [Google Scholar] [CrossRef] [PubMed]
- Tomblin, J.B.; Records, N.L.; Buckwalter, P.; Zhang, X.; Smith, E.; O’brien, M. Prevalence of specific language impairment in kindergarten children. J. Speech Lang. Hear. Res. 1997, 40, 1245–1260. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.V.M.; Snowling, M.J.; Thompson, P.A.; Greenhalgh, T. Phase 2 of CATALISE: A multinational and multidisciplinary Delphi consensus study of problems with language development: Terminology. J. Child Psychol. Psychiatry 2017, 58, 1068–1080. [Google Scholar] [CrossRef] [PubMed]
- Tomblin, J.B.; Smith, E.; Zhang, X. Epidemiology of specific language impairment: Prenatal and perinatal risk factors. J. Commun. Disord. 1997, 30, 325–344. [Google Scholar] [CrossRef]
- Norbury, C.F.; Vamvakas, G.; Gooch, D.; Baird, G.; Charman, T.; Simonoff, E.; Pickles, A. Language growth in children with heterogeneous language disorders: A population study. J. Child Psychol. Psychiatry 2017, 58, 1092–1105. [Google Scholar] [CrossRef]
- Stothard, S.E.; Snowling, M.J.; Bishop, D.V.M.; Chipchase, B.B.; Kaplan, C.A. Language-impaired preschoolers: A follow-up into adolescence. J. Speech Lang. Hear. Res. 1998, 41, 407–418. [Google Scholar] [CrossRef]
- Buschmann, A.; Jooss, B.; Rupp, A.; Dockter, S.; Blaschtikowitz, H.; Heggen, I.; Pietz, J. Children with developmental language delay at 24 months of age: Results of a diagnostic work-up. Dev. Med. Child Neurol. 2008, 50, 223–229. [Google Scholar] [CrossRef]
- Sim, F.; O’Dowd, J.; Thompson, L.; Law, J.; Macmillan, S.; Affleck, M.; Gillberg, C.; Wilson, P. Language and social/emotional problems identified at a universal developmental assessment at 30 months. BMC Pediatr. 2013, 13, 206. [Google Scholar] [CrossRef]
- Snowling, M.J.; Bishop, D.V.M.; Stothard, S.E.; Chipchase, B.; Kaplan, C. Psychosocial outcomes at 15 years of children with a preschool history of speech-language impairment. J. Child Psychol. Psychiatry 2006, 47, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Conti-Ramsden, G.; Durkin, K. Language development and assessment in the preschool period. Neuropsychol. Rev. 2012, 22, 384–401. [Google Scholar] [CrossRef] [PubMed]
- Miniscalco, C.; Nygren, G.; Hagberg, B.; Kadesjö, B.; Gillberg, C. Neuropsychiatric and neurodevelopmental outcome of children at age 6 and 7 years who screened positive for language problems at 30 months. Dev. Med. Child Neurol. 2006, 48, 361–366. [Google Scholar] [CrossRef] [PubMed]
- Hiller-Sturmhöfel, S.; Bartke, A. The endocrine system: An overview. Alcohol. Health Res. World 1998, 22, 153–164. [Google Scholar] [PubMed]
- Quast, A.; Hesse, V.; Hain, J.; Wermke, P.; Wermke, K. Baby babbling at five months linked to sex hormone levels in early infancy. Infant Behav. Dev. 2016, 44, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Schaadt, G.; Hesse, V.; Friederici, A.D. Sex hormones in early infancy seem to predict aspects of later language development. Brain Lang. 2015, 141, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Wermke, K.; Quast, A.; Hesse, V. From melody to words: The role of sex hormones in early language development. Horm. Behav. 2018, 104, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Futran Fuhrman, V.; Tal, A.; Arnon, S. Why endocrine disrupting chemicals (EDCs) challenge traditional risk assessment and how to respond. J. Hazard. Mater. 2015, 286, 589–611. [Google Scholar] [CrossRef]
- Grandjean, P.; Landrigan, P.J. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014, 13, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Hogg, K.; Price, E.M.; Hanna, C.W.; Robinson, W.P. Prenatal and Perinatal Environmental Influences on the Human Fetal and Placental Epigenome. Clin. Pharmacol. Ther. 2012, 92, 716. [Google Scholar] [CrossRef] [PubMed]
- Nesan, D.; Kurrasch, D.M. Gestational Exposure to Common Endocrine Disrupting Chemicals and Their Impact on Neurodevelopment and Behavior. Annu. Rev. Physiol. 2020, 82, 177–202. [Google Scholar] [CrossRef] [PubMed]
- Schettler, T. Toxic threats to neurologic development of children. Environ. Health Perspect. 2001, 109 (Suppl. S6), 813–816. [Google Scholar] [PubMed]
- Dzwilewski, K.L.; Schantz, S.L. Prenatal chemical exposures and child language development. J. Commun. Disord. 2015, 57, 41–65. [Google Scholar] [CrossRef] [PubMed]
- Trudel, D.; Horowitz, L.; Wormuth, M.; Scheringer, M.; Cousins, I.T.; Hungerbühler, K. Estimating Consumer Exposure to PFOS and PFOA. Risk Anal. 2008, 28, 251–269. [Google Scholar] [CrossRef] [PubMed]
- Winkens, K.; Vestergren, R.; Berger, U.; Cousins, I.T. Early life exposure to per- and polyfluoroalkyl substances (PFASs): A critical review. Emerg. Contam. 2017, 3, 55–68. [Google Scholar] [CrossRef]
- Borg, D.; Lund, B.O.; Lindquist, N.G.; Håkansson, H. Cumulative health risk assessment of 17 perfluoroalkylated and polyfluoroalkylated substances (PFASs) in the Swedish population. Environ. Int. 2013, 59, 112–123. [Google Scholar] [CrossRef]
- Calafat, A.M.; Kuklenyik, Z.; Caudill, S.P.; Reidy, J.A.; Needham, L.L. Perfluorochemicals in Pooled Serum Samples from United States Residents in 2001 and 2002. Environ. Sci. Technol. 2006, 40, 2128–2134. [Google Scholar] [CrossRef]
- Johansson, N.; Fredriksson, A.; Eriksson, P. Neonatal exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) causes neurobehavioural defects in adult mice. Neurotoxicology 2008, 29, 160–169. [Google Scholar] [CrossRef]
- Piekarski, D.; Diaz, K.; McNerney, M. Perfluoroalkyl chemicals in neurological health and disease: Human concerns and animal models. Neurotoxicology 2020, 77, 155–168. [Google Scholar] [CrossRef] [PubMed]
- Spulber, S.; Kilian, P.; Ibrahim, W.N.W.; Onishchenko, N.; Ulhaq, M.; Norrgren, L.; Negri, S.; Tuccio, M.D.; Ceccatelli, S. PFOS induces behavioral alterations, including spontaneous hyperactivity that is corrected by dexamfetamine in zebrafish larvae. (Report). PLoS ONE 2014, 9, e94227. [Google Scholar] [CrossRef]
- Blomberg, A.J.; Norén, E.; Haug, L.S.; Lindh, C.; Sabaredzovic, A.; Pineda, D.; Jakobsson, K.; Nielsen, C. Estimated Transfer of Perfluoroalkyl Substances (PFAS) from Maternal Serum to Breast Milk in Women Highly Exposed from Contaminated Drinking Water: A Study in the Ronneby Mother—Child Cohort. Environ. Health Perspect. 2023, 131, 017005. [Google Scholar] [CrossRef] [PubMed]
- Rappazzo, K.M.; Coffman, E.; Hines, E.P. Exposure to perfluorinated alkyl substances and health outcomes in children: A systematic review of the epidemiologic literature. Int. J. Environ. Res. Public Health 2017, 14, 691. [Google Scholar] [CrossRef]
- The Agency for Toxic Substances and Disease Registry (ATSDR), Per- and Polyfluoroalkyl Substances (PFAS) and Your Health. U.S. Department of Health and Human Services, 2022. Available online: https://www.atsdr.cdc.gov/ (accessed on 3 March 2023).
- Wang, Y.; Rogan, W.J.; Chen, H.Y.; Chen, P.C.; Su, P.H.; Chen, H.Y.; Wang, S.L. Prenatal exposure to perfluroalkyl substances and children’s IQ: The Taiwan maternal and infant cohort study. Int. J. Hyg. Environ. Health 2015, 218, 639–644. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Wang, Z.; Zhang, J.; Dai, Y.; Feng, C.; Lin, Y.; Zhang, L.; Guo, J.; Qi, X.; Chang, X. Prenatal perfluoroalkyl substances exposure and neurodevelopment in toddlers: Findings from SMBCS. Chemosphere 2023, 313, 137587. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef]
- Statens Beredning för Medicinsk och Social Utvärdering (SBU) Utvärdering av Metoder i hälso- och Sjukvården och Insatser i Socialtjänsten: En Metodbok. Stockholm. Available online: https://www.sbu.se/metodbok (accessed on 1 May 2020).
- Morgan, R.L.; Whaley, P.; Thayer, K.A.; Schünemann, H.J. Identifying the PECO: A framework for formulating good questions to explore the association of environmental and other exposures with health outcomes. Environ. Int. 2018, 121 (Pt 1), 1027–1031. [Google Scholar] [CrossRef] [PubMed]
- CASP Critical Appraisal Skills Programme. CASP Cohort Study Checklist. Available online: https://casp-uk.b-cdn.net/wp-content/uploads/2018/01/CASP-Cohort-Study-Checklist_2018.pdf (accessed on 1 June 2020).
- The EndNote Team. EndNote 20; Clarivate: Philadelphia, PA, USA, 2013. [Google Scholar]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan—A web and mobile app for systematic reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Spratlen, M.J.; Perera, F.P.; Lederman, S.A.; Rauh, V.A.; Robinson, M.; Kannan, K.; Trasande, L.; Herbstman, J. The association between prenatal exposure to perfluoroalkyl substances and childhood neurodevelopment. Environ. Pollut. 2020, 263, 114444. [Google Scholar] [CrossRef]
- Stein, C.R.; Savitz, D.A.; Bellinger, D.C. Perfluorooctanoate and neuropsychological outcomes in children. Epidemiology 2013, 24, 590–599. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, Y.; Scott, K.; Lindh, C.H.; Jakobsson, K.; Fletcher, T.; Ohlsson, B.; Andersson, E.M. Inflammatory bowel disease and biomarkers of gut inflammation and permeability in a community with high exposure to perfluoroalkyl substances through drinking water. Environ. Res. 2020, 181, 108923. [Google Scholar] [CrossRef]
- Stübner, C.; Ebel, M.; Jakobsson, K.; Gillberg, C.; Nielsen, C.; Miniscalco, C. Developmental language disorders in preschool children after high exposure to perfluoroalkyl substances from contaminated drinking water in Ronneby, Sweden. Environ. Epidemiol. 2023, 7, e233. [Google Scholar] [CrossRef] [PubMed]
- Jeddy, Z.; Hartman, T.J.; Taylor, E.V.; Poteete, C.; Kordas, K. Prenatal concentrations of Perfluoroalkyl substances and early communication development in British girls. Early Hum. Dev. 2017, 109, 15–20. [Google Scholar] [CrossRef]
- Luo, F.; Chen, Q.; Yu, G.; Huo, X.; Wang, H.; Nian, M.; Tian, Y.; Xu, J.; Zhang, J.; Zhang, J. Exposure to perfluoroalkyl substances and neurodevelopment in 2-year-old children: A prospective cohort study. Environ. Int. 2022, 166, 107384. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Luo, F.; Zhang, Y.; Yang, X.; Zhang, S.; Zhang, J.; Tian, Y.; Zheng, L. Prenatal exposure to perfluoroalkyl substances and child intelligence quotient: Evidence from the Shanghai birth cohort. Environ. Int. 2023, 174, 107912. [Google Scholar] [CrossRef] [PubMed]
- Carrizosa, C.; Murcia, M.; Ballesteros, V.; Costa, O.; Manzano-Salgado, C.B.; Ibarluzea, J.; Iñiguez, C.; Casas, M.; Andiarena, A.; Llop, S.; et al. Prenatal perfluoroalkyl substance exposure and neuropsychological development throughout childhood: The INMA Project. J. Hazard. Mater. 2021, 416, 125185. [Google Scholar] [CrossRef]
- Chen, M.H.; Ha, E.H.; Liao, H.F.; Jeng, S.F.; Su, Y.N.; Wen, T.W.; Lien, G.W.; Chen, C.Y.; Hsieh, W.S.; Chen, P.C. Perfluorinated compound levels in cord blood and neurodevelopment at 2 years of age. Epidemiology 2013, 24, 800–808. [Google Scholar] [CrossRef]
- Goudarzi, H.; Nakajima, S.; Ikeno, T.; Sasaki, S.; Kobayashi, S.; Miyashita, C.; Ito, S.; Araki, A.; Nakazawa, H.; Kishi, R. Prenatal exposure to perfluorinated chemicals and neurodevelopment in early infancy: The Hokkaido Study. Sci. Total Environ. 2016, 541, 1002–1010. [Google Scholar] [CrossRef]
- Harris, M.H.; Oken, E.; Rifas-Shiman, S.L.; Calafat, A.M.; Ye, X.; Bellinger, D.C.; Webster, T.F.; White, R.F.; Sagiv, S.K. Prenatal and childhood exposure to per- and polyfluoroalkyl substances (PFASs) and child cognition. Environ. Int. 2018, 115, 358–369. [Google Scholar] [CrossRef]
- Liew, Z.; Ritz, B.; Bach, C.C.; Asarnow, R.F.; Bech, B.H.; Nohr, E.A.; Bossi, R.; Henriksen, T.B.; Bonefeld-Jorgensen, E.C.; Olsen, J. Prenatal Exposure to Perfluoroalkyl Substances and IQ Scores at Age 5 a Study in the Danish National Birth Cohort. (Research) (Medical condition overview). Environ. Health Perspect. 2018, 126, 067004. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.; Shin, H.-M.; Nishimura, T.; Rahman, M.S.; Takahashi, N.; Tsuchiya, K.J. Perfluorooctanoate and perfluorooctane sulfonate in umbilical cord blood and child cognitive development: Hamamatsu Birth Cohort for Mothers and Children (HBC Study). Environ. Int. 2022, 163, 107215. [Google Scholar] [CrossRef]
- Skogheim, T.S.; Villanger, G.D.; Weyde, K.V.F.; Engel, S.M.; Surén, P.; Øie, M.G.; Skogan, A.H.; Biele, G.; Zeiner, P.; Øvergaard, K.R.; et al. Prenatal exposure to perfluoroalkyl substances and associations with symptoms of attention-deficit/hyperactivity disorder and cognitive functions in preschool children. Int. J. Hyg. Environ. Health 2020, 223, 80–92. [Google Scholar] [CrossRef]
- Vuong, A.M.; Yolton, K.; Xie, C.; Dietrich, K.N.; Braun, J.M.; Webster, G.M.; Calafat, A.M.; Lanphear, B.P.; Chen, A. Prenatal and childhood exposure to poly- and perfluoroalkyl substances (PFAS) and cognitive development in children at age 8 years. Envrion. Res. 2019, 172, 242–248. [Google Scholar] [CrossRef] [PubMed]
- WHO; Socialstyrelsen, W. Klassifikation av sjukdomar och hälsoproblem 1997. In International Classification of Disorders, 10th ed.; Almquist & Wiksell: Uppsala, Sweden, 1996. [Google Scholar]
- Bayley, N. Bayley Scales of Infant Development; Harcourt Brace: San Diego, CA, USA, 1993. [Google Scholar]
- Hua, J.; Li, Y.; Ye, K.; Ma, Y.; Lin, S.; Gu, G.; Du, W. The reliability and validity of Bayley-III cognitive scale in China’s male and female children. Early Hum. Dev. 2019, 129, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Yue, A.; Jiang, Q.; Wang, B.; Abbey, C.; Medina, A.; Shi, Y.; Rozelle, S. Concurrent validity of the ages and stages questionnaire and the Bayley scales of infant development III in China. PLoS ONE 2019, 14, e0221675. [Google Scholar] [CrossRef]
- Liao, H.-F.; Yao, G.; Wang, T.-M. Concurrent Validity in Taiwan of the Comprehensive Developmental Inventory for Infants and Toddlers Who Were Full-Term Infants. Percept. Mot. Ski. 2008, 107, 29–44. [Google Scholar] [CrossRef]
- Kaufman, A.S. Kaufman Brief Intelligence Test, 2nd ed.; KBIT-2; American Guidance Service: Circle Pines, MN, USA, 2004. [Google Scholar]
- Mullen, E.M. Mullen Scales of Early Learning; AGS: Circle Pines, MN, USA, 1995. [Google Scholar]
- Kaufman, A.S.; Kaufman, N.L. Clinical Evaluation of Young Children with the McCarthy Scales; Grune & Stratton: New York, NY, USA, 1977. [Google Scholar]
- Korkman, M.; Kirk, U.; Kemp, S. NEPSY-II: A developmental neuropsychological assessment San Antonio. Tex. Psychol. Corp. 2007, 16, 80–101. [Google Scholar]
- Dunn, L.M. PPVT-III: Peabody Picture Vocabulary Test, 3rd ed.; American Guidance Service: Circle Pines, MN, USA, 1997. [Google Scholar]
- Gale, H.R. Stanford Binet Intelligence Scales, 5th ed.; Riverside Pub.: Itasca, IL, USA, 2003. [Google Scholar]
- Wechsler, D. Wechsler Abbreviated Scale of Intelligence; The Psychological Corporation; Harcourt Brace & Company: New York, NY, USA, 1999. [Google Scholar]
- Wechsler, D. Manual for Wechsler Preschool and Primary Scale of Intelligence-Revised (British Amendments); Psychological Corporation: Kent, UK, 1990. [Google Scholar]
- Wechsler, D. Wechsler Preschool and Primary Scale of Intelligence, 4th ed.; The Psychological Corporation: San Antonio, TX, USA, 2012. [Google Scholar]
- Wechsler, D. WISC-III: Wechsler Intelligence Scale for Children: Manual; Psychological Corporation: San Antonio, TX, USA, 1991. [Google Scholar]
- Wechsler, D. WISC-IV: Administration and Scoring Manual; Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Ireton, H.; Glascoe, F.P. Assessin Children’s Development Using Parents’ Reports: The Child Development Inventory. Clin. Pediatr. 1995, 34, 248–255. [Google Scholar] [CrossRef]
- Fenson, L.; Marchman, V.A.; Thal, D.J.; Dale, P.S.; Reznick, J.S.; Bates, E. MacArthur-Bates Communicative Development Inventories, 2nd ed.; Brookes Publishing: Towson, MD, USA, 2007. [Google Scholar]
- Fernell, E.; Gillberg, C. Autism under the umbrella of ESSENCE. Front. Psychiatry 2023, 14, 1002228. [Google Scholar] [CrossRef]
- Thal, D.J.; O’Hanlon, L.; Clemmons, M.; Fralin, L. Validity of a parent report measure of vocabulary and syntax for preschool children with language impairment. J. Speech Lang. Hear. Res. 1999, 42, 482–496. [Google Scholar] [CrossRef] [PubMed]
- Paul, R. Language Disorders from Infancy Through Adolescence: Listening, Speaking, Reading, Writing, and Communicating, 5th ed.; Elsevier: St. Louis, MI, USA, 2018; pp. 441–444, 903–909. [Google Scholar]
- Bliddal, M.; Liew, Z.; Pottegård, A.; Kirkegaard, H.; Olsen, J.; Nohr, E.A. Examining Nonparticipation in the Maternal Follow-up Within the Danish National Birth Cohort. Am. J. Epidemiol. 2018, 187, 1511–1519. [Google Scholar] [CrossRef] [PubMed]
- Montazeri, P.; Thomsen, C.; Casas, M.; de Bont, J.; Haug, L.S.; Maitre, L.; Papadopoulou, E.; Sakhi, A.K.; Slama, R.; Saulnier, P.J.; et al. Socioeconomic position and exposure to multiple environmental chemical contaminants in six European mother-child cohorts. Int. J. Hyg. Environ. Health 2019, 222, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Madigan, S.; Prime, H.; Graham, S.A.; Rodrigues, M.; Anderson, N.; Khoury, J.; Jenkins, J.M. Parenting behavior and child language: A meta-analysis. Pediatrics 2019, 144. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stübner, C.; Nielsen, C.; Jakobsson, K.; Gillberg, C.; Miniscalco, C. Early-Life Exposure to Perfluoroalkyl Substances (PFAS) and Child Language and Communication Development: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 7170. https://doi.org/10.3390/ijerph20247170
Stübner C, Nielsen C, Jakobsson K, Gillberg C, Miniscalco C. Early-Life Exposure to Perfluoroalkyl Substances (PFAS) and Child Language and Communication Development: A Systematic Review. International Journal of Environmental Research and Public Health. 2023; 20(24):7170. https://doi.org/10.3390/ijerph20247170
Chicago/Turabian StyleStübner, Charlotte, Christel Nielsen, Kristina Jakobsson, Christopher Gillberg, and Carmela Miniscalco. 2023. "Early-Life Exposure to Perfluoroalkyl Substances (PFAS) and Child Language and Communication Development: A Systematic Review" International Journal of Environmental Research and Public Health 20, no. 24: 7170. https://doi.org/10.3390/ijerph20247170
APA StyleStübner, C., Nielsen, C., Jakobsson, K., Gillberg, C., & Miniscalco, C. (2023). Early-Life Exposure to Perfluoroalkyl Substances (PFAS) and Child Language and Communication Development: A Systematic Review. International Journal of Environmental Research and Public Health, 20(24), 7170. https://doi.org/10.3390/ijerph20247170