Seasonal and Spatial Variations of the Oxidative Properties of Ambient PM2.5 in the Po Valley, Italy, before and during COVID-19 Lockdown Restrictions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Sampling Site and Periods
2.3. Chemical Characterization
2.4. Assessment of the PM Oxidative Potential
2.5. Statistical Analysis
3. Results
3.1. PM2.5 Oxidative Potential during Lockdown Periods
3.2. Overview of PM2.5 Oxidative Potential in Po Valley
3.3. Association of PM2.5 Components to Oxidative Potential in Po Valley
3.4. Impact of Lockdown Restrictions on Air Quality
3.5. Impact of Lockdown Restrictions on PM Oxidative Properties
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bakola, M.; Carballo, I.H.; Jelastopulu, E.; Stuckler, E. The impact of COVID-19 lockdown on air pollution in Europe and North America: A systematic review. Eur. J. Public Health 2022, 32, 962–968. [Google Scholar] [CrossRef] [PubMed]
- Altuwayjiri, A.; Soleimanian, E.; Moroni, S.; Palomba, P.; Borgini, A.; De Marco, C.; Ruprecht, A.A.; Sioutas, C. The impact of stay-home policies during Coronavirus-19 pandemic on the chemical and toxicological characteristics of ambient PM2.5 in the metropolitan area of Milan, Italy. Sci. Total Environ. 2021, 758, 143582. [Google Scholar] [CrossRef]
- Kumari, P.; Toshniwal, D. Impact of lockdown on air quality over major cities across the globe during COVID-19 pandemic. Urban Clim. 2020, 34, 100719. [Google Scholar] [CrossRef]
- Pala, D.; Casella, V.; Larizza, C.; Malovini, A.; Bellazzi, R. Impact of COVID-19 lockdown on PM concentrations in an Italian Northern City: A year-by-year assessment. PLoS ONE 2022, 17, e0263265. [Google Scholar] [CrossRef] [PubMed]
- Gualtieri, G.; Brilli, L.; Carotenuto, F.; Vagnoli, C.; Zaldei, A.; Gioli, B. Quantifying road traffic impact on air quality in urban areas: A Covid19-induced lockdown analysis in Italy. Environ. Pollut. 2020, 267, 115682. [Google Scholar] [CrossRef] [PubMed]
- Ainur, D.; Chen, Q.; Wang, Y.; Li, H.; Lin, H.; Ma, X.; Xu, X. Pollution characteristics and sources of environmentally persistent free radicals and oxidation potential in fine particulate matter related to city lockdown (CLD) in Xi’an, China. Environ. Res. 2022, 210, 112899. [Google Scholar] [CrossRef]
- Balasubramaniam, D.; Kanmanipappa, C.; Shankarlal, B.; Saravanan, M. Assessing the impact of lockdown in US, Italy and France—What are the changes in air quality? Energy Sources Part A Recovery Util. Environ. Eff. 2020. [Google Scholar] [CrossRef]
- Lovarelli, D.; Conti, C.; Finzi, A.; Bacenetti, J.; Guarino, M. Describing the trend of ammonia, particulate matter and nitrogen oxides: The role of livestock activities in northern Italy during COVID-19 quarantine. Environ. Res. 2020, 191, 110048. [Google Scholar] [CrossRef]
- Zambrano-Monserrate, M.A.; Ruano, M.A.; Sanchez-Alcalde, L. Indirect effects of COVID-19 on the environment. Sci. Total Environ. 2020, 728, 138813. [Google Scholar] [CrossRef]
- Leni, Z.; Künzi, L.; Geiser, M. Air pollution causing oxidative stress. Curr. Opin. Toxicol. 2020, 20–21, 1–8. [Google Scholar] [CrossRef]
- Crobeddu, B.; Aragao-Santiago, L.; Bui, L.-C.; Sonja Boland, S.; Baeza Squiban, A. Oxidative potential of particulate matter 2.5 as predictive indicator of cellular stress. Environ. Pollut. 2017, 230, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Daher, N.; Ruprecht, A.; Invernizzi, G.; De Marco, J.C.; Miller-Schulze, J.; Bae Heo, J.; Shafer, M.M.; Shelton, B.R.; Schauer, J.J.; Sioutas, C. Characterization, sources and redox activity of fine and coarse particulate matter in Milan, Italy. Atmos. Environ. 2012, 49, 130–141. [Google Scholar] [CrossRef]
- Øvrevik, J. Oxidative potential versus biological effects: A review on the relevance of cell-free/abiotic assays as predictors of toxicity from airborne particulate matter. Int. J. Mol. Sci. 2019, 20, 4772. [Google Scholar] [CrossRef] [Green Version]
- Cervellati, F.; Benedusi, M.; Manarini, F.; Woodby, B.; Russo, M.; Valacchi, G.; Pietrogrande, M.C. Proinflammatory properties and oxidative effects of atmospheric particle components in human keratinocytes. Chemosphere 2020, 240, 124746. [Google Scholar] [CrossRef] [PubMed]
- Molina, C.; Toro, A.R.; Manzano, C.A.; Canepari, S.; Massimi, L.; Leiva-Guzman, M.A. Airborne Aerosols and Human Health: Leapfrogging from Mass Concentration to Oxidative Potential. Atmosphere 2020, 11, 917. [Google Scholar] [CrossRef]
- Perrone, M.R.; Bertoli, I.; Romano, S.; Russo, M.; Rispoli, G.; Pietrogrande, M.C. PM2.5 and PM10 oxidative potential at a Central Mediterranean Site: Contrasts between dithiothreitol- and ascorbic acid-measured values in relation with particle size and chemical composition. Atmos. Environ. 2019, 210, 143–155. [Google Scholar] [CrossRef]
- Tang, Z.; Sarnat, J.A.; Weber, R.J.; Russell, A.G.; Zhang, X.; Li, Z.; Yu, T.; Jones, D.P.; Liang, D. The Oxidative Potential of Fine Particulate Matter and Biological Perturbations in Human Plasma and Saliva Metabolome. Environ. Sci. Technol. 2022, 56, 7350–7361. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Carnevale Miino, M. Lockdown for COVID-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef]
- Rossi, R.; Ceccato, R.; Gastaldi, M. Effect of Road Traffic on Air Pollution. Experimental Evidence from COVID-19 Lock-down. Sustainability 2020, 12, 8984. [Google Scholar] [CrossRef]
- Putaud, J.P.; Pozzoli, L.; Pisoni, E.; Martins Dos Santos, S.; Lagler, F.; Lanzani, G.; Dal Santo, U.; Colette, A. Impacts of the COVID-19 lockdown on air pollution at regional and urban background sites in northern Italy. Atmos. Chem. Phys. 2021, 21, 7597–7609. [Google Scholar] [CrossRef]
- Lotrecchiano, N.; Trucillo, P.; Barletta, D.; Poletto, M.; Sofia, D. Air pollution analysis during the lockdown on the city of Milan. Processes 2021, 9, 1692. [Google Scholar] [CrossRef]
- Paraskevopoulou, D.; Bougiatioti, A.; Zarmpas, P.; Tsagkaraki, M.; Nenes, A.; Mihalopoulos, N. Impact of COVID-19 Lockdown on Oxidative Potential of Particulate Matter: Case of Athens (Greece). Toxics 2022, 10, 280. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Colombi, C.; Cuccia, E.; Dal Santo, U.; Romanato, L. The impact of COVID-19 lockdown strategies on oxidative properties of ambient PM10 in the in the metropolitan area of Milan, Italy. Environ 2022, 9, 145. [Google Scholar] [CrossRef]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between surface levels of PM2.5 and PM10 particulate matter impact on COVID-19 in Milan, Italy. Sci. Total Environ. 2020, 738, 139825. [Google Scholar] [CrossRef]
- Meroni, A.; Pirovano, G.; Gilardoni, S.; Lonati, G.; Colombi, C.; Gianelle, V.; Paglione, M.; Poluzzi, V.; Riva, G.M.; Toppetti, A. Investigating the role of chemical and physical processes on organic aerosol modelling with CAMx in the Po Valley during a winter episode. Atmos. Environ. 2017, 171, 126–142. [Google Scholar] [CrossRef]
- Tositti, L.; Brattich, E.; Masio, M.; Baldacci, D.; Ceccato, D.; Parmeggiani, S.; Stracquadanio, M.; Zappoli, S. Source apportionment of particulate matter in a large city of southeastern Po Valley (Bologna, Italy). Environ. Sci. Pollut. Res. 2014, 21, 872–890. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Bacco, D.; Ferrari, S.; Ricciardelli, I.; Scotto, F.; Trentini, A.; Visentin, M. Characteristics and major sources of carbonaceous aerosols in PM2.5 in Emilia Romagna Region (Northern Italy) from four-year observations. Sci. Total Environ. 2016, 553, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Decesari, S.; Sowlat, M.H.; Hasheminassa, S.; Sandrini, S.; Gilardoni, S.; Facchini, M.C.; Fuzzi, S.; Sioutas, C. Enhanced toxicity of aerosol in fog conditions in the Po Valley, Italy. Atmos. Chem. Phys. 2017, 17, 7721–7731. [Google Scholar] [CrossRef] [Green Version]
- Raffaelli, K.; Deserti, M.; Stortini, M.; Amorati, R.; Vasconi, M.; Giovannini, G. Improving air quality in the Po Valley, Italy: Some results by the LIFE-IP-PREPAIR project. Atmosphere 2020, 11, 429. [Google Scholar] [CrossRef] [Green Version]
- Bates, J.T.; Fang, T.; Verma, V.; Zeng, L.; Weber, R.J.; Tolbert, P.E.; Abrams, J.Y.; Sarnat, S.E.; Klein, M.; Mulholland, J.A.; et al. Review of Acellular Assays of Ambient Particulate Matter Oxidative Potential: Methods and Relationships with Composition, Sources, and Health Effects. Environ. Sci. Technol. 2019, 53, 4003–4019. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Russo, M.; Zagatti, E. Review of PM Oxidative Potential Measured with Acellular Assays in Urban and Rural Sites across Italy. Atmosphere 2019, 10, 626. [Google Scholar] [CrossRef] [Green Version]
- Calas, A.; Uzu, G.; Besombes, J.L.; Martins, J.M.F.; Redaelli, M.; Weber, S.; Charron, A.; Albinet, A.; Chevrier, F.; Brulfert, G.; et al. Seasonal variations and chemical predictors of oxidative potential (OP) of particulate matter (PM) for seven urban French sites. Atmosphere 2019, 10, 698. [Google Scholar] [CrossRef] [Green Version]
- Rao, L.; Zhang, L.; Wang, X.; Xie, T.; Zhou, S.; Lu, S.; Liu, X.; Lu, H.; Xiao, K.; Wang, W.; et al. Oxidative potential induced by ambient particulate matters with acellular assays: A review. Processes 2020, 8, 1410. [Google Scholar] [CrossRef]
- Gao, D.; Fang, T.; Verma, V.; Zeng, L.; Weber, R.J. A method for measuring total aerosol oxidative potential (OP) with the dithiothreitol (DTT) assay and comparisons between an urban and roadside site of water-soluble and total OP. Atmos. Meas. Tech. 2017, 10, 2821–2835. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Sabbir Ahmed, C.M.; Canchola, A.; Chen, J.Y.; Lin, Y.H. Use of dithiothreitol assay to evaluate the oxidative potential of atmospheric aerosols. Atmosphere 2019, 10, 571. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Griffiths, P.T.; Campbell, S.J.; Utinger, B.; Kalberer, M.; Paulson, S.E. Ascorbate oxidation by iron, copper and reactive oxygen species: Review, model development, and derivation of key rate constants. Sci. Rep. 2021, 11, 7417. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Yu, J.Z. Assessment of interactions between transition metals and atmospheric organics: Ascorbic acid depletion and hydroxyl radical formation in organic-metal mixtures. Environ. Sci. Technol. 2020, 54, 1431–1442. [Google Scholar] [CrossRef]
- Crobeddu, B.; Baudrimont, I.; Deweirdt, J.; Sciare, J.; Badel, A.; Camproux, A.C.; Bui, L.C.; Baeza-Squiban, A. Lung Antioxidant Depletion: A Predictive Indicator of Cellular Stress Induced by Ambient Fine Particles. Environ. Sci. Technol. 2020, 54, 2360–2369. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Bacco, D.; Trentini, A.; Russo, M. Effect of filter extraction solvents on the measurement of the oxidative potential of airborne PM2.5. Environ. Sci. Pollut. Res. 2021, 28, 29551–29563. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Bacco, D.; Demaria, G.; Russo, M.; Scotto, F.; Trentini, A. Polycyclic aromatic hydrocarbons and their oxygenated derivatives in urban aerosol: Levels, chemical profiles, and contribution to PM2.5 oxidative potential. Environ. Sci. Pollut. Res. 2022, 29, 54391–54406. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Demaria, G.; Colombi, C.; Cuccia, E.; Dal Santo, U. Seasonal and Spatial Variations of PM10 and PM2.5 Oxidative Potential in Five Urban and Rural Sites across Lombardia Region, Italy. Int. J. Environ. Res. Public Health 2022, 19, 7778. [Google Scholar] [CrossRef] [PubMed]
- Belis, C.A.; Pedroni, V.; Cancelinha, J.; Borowiak, A. Determination of Particulate Matter according to CEN and EMEP Standards at the Atmosphere Biosphere and Climate-Integrated Station (ABC-IS), Ispra (IT); European Commission Joint Research Center Technical Report EUR 25802 EN; European Commission Joint Research Centre: Ispra, Italy, 2012. [Google Scholar] [CrossRef]
- Visentin, M.; Pagnoni, A.; Sarti, E.; Pietrogrande, M.C. Urban PM2.5 oxidative potential: Importance of chemical species and comparison of two spectrophotometric cell-free assays. Environ. Pollut. 2016, 219, 72–79. [Google Scholar] [CrossRef] [PubMed]
- ARPA Lombardia Air Quality Database. Available online: https://www.arpalombardia.it/Pages/Ricerca-Dati-ed-Indicatori.aspx (accessed on 16 December 2022).
- Marcazzan, G.M.; Vaccaro, S.; Valli, G.; Vecchi, R. Characterisation of PM10 and PM2.5 particulate matter in the ambient air of Milan (Italy). Atmos. Environ. 2001, 35, 4639–4650. [Google Scholar] [CrossRef]
- Daellenbach, K.R.; Uzu, G.; Jiang, J.; Cassagnes, L.E.; Leni, Z.; Vlachou, A.; Stefenelli, G.; Canonaco, F.; Weber, S.; Segers, A.; et al. Sources of particulate-matter air pollution and its oxidative potential in Europe. Nature 2020, 587, 414–419. [Google Scholar] [CrossRef]
- Fang, T.; Lakey, P.S.J.; Weber, R.J.; Shiraiwa, M. Oxidative Potential of Particulate Matter and Generation of Reactive Oxygen Species in Epithelial Lining Fluid. Environ. Sci. Technol. 2019, 53, 12784–12792. [Google Scholar] [CrossRef] [PubMed]
- Godri, K.J.; Harrison, R.M.; Evans, T.; Baker, T.; Dunster, C.; Mudway, I.S.; Kelly, F.J. Increased Oxidative Burden Associated with Traffic Component of Ambient Particulate Matter at Roadside and Urban Background Schools Sites in London. PLoS ONE 2011, 6, e21961. [Google Scholar] [CrossRef] [Green Version]
- Zoran, M.A.; Savastru, R.S.; Savastru, D.M.; Tautan, M.N. Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy. Sci. Total Environ. 2020, 740, 140005. [Google Scholar] [CrossRef]
- ARPAE Emilia Romagna Air Quality Database. Available online: https://dati.arpae.it/dataset/qualita-dell-aria-rete-di-monitoraggio (accessed on 16 December 2022).
- Diapouli, E.; Manousakas, M.I.; Vratolis, S.; Vasilatou, V.; Pateraki, S.; Bairachtari, K.A.; Querol, X.; Amato, F.; Alastuey, A.; Karanasiou, A.A.; et al. AIRUSE-LIFE+: Estimation of natural source contributions to urban ambient air PM10 and PM2.5 concentrations in southern Europe—Implications to compliance with limit values. Atmos. Chem. Phys. 2017, 7, 3673–3685. [Google Scholar] [CrossRef] [Green Version]
- Canepari, S.; Astolfi, M.L.; Farao, C.; Maretto, M.; Frasca, D.; Marcoccia, M.; Perrino, C. Seasonal variations in the chemical composition of particulate matter: A case study in the Po Valley. Part II: Concentration and solubility of micro- and trace-elements. Environ. Sci. Pollut. Res. 2014, 21, 4010–4022. [Google Scholar] [CrossRef]
- Hakimzadeh, M.; Soleimanian, E.; Mousavi, A.; Borgini, A.; De Marco, C.; Ruprecht, A.A.; Sioutas, C. The impact of bio-mass burning on the oxidative potential of PM2.5 in the metropolitan area of Milan. Atmos. Environ. 2020, 224, 117328. [Google Scholar] [CrossRef]
- Pietrogrande, M.C.; Bertoli, I.; Clauser, G.; Dalpiaz, C.; Dell’Anna, R.; Lazzeri, P.; Walter Lenzi, W.; Mara Russo, M. Chemical composition and oxidative potential of atmospheric particles heavily impacted by residential wood burning in the alpine region of northern Italy. Atmos. Environ. 2021, 253, 118360. [Google Scholar] [CrossRef]
- Perrone, M.G.; Zhou, J.; Malandrino, M.; Sangiorgi, G.; Rizzi, C.; Ferrero, L.; Dommen, J.; Bolzacchini, E. PM chemical composition and oxidative potential of the soluble fraction of particles at two sites in the urban area of Milan, Northern Italy. Atmos. Environ. 2016, 128, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Szigeti, T.; Óvári, M.; Dunster, C.; Kelly, F.J.; Lucarelli, F.; Záray, G. Science of the Total Environment Changes in chemical composition and oxidative potential of urban PM2.5 between 2010 and 2013 in Hungary. Sci. Total Environ. 2015, 518–519, 534–544. [Google Scholar] [CrossRef]
- Jovanović, M.V.; Savic, J.; Kovacevic, R.; Tasic, V.; Todorovic, Z.; Stevanovic, S.; Manojlovic, D.; Jovaševic-Stojanovic, M. Comparison of fine particulate matter level, chemical content and oxidative potential derived from two dissimilar urban environments. Sci. Total Environ. 2020, 708, 135209. [Google Scholar] [CrossRef] [PubMed]
- Godoi, R.H.M.; Polezer, G.; Borillo, G.C.; Brown, A.; Valebona, F.B.; Silva, T.O.B.; Ingberman, A.B.G.; Nalin, M.; Yamamoto, C.I.; Potgieter-Vermaak, S.; et al. Influence on the oxidative potential of a heavy-duty engine particle emission due to selective catalytic reduction system and biodiesel blend. Sci. Total Environ. 2016, 560–561, 179–185. [Google Scholar] [CrossRef] [Green Version]
- Massimi, L.; Ristorini, M.; Simonetti, G.; Frezzini, M.A.; Astolfi, M.L.; Canepari, S. Spatial mapping and size distribution of oxidative potential of particulate matter released by spatially disaggregated sources. Environ. Pollut. 2020, 266, 115271. [Google Scholar] [CrossRef]
- Velali, E.; Papachristou, E.; Pantazaki, A.; Choli-Papadopoulou, T.; Planou, S.; Kouras, A.; Manoli, E.; Besis, A.; Voutsa, D.; Samara, C. Redox activity and in vitro bioactivity of the water-soluble fraction of urban particulate matter in relation to particle size and chemical composition. Environ. Pollut. 2016, 208, 774–786. [Google Scholar] [CrossRef]
PreL January–25 February | PL1 26 February–24 March | FL 25 March–4 May | PL2 5–18 May | |
---|---|---|---|---|
OPAAV (nmol min−1m−3) | 1.72 * ± 0.78 888 | 0.72 ± 0.68 | 0.38 ± 0.37 | 0.43 ± 0.40 |
OPDTTV (nmol min−1m−3) | 0.43 * ± 0.22 | 0.21 ± 0.13 | 0.25 ± 0.20 | 0.12 ± 0.05 |
OPAAm (nmol min−1µg−1) | 0.041 ± 0.030 | 0.026 ± 0.024 | 0.023 ± 0.021 | 0.024 ± 0.052 |
OPDTTm (nmol min−1µg−1) | 0.008 ± 0.003 | 0.008 ± 0.006 | 0.015 ± 0.008 | 0.011 ± 0.008 |
PM2.5 (µg m−3) | 51.46 * ± 18.43 | 25.2 ± 8.9 | 16.5 ± 7.42 | 10.6 ± 3.18 |
OC (µg m−3) | 9.99 * ± 4.11 | 4.62 ± 1.45 | 3.90 ± 1.43 | 0.77 ± 0.41 |
Levo (µg m−3) | 0.66 * ± 1.54 | 0.17 ± 0.09 | 0.09 ± 0.05 | BLQ |
P (ng m−3) | 12.2 * ± 4.4 | 5.40 ± 2.47 | 3.01 ± 1.27 | BLQ |
S (µg m−3) | 1046 * ± 511 | 767 ± 334 | 1047 ± 515 | 913 ± 215 |
Cl (ng m−3) | 785 * ± 536 | 74.2 ± 85.3 | 108 ± 193 | 127 ± 193 |
Al (ng m−3) | 0.00 | 0.00 | 0.00 | 0.00 |
Si (ng m−3) | 332 ± 177 | 251 ± 74 | 437 ± 387 | 287 ± 172 |
K (ng m−3) | 524 * ± 250 | 219 ± 75 | 196 ± 90 | 152 ± 58 |
Ca (ng m−3) | 349 ± 186 | 255.06 | 342 ± 552 | 215 ± 116 |
Ti (ng m−3) | 21.8 ± 9.4 | 13.8 ± 4.3 | 18.8 ± 14.9 | 14.5 ± 7.4 |
V (ng m−3) | BLQ | BLQ | BLQ | BLQ |
Cr (ng m−3) | 8.63 * ± 2.53 | 4.88 ± 1.23 | 5.08 ± 0.99 | 5.63 ± 0.32 |
Mn (ng m−3) | 13.7 * ± 5.9 | 5.30 ± 2.82 | 5.49 ± 3.65 | 5.28 ± 2.74 |
Fe (ng m−3) | 1115 * ± 400 | 527 ± 226 | 576 ± 226 | 556 ± 68 |
Ni (ng m−3) | 8.86 ± 1.48 | 7.71 ± 0.40 | 7.89 ± 0.37 | BLQ |
Cu (ng m−3) | 42.5 * ± 13.7 | 18.9 ± 7.5 | 15.7 ± 2.5 | 17.7 ± 3.2 |
Zn (ng m−3) | 88.1 * ± 35.7 | 40.4 ± 21.9 | 24.0 ± 19.9 | 29.2 ± 34.2 |
Br (ng m−3) | 12.3 * ± 6.4 | 7.65 ± 3.88 | 6.66 ± 3.08 | 5.14 ± 1.92 |
Rb (ng m−3) | 2.53 ± 1.12 | 1.34 ± 0.45 | 7.26 ± 4.45 | 7.15 ± 2.29 |
Pb (ng m−3) | 38.7 * ± 12.8 | 10.8 ± 8.9 | 2.07 ± 4.60 | 2.03 ± 5.21 |
Σ metals2.5 (µg m−3) | 1.29 * ± 0.49 | 0.62 ± 0.26 | 0.60 ± 0.22 | 0.61 ± 0.10 |
PM10 (µg m−3) | 56.4 * ± 20.0 | 27.8 ± 9.7 | 21.5 ± 9.8 | 15.6 ± 4.1 |
Σ metals10 (µg m−3) | 2.71 * ± 0.91 | 1.13 ± 0.36 | 0.81 ± 0.32 | 0.67 ± 0.15 |
NO2 (µg m−3) | 78.71 ± 20.88 | 52.98 ± 10.76 | 40.83 ± 11.9 | 30.43 ± 8.94 |
BC (µg m−3) | 4.84 * ± 2.34 | 1.71 ± 0.68 | 1.34 ± 0.84 | 0.52 ± 0.16 |
Temperature (°C) | 6.89 ± 2.55 | 10.07 ± 2.87 | 12.72 ± 3.79 | 19.72 ± 2.38 |
Rad (W m−2) | 107.6 ± 97.2 | 508.2 ± 213.1 | 618.7 ± 175.9 | 732.3 ± 238.4 |
OPAAV | OPDTTV | NO2 | |
---|---|---|---|
OPAAV (nmol min−1m−3) | 1.00 | 0.65 | 0.65 |
OPDTTV (nmol min−1m−3) | 0.65 | 1.00 | 0.15 |
PM2.5 (µg m−3) | 0.73 | 0.74 | 0.63 |
OC (µg m−3) | 0.62 | 0.63 | 0.60 |
Levo (µg m−3) | 0.72 | 0.78 | 0.68 |
S (µg m−3) | 0.11 | 0.40 | 0.07 |
Cl (ng m−3) | 0.62 | 0.62 | 0.52 |
Al (ng m−3) | −0.20 | −0.05 | 0.04 |
Si (ng m−3) | −0.11 | −0.11 | 0.04 |
K (ng m−3) | 0.70 | 0.81 | 0.61 |
Ca (ng m−3) | 0.00 | 0.10 | 0.41 |
Ti (ng m−3) | 0.19 | 0.27 | 0.35 |
Cr (ng m−3) | 0.62 | 0.49 | 0.51 |
Mn (ng m−3) | 0.59 | 0.66 | 0.62 |
Fe (ng m−3) | 0.61 | 0.59 | 0.61 |
Ni (ng m−3) | 0.45 | 0.24 | 0.16 |
Cu (ng m−3) | 0.70 | 0.63 | 0.70 |
Zn (ng m−3) | 0.68 | 0.69 | 0.60 |
Br (ng m−3) | 0.56 | 0.69 | 0.45 |
Rb (ng m−3) | −0.23 | −0.04 | −0.27 |
Pb (ng m−3) | 0.60 | 0.60 | 0.61 |
Σ metals2.5 (µg m−3) | 0.63 | 0.58 | 0.59 |
PM10 (µg m−3) | 0.71 | 0.72 | 0.59 |
NO2 (µg m−3) | 0.57 | 0.46 | 1.00 |
Sampling Period | Sampling Site | Sample Number | Abbreviation |
---|---|---|---|
Winter | |||
2 January–11 February 2020 | Milan_Pascal | 41 | MI_Pascal |
2 January–25 February 2020 | Schivenoglia | 55 | Schivenoglia |
4–25 February 2020 | Bologna | 22 | Bologna |
Spring | |||
10 March–2 April 2018 | Bologna | 30 | Bologna |
16 March–9 April 2018 | S Pietro Capofiume | 30 | S Pietro |
20–28 April 2019 | Schivenoglia | 9 | Schivenoglia |
20–28 April 2019 | Milan_Pascal | 9 | MI_Pascal |
Early Summer | |||
1 May–30 June 2019 | Bologna | 61 | Bologna |
8–16 June 2019 | Schivenoglia | 9 | Schivenoglia |
8–16 June 2019 | Milan_Pascal | 9 | MI_Pascal |
Winter | Bologna | MI_Pascal | Schivenoglia | |||
OPAAV (nmol min−1m−3) | 0.82 ± 0.61 | 1.02 ± 0.28 | 0.73 ± 0.15 | |||
OPDTTV (nmol min−1m−3) | 0.29 ± 0.13 | 0.58 ± 0.15 | 0.53 ± 0.12 | |||
OPAAm (nmol min−1µg−1) | 0.022 ± 0.018 | 0.013 ± 0.008 | 0.011 ± 0.008 | |||
OPDTTm (nmol min−1µg−1) | 0.012 ± 0.009 | 0.007 ± 0.003 | 0.007 ± 0.003 | |||
PM2.5 (µg m−3) | 34.40 ± 16.18 | 46.11 ± 17.39 | 40.59 ± 18.80 | |||
OC (µg m−3) | 6.65 ± 2.46 | 8.55 ± 2.91 | 6.60 ± 1.98 | |||
Levo (µg m−3) | 0.57 ± 0.33 | 0.76 ± 0.38 | 0.59 ± 0.39 | |||
Σ metals2.5 (µg m−3) | 209.7 ± 120.0 | |||||
NO2 (µg m−3) | 48.99 ± 8.48 | 52.70 ± 12.05 | 31.17 ± 10.31 | |||
Temperature (°C) | 9.75 ± 1.98 | 5.70 ± 2.79 | 5.70 ± 2.77 | |||
Rad (W m−2) | 113.9 ± 30.0 | 82.39 ± 34.72 | 82.21 ± 43.72 | |||
PM10 (µg m−3) | 52.15 ± 20.38 | |||||
Spring | S Pietro | Bologna | MI_Pascal | Schivenoglia | MI_Marche Feb–March 2019 | MI_Marche March–May 2019 |
OPAAV (nmol min−1m−3) | 0.30 ± 0.23 | 0.47 ± 0.04 | 0.44 ± 0.41 | 0.21 ± 0.16 | ||
OPDTTV (nmol min−1m−3) | 0.08 ± 0.04 | 0.27 ± 0.02 | 0.15 ± 0.08 | 0.08 ± 0.08 | ||
OPAAm (nmol min−1µg−1) | 0.021 ± 0.0155 | 0.038 ± 0.017 | 0.033 ± 0.027 | 0.018 ± 0.017 | ||
OPDTTm (nmol min−1µg−1) | 0.005 ± 0.004 | 0.029 ± 0.010 | 0.011 ± 0.005 | 0.006 ± 0.05 | ||
PM2.5 (µg m−3) | 13.63 ± 3.51 | 13.34 ± 2.44 | 12.59 ± 3.86 | 15.04 ± 10.15 | ||
OC (µg m−3) | 3.51 ± 1.36 | 3.99 ± 1.60 | 4.01 ± 0.95 | 2.57 ± 0.79 | ||
Levo (µg m−3) | 0.11 ± 0.07 | 0.12 ± 0.06 | 0.04 ± 0.01 | |||
Σ metals2.5 (µg m−3) | 30.7 ± 16.01 | 132.7 ± 93.0 | ||||
NO2 (µg m−3) | 7.38 ± 4.09 | 25.46 ± 10.39 | 13.95 ± 7.44 | 11.89 ± 5.37 | 64.49 ± 15.2 | 57.17 ± 12.3 |
Temperature (°C) | 9.74 ± 2.93 | 11.46 ± 3.39 | 15.86 ± 1.89 | 19.52 ± 2.72 | 12.82 ± 2.19 | 13.79 ± 3.78 |
Rad (W m−2) | 165.3 ± 79.2 | 150.7 ± 69.9 | 223.4 ± 73.8 | 215.7 ± 81.5 | 171.1 ± 80.2 | 184.4 ± 92.4 |
PM10 (µg m−3) | 35.7 ± 21.92 | 56.39 * ± 20.02 | 27.36 ± 9.96 | 21.93 ± 9.75 | ||
Early summer | Bologna | MI_Pascal | Schivenoglia | MI_Marche 5–18 May 2019 | ||
OPAAV (nmol min−1m−3) | 0.36 ± 0.22 | 0.51 ± 0.38 | 0.04 ± 0.03 | |||
OPDTTV (nmol min−1m−3) | 0.07 ± 0.03 | 0.31 ± 0.04 | 0.11 ± 0.06 | |||
OPAAm (nmol min−1µg−1) | 0.039 ± 0.024 | 0.036 ± 0.022 | 0.003 ± 0.002 | |||
OPDTTm (nmol min−1µg−1) | 0.008 ± 0.005 | 0.025 ± 0.006 | 0.007 ± 0.003 | |||
PM2.5 (µg m−3) | 9.83 ± 3.72 | 12.92 ± 3.86 | 14.92 ± 4.89 | |||
OC (µg m−3) | 2.44 ± 0.91 | 3.87 ± 0.99 | 2.09 ± 0.56 | |||
Levo (µg m−3) | 0.027 ± 0.012 | |||||
Σ metals2.5 (µg m−3) | 55.9 ± 39.7 | |||||
NO2 (µg m−3) | 11.71 ± 0.53 | 12.48 ± 5.05 | 7.11 ± 2.82 | 40.15 ± 4.4 | ||
Temperature (°C) | 20.49 ± 5.87 | 19.18 ± 2.08 | 24.42 ± 1.51 | 20.49 ± 2.18 | ||
Rad (W m−2) | 241.3 ± 89.1 | 238.1 ± 18.2 | 301.5 ± 44.3 | 239.8 ± 79.2 | ||
PM10 (µg m−3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pietrogrande, M.C.; Colombi, C.; Cuccia, E.; Dal Santo, U.; Romanato, L. Seasonal and Spatial Variations of the Oxidative Properties of Ambient PM2.5 in the Po Valley, Italy, before and during COVID-19 Lockdown Restrictions. Int. J. Environ. Res. Public Health 2023, 20, 1797. https://doi.org/10.3390/ijerph20031797
Pietrogrande MC, Colombi C, Cuccia E, Dal Santo U, Romanato L. Seasonal and Spatial Variations of the Oxidative Properties of Ambient PM2.5 in the Po Valley, Italy, before and during COVID-19 Lockdown Restrictions. International Journal of Environmental Research and Public Health. 2023; 20(3):1797. https://doi.org/10.3390/ijerph20031797
Chicago/Turabian StylePietrogrande, Maria Chiara, Cristina Colombi, Eleonora Cuccia, Umberto Dal Santo, and Luisa Romanato. 2023. "Seasonal and Spatial Variations of the Oxidative Properties of Ambient PM2.5 in the Po Valley, Italy, before and during COVID-19 Lockdown Restrictions" International Journal of Environmental Research and Public Health 20, no. 3: 1797. https://doi.org/10.3390/ijerph20031797
APA StylePietrogrande, M. C., Colombi, C., Cuccia, E., Dal Santo, U., & Romanato, L. (2023). Seasonal and Spatial Variations of the Oxidative Properties of Ambient PM2.5 in the Po Valley, Italy, before and during COVID-19 Lockdown Restrictions. International Journal of Environmental Research and Public Health, 20(3), 1797. https://doi.org/10.3390/ijerph20031797