Geochemical Characteristics of Rare-Metal, Rare-Dispersed, and Rare-Earth Elements and Depositional Environments in the Shanxi Formation Coal, Huainan Coalfield, Anhui, China
Abstract
:1. Introduction
2. Geological Setting
3. Sample Collection and Analytical Methods
4. Results and Discussion
4.1. Physicochemical Characteristics of Coal
4.2. Geochemical Characteristics of TREs
4.2.1. Content Characteristics of TREs
4.2.2. Vertical Distribution of TREs
4.3. Occurrence State of TREs
4.3.1. Rare-Metal Elements
4.3.2. Rare-Dispersed Elements
4.3.3. Rare-Earth Elements
4.4. REY Geochemistry and Depositional Environment in Coal
4.4.1. REY Geochemistry
4.4.2. B and w(Sr)/w(Ba) as Indicators of Depositional Environment
5. Conclusions
- The Shanxi Formation coal in the Huainan coalfield was found to be characterized by ultra-low moisture, low ash, medium–high volatility, low-sulfur content, and high calorific value. The coal in the study area mainly consisted of clay minerals kaolinite and illite; oxide mineral quartz; carbonate minerals calcite and dolomite; a small amount of pyrite; sulfate minerals gypsum and jarosite.
- Compared to the averages of Chinese and world hard coals, in the Shanxi Formation coal, rare-metal element Li and rare-dispersed element Se were enriched, and Ga and Ta were slightly enriched. Thus, the Shanxi formation coal is characterized by enriched concentrations of Li(Ta)−Se(Ga) assemblages. In terms of spatial distribution, the content of TREs in the roof, floor, and parting was higher than that in the coal seam. Affected by the sedimentary microenvironment, Li, Ta, and Se fluctuated greatly in the vertical direction of the coal seam. The results of the sequential chemical extraction experiment showed that the TREs in coal were closely related to inorganic matter. The reason for the relative enrichment of Se was related to the high proportion of its organic forms. The REY enrichment type was identified as an L-type because of the higher fractionation of light REYs than that of heavy REYs. Influenced by the depositional environment, the content of REYs in the Shanxi Formation coal increased gradually from coal seam 1 to coal seam 3. The results of the sequential chemical extraction experiment suggest that the REY in the Shanxi Formation coals was possibly associated with clay minerals in coal in an inorganic state, and may also be associated with phosphate and calcite in coal.
- The C-value, B content, and Sr/Ba ratio in coals indicated that the Shanxi Formation coals in the Huainan coalfield were developed in the transitional-phase semi-saline sedimentation of the deltaic sedimentary environment. Furthermore, the results of the REY parameters suggest that the Shanxi Formation coal was affected by seawater, and REYs in coal were greatly supplied by terrigenous clastics. This evidence indicates that the Shanxi Formation coal in the Huainan coalfield was developed in the inter-deltaic coastal zone and lower deltaic plain environment. The complex sedimentary environment is an important reason for the varying occurrence states of TREs in the Shanxi Formation coal.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Finkelman, R.B. Modes of occurrence of potentially hazardous elements in coal: Levels of confidence. Fuel Process. Technol. 1994, 39, 21–34. [Google Scholar] [CrossRef]
- World Coal Association. 2022. Available online: https://www.worldcoal.org/coal/uses-coal/coal-electricity (accessed on 25 June 2022).
- DAI, S.F.; Finkelman, R.B. Coal as a promising source of critical elements: Progress and future prospects. Int. J. Coal Geol. 2018, 186, 155–164. [Google Scholar] [CrossRef]
- Hu, Y.H.; You, M.; Liu, G.J.; Dong, Z.B.; Jiao, F.C.; Meng, Y. The Potential Utilizing of Critical Element from Coal and Combustion Residues. Energies 2021, 14, 4710. [Google Scholar] [CrossRef]
- Xu, F.; Qin, S.J.; Li, S.Y.; Wang, J.X.; Lu, Q.F.; Xing, J.K. Distribution, occurrence mode, and extraction potential of critical elements in coal ashes of the Chongqing Power Plant. J. Clean. Prod. 2022, 342, 130910. [Google Scholar] [CrossRef]
- Dai, S.F.; Chekryzhov, I.Y.; Seredin, V.V.; Nechaev, V.P.; Graham, I.T.; Hower, J.C.; Ward, C.R.; Ren, D.Y.; Wang, X.B. Metalliferous coal deposits in East Asia (Primorye of Russia and South China): A review of geodynamic controls and styles of mineralization. Gondwana Res. 2016, 29, 60–82. [Google Scholar] [CrossRef]
- Qin, Q.Z.; Deng, J.S.; Geng, H.H.; Bai, Z.Y.; Gui, X.H.; Ma, Z.T.; Miao, Z.Y. An exploratory study on strategic metal recovery of coal gangue and sustainable utilization potential of recovery residue. J. Clean. Prod. 2022, 340, 130765. [Google Scholar] [CrossRef]
- Krzeszowska, E.; Kokowska-Pawlowska, M.; Krzeszowski, Ś. Distribution of Selected Critical Elements in the Carboniferous Coal-bearing Series of the Upper Silesian and Lublin Coal Basins (Poland). Acta Geol. Sin.-Engl. Ed. 2022, 96, 273–292. [Google Scholar] [CrossRef]
- Qin, S.J.; Gao, K.; Sun, Y.Z.; Wang, J.X.; Zhao, C.L.; Li, S.Y.; Lu, Q.F. Geochemical characteristics of rare-metal, rare-scattered, and rare-earth elements and minerals in the late permian coals from the Moxinpo Mine, Chongqing, China. Energy Fuels 2018, 32, 3138–3151. [Google Scholar] [CrossRef]
- Dai, S.F.; Zhao, L.; Qiang, W.; Song, X.L.; Wang, W.F.; Liu, J.J.; Duan, P.P. Resources of critical metals in coal-bearing sequences in China: Enrichment types and distribution. Chin. Sci. Bull. 2020, 65, 3715–3729, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Dai, S.F.; Luo, Y.B.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Zhao, L.; Liu, S.D.; Zhao, C.L.; Tian, H.M.; Zou, J.H. Revisiting the late Permian coal from the Huayingshan, Sichuan, southwestern China: Enrichment and occurrence modes of minerals and trace elements. Int. J. Coal Geol. 2014, 122, 110–128. [Google Scholar] [CrossRef]
- Dai, S.F.; Xie, P.P.; Jia, S.H.; Ward, C.R.; Hower, J.C.; Yan, X.Y.; French, D. Enrichment of U-Re-V-Cr-Se and rare earth elements in the Late Permian coals of the Moxinpo Coalfield, Chongqing, China: Genetic implications from geochemical and mineralogical data. Ore Geol. Rev. 2017, 80, 1–17. [Google Scholar] [CrossRef]
- Dai, S.F.; Yan, X.Y.; Ward, C.R.; Hower, J.C.; Zhao, L.; Wang, X.B.; Zhao, L.X.; Ren, D.Y.; Finkelman, R.B. Valuable elements in Chinese coals: A review. Int. Geol. Rev. 2018, 60, 590–620. [Google Scholar] [CrossRef]
- Di, S.B.; Dai, S.F.; Nechaev, V.P.; Zhang, S.W.; French, D.; Graham, I.T.; Spiro, B.; Finkelman, R.B.; Hou, Y.J.; Wang, Y.C. Granite-bauxite provenance of abnormally enriched boehmite and critical elements (Nb, Ta, Zr, Hf and Ga) in coals from the Eastern Surface Mine, Ningwu Coalfield, Shanxi Province, China. J. Geochem. Explor. 2022, 239, 107016. [Google Scholar] [CrossRef]
- Zhao, L.; Dai, S.F.; Nechaev, V.P.; Nechaeva, E.V.; Graham, I.T.; French, D. Enrichment origin of critical elements (Li and rare earth elements) and a Mo-U-Se-Re assemblage in Pennsylvanian anthracite from the Jincheng Coalfield, southeastern Qinshui Basin, northern China. Ore Geol. Rev. 2019, 115, 103184. [Google Scholar] [CrossRef]
- Dai, S.F.; Finkelman, R.B.; French, D.; Hower, J.C.; Graham, I.T.; Zhao, F.H. Modes of occurrence of elements in coal: A critical evaluation. Earth-Sci. Rev. 2021, 222, 103815. [Google Scholar] [CrossRef]
- European Commission. A New Industrial Strategy for Europe; Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, COM(2020) 102 Final; European Commision: Brussels, Belgium, 2020. [Google Scholar]
- Dai, S.F.; Zhou, Y.P.; Zhang, M.Q.; Wang, X.B.; Wang, J.M.; Song, X.L.; Jiang, Y.F.; Luo, Y.B.; Song, Z.T.; Yang, Z. A new type of Nb (Ta)–Zr (Hf)–REE–Ga polymetallic deposit in the late Permian coal-bearing strata, eastern Yunnan, southwestern China: Possible economic significance and genetic implications. Int. J. Coal Geol. 2010, 83, 55–63. [Google Scholar] [CrossRef]
- Qin, S.J.; Sun, Y.Z.; Li, Y.H.; Wang, J.X.; Zhao, C.L.; Gao, K. Coal deposits as promising alternative sources for gallium. Earth-Sci. Rev. 2015, 150, 95–101. [Google Scholar] [CrossRef]
- Harrar, H.; Eterigho-Ikelegbe, O.; Modiga, A.; Bada, S. Mineralogy and distribution of rare earth elements in the Waterberg coalfield high ash coals. Miner. Eng. 2022, 183, 107611. [Google Scholar] [CrossRef]
- Eterigho-Ikelegbe, O.; Harrar, H.; Bada, S. Rare earth elements from coal and coal discard—A review. Miner. Eng. 2021, 173, 107187. [Google Scholar]
- Munir, M.A.M.; Liu, G.; Yousaf, B.; Ali, M.U.; Abbas, Q.; Ullah, H. Enrichment of Bi-Be-Mo-Cd-Pb-Nb-Ga, REEs and Y in the Permian coals of the Huainan Coalfield, Anhui, China. Ore Geol. Rev. 2018, 95, 431–455. [Google Scholar] [CrossRef]
- Ding, D.S.; Liu, G.J.; Fu, B.; Qi, C.C. Characteristics of the coal quality and elemental geochemistry in Permian coals from the Xinjier mine in the Huainan Coalfield, north China: Influence of terrigenous inputs. J. Geochem. Explor. 2018, 186, 50–60. [Google Scholar]
- Han, S.F. Coal-Forming Conditions and Coalfield Prediction Huaibei-Huainan Region; Geological Publishing House: Beijing, China, 1990; pp. 1–234. [Google Scholar]
- Zhang, L.Q.; Zheng, L.G.; Liu, M. Study on the Mineralogical and Geochemical Characteristics of Arsenic in Permian Coals: Focusing on the Coalfields of Shanxi Formation in Northern China. Energies 2022, 15, 3185. [Google Scholar] [CrossRef]
- Oskay, R.G.; Christanis, K.; Inaner, H.; Salman, M.; Taka, M. Palaeoenvironmental reconstruction of the eastern part of the Karapınar-Ayrancı coal deposit (Central Turkey). Int. J. Coal Geol. 2016, 163, 100–111. [Google Scholar] [CrossRef]
- DILL, H.G. A geological and mineralogical review of clay mineral deposits and phyllosilicate ore guides in Central Europe–A function of geodynamics and climate change. Ore Geol. Rev. 2020, 119, 103304. [Google Scholar] [CrossRef]
- Li, C.H.; Liang, H.D.; Wang, S.K.; Liu, J.G. Study of harmful trace elements and rare earth elements in the Permian tectonically deformed coals from Lugou Mine, North China Coal Basin, China. J. Geochem. Explor. 2018, 190, 10–25. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, L.G.; Han, B.W.; Zhang, J.; Cai, Y.J.; Xing, D.W. Mineralogical Characteristics of the Shanxi Formation Coal in the Huainan Coal Field, Anhui, China. Bull. Mineral. Petrol. Geochem. 2022, 41, 635–644, (In Chinese with English Abstract). [Google Scholar]
- Shi, Z.X.; Ma, J.L.; Gao, Z.; Zhang, J.W.; Liu, K.; Zhao, C.L. Mineralogical of the Jurassic coals in the middle of Ningdong Coalfield. J. China Coal Soc. 2017, 42, 1535–1543, (In Chinese with English Abstract). [Google Scholar]
- Seredin, V.V.; Dai, S. Coal deposits as potential alternative sources for lanthanides and yttrium. Int. J. Coal Geol. 2012, 94, 67–93. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Li, S.S.; Song, J.F.; Wu, Z.H. Concentrations of Minor Elements and Regional Distribution of Arsenic in Late Paleozoic Coals from North China Platform. J. China Univ. Min. Technol. 2003, 32, 8–11. [Google Scholar]
- Dai, S.F.; Ren, D.Y.; Chou, C.L.; Finkelman, R.B.; Seredin, V.V.; Zhou, Y.P. Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. Int. J. Coal Geol. 2012, 94, 3–21. [Google Scholar] [CrossRef]
- Ketris, M.á.; Yudovich, Y.E. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 2009, 78, 135–148. [Google Scholar] [CrossRef]
- Dai, S.F.; Seredin, V.V.; Ward, C.R.; Hower, J.C.; Xing, Y.W.; Zhang, W.G.; Song, W.J.; Wang, P.P. Enrichment of U–Se–Mo–Re–V in coals preserved within marine carbonate successions: Geochemical and mineralogical data from the Late Permian Guiding Coalfield, Guizhou, China. Miner. Depos. 2015, 50, 159–186. [Google Scholar] [CrossRef]
- Chen, S.C.; Wu, D.; Liu, G.J.; Sun, R.Y.; Fan, X. Geochemistry of major and trace elements in Permian coal: With an emphasis on No. 8 coal seam of Zhuji coal mine, Huainan Coalfield, China. Environ. Earth Sci. 2016, 75, 494. [Google Scholar] [CrossRef]
- Liu, G.J.; Yang, P.Y.; Peng, Z.C.; Chou, C.L. Petrographic and geochemical contrasts and environmentally significant trace elements in marine-influenced coal seams, Yanzhou mining area, China. J. Asian Earth Sci. 2004, 23, 491–506. [Google Scholar] [CrossRef]
- Sun, R.Y.; Liu, G.J.; Zheng, L.G.; Chou, C.L. Characteristics of coal quality and their relationship with coal-forming environment: A case study from the Zhuji exploration area, Huainan coalfield, Anhui, China. Energy 2010, 35, 423–435. [Google Scholar] [CrossRef]
- Lv, D.W.; Fan, W.G.; Ejembi, J.I.; Wu, D.; Wang, D.D.; Li, Z.X.; Li, J.P.; Li, P.P. Depositional environments of limestones from the Taiyuan Formation in the North China Block interpreted from REE proxies. Carbonates Evaporites 2020, 35, 61. [Google Scholar] [CrossRef]
- Dai, S.F.; Ren, D.Y.; Li, S.S. Modes of Occurrence of Rare Earth Elements in Some Late Paleozoic Coals of North China. Acta Geoscientica Sinica 2003, 24, 273–278, (In Chinese with English Abstract). [Google Scholar]
- Dai, S.F.; Zou, J.H.; Jiang, Y.F.; Ward, C.R.; Wang, X.B.; Li, T.; Xue, W.F.; Liu, S.D.; Tian, H.M.; Sun, X.H. Mineralogical and geochemical compositions of the Pennsylvanian coal in the Adaohai Mine, Daqingshan Coalfield, Inner Mongolia, China: Modes of occurrence and origin of diaspore, gorceixite, and ammonian illite. Int. J. Coal Geol. 2012, 94, 250–270. [Google Scholar] [CrossRef]
- Zhao, Q.J.; Li, X.; Wang, J.; Zhang, M.M.; Zhao, C.L.; Zhao, J.; Panchal, B.; Ma, J.L. Occurrence of harmful elements in the ‘high-aluminium coals’ from the Pingshuo mining district, Shanxi Province, China. Energy Explor. Exploit. 2022, 40, 977–994. [Google Scholar] [CrossRef]
- Wei, Q.; Dai, S.F. Critical metals and hazardous elements in the coal-hosted germanium ore deposits of China: Occurrence characteristics and enrichment causes. J. China Coal Soc. 2020, 45, 296–303, (In Chinese with English Abstract). [Google Scholar]
- Qin, S.J.; Lu, Q.F.; Li, Y.H.; Wang, J.X.; Zhao, Q.J.; Gao, K. Relationships between trace elements and organic matter in coals. J. Geochem. Explor. 2018, 188, 101–110. [Google Scholar] [CrossRef]
- Sun, R.Y.; Liu, G.J.; Zheng, L.G.; Chou, C.L. Geochemistry of trace elements in coals from the Zhuji Mine, Huainan Coalfield, Anhui, China. Int. J. Coal Geol. 2010, 81, 81–96. [Google Scholar] [CrossRef]
- Sun, B.L.; Zeng, F.G.; Moore, T.A.; Rodrigues, S.; Liu, C.; Wang, G.Q. Geochemistry of two high-lithium content coal seams, Shanxi Province, China. Int. J. Coal Geol. 2022, 260, 104059. [Google Scholar] [CrossRef]
- Jiu, B.; Huang, W.H.; Mu, N.N. Mineralogy and elemental geochemistry of Permo-Carboniferous Li-enriched coal in the southern Ordos Basin, China: Implications for modes of occurrence, controlling factors and sources of Li in coal. Ore Geol. Rev. 2022, 141, 104686. [Google Scholar] [CrossRef]
- Zhao, C.L.; Sun, Y.Z.; Xiao, L.; Qin, S.J.; Wang, J.X.; Duan, D.J. The occurrence of barium in a Jurassic coal in the Huangling 2 Mine, Ordos Basin, northern China. Fuel 2014, 128, 428–432. [Google Scholar] [CrossRef]
- Qin, S.J.; Xu, F.; Cui, L.; Wang, J.X.; Li, S.Y.; Zhao, Z.S.; Xiao, L.; Guo, Y.X.; Zhao, C.L. Geochemistry characteristics and resource utilization of strtegically critical trace elements from coal-related resources. Coal Sci. Technol. 2022, 50, 1–38, (In Chinese with English Abstract). [Google Scholar]
- Tang, Y.G.; Chang, C.X.; Zhang, Y.Z.; Li, W.W. Migration and distribution of fifteen toxic trace elements during the coal washing of the Kailuan Coalfield, Hebei Province, China. Energy Explor. Exploit. 2009, 27, 143–152. [Google Scholar] [CrossRef]
- Wang, L.; Ju, Y.W.; Liu, G.J.; Chou, C.L.; Zheng, L.G.; Qi, C.C. Selenium in Chinese coals: Distribution, occurrence, and health impact. Environ. Earth Sci. 2010, 60, 1641–1651. [Google Scholar] [CrossRef]
- Chen, Y.P.; Liu, G.J.; Wang, L.; Kang, Y.; Sun, R.Y.; Chen, J. Concentration, distribution, and modes of occurrence of selenium in Huaibei coalfield, Anhui province, China. Environ. Earth Sci. 2015, 73, 6445–6455. [Google Scholar] [CrossRef]
- Taylor, S.R.; McLennan, S.M. The continental crust: Its composition and evolution. In The Continental Crust: Its Composition and Evolution; U.S. Department of Energy Office: Washington, DC, USA, 1985. [Google Scholar]
- Dai, S.F.; Liu, J.J.; Ward, C.R.; Hower, J.C.; French, D.; Jia, S.H.; Hood, M.M.; Garrison, T.M. Mineralogical and geochemical compositions of Late Permian coals and host rocks from the Guxu Coalfield, Sichuan Province, China, with emphasis on enrichment of rare metals. Int. J. Coal Geol. 2016, 166, 71–95. [Google Scholar] [CrossRef]
- Wang, W.F.; Qin, Y.; Sang, S.X.; Zhu, Y.M.; Wang, C.Y.; Weiss, D.J. Geochemistry of rare earth elements in a marine influenced coal and its organic solvent extracts from the Antaibao mining district, Shanxi, China. Int. J. Coal Geol. 2008, 76, 309–317. [Google Scholar] [CrossRef]
- Jiu, B.; Huang, W.H.; Hao, R. A method for judging depositional environment of coal reservoir based on coal facies parameters and rare earth element parameters. J. Pet. Sci. Eng. 2021, 207, 109128. [Google Scholar] [CrossRef]
- Dai, S.F.; Graham, I.T.; Ward, C.R. A review of anomalous rare earth elements and yttrium in coal. Int. J. Coal Geol. 2016, 159, 82–95. [Google Scholar] [CrossRef]
- Tuttle, M.L.; Fahy, J.W.; Elliott, J.G.; Grauch, R.I.; Stillings, L.L. Contaminants from cretaceous black shale: II. Effect of geology, weathering, climate, and land use on salinity and selenium cycling, Mancos Shale landscapes, southwestern United States. Appl. Geochem. 2014, 46, 72–84. [Google Scholar] [CrossRef]
- Finkelman, R.B.; Dai, S.F.; French, D. The importance of minerals in coal as the hosts of chemical elements: A review. Int. J. Coal Geol. 2019, 212, 103251. [Google Scholar] [CrossRef]
- Karayigit, A.I.; Atalay, M.; Oskay, R.G.; Cordoba, P.; Querol, X.; Bulut, Y. Variations in elemental and mineralogical compositions of Late Oligocene, Early and Middle Miocene coal seams in the Kale-Tavas Molasse sub-basin, SW Turkey. Int. J. Coal Geol. 2020, 218, 103366. [Google Scholar] [CrossRef]
- Alastuey, A.; Jiménez, A.; Plana, F.; Querol, X.; Suárez-Ruiz, I. Geochemistry, mineralogy, and technological properties of the main Stephanian (Carboniferous) coal seams from the Puertollano Basin, Spain. Int. J. Coal Geol. 2001, 45, 247–265. [Google Scholar] [CrossRef]
- Goodarzi, F.; Swaine, D.J. Paleoenvironmental and Environmental Implications of the Boron Content of Coals; U.S. Department of Energy Office: Washington, DC, USA, 1994.
- Fu, B.; Liu, G.J.; Liu, Y.; Cheng, S.W.; Qi, C.C.; Sun, R.Y. Coal quality characterization and its relationship with geological process of the Early Permian Huainan coal deposits, southern North China. J. Geochem. Explor. 2016, 166, 33–44. [Google Scholar] [CrossRef]
Step | Speciation | Extractant | Extraction Conditions | Cellulose Filter |
---|---|---|---|---|
T1 | Exchangeable | 0.50 g sample + 10 mL NaOAc (1 M, pH = 8.2) | oscillate at room temperature of (25 ± 2) °C for 2 h, centrifuge | 0.2 µm |
T2 | Carbonate | residue in T1 + HOAc(1 M, pH = 5.0) | stir until the reaction is complete at room temperature, then centrifuge | 0.2 µm |
T3 | Fe-Mn oxides | residue in T2 + 20 mL of 0.3 M Na2S2O4 + 0.175 M Na-citrate + 0.025 H-citrate | occasional stirring at 96 ± 3 ◦C, then centrifuge | 0.2 µm |
T4 | Organic | residue in T3 + ① 3 mLof 0.02 M HNO3 + 5 mL of H2O2 (pH = 2); ② 3 mL of 30% H2O2 (pH = 2, with HNO3); ③ 5 mL of 3.2 M NH4OAc | ① 2 h at 85 ± 2 °C; ② 3 h at 85 ± 2 °C; ③ 0.5 h continuous stirring, then centrifuge. | 0.2 µm |
T5 | Residual | residue recovered in T4 + 5 mLHNO3 + 5 mL HF | digestion at 110 °C to clear liquid, and then the cover was lifted at 90 °C to remove the acid | 0.2 µm |
Sample No. | Mad | Ad | Vdaf | Q (MJ/kg) | St,d | Sp,d | Ss,d | So,d |
---|---|---|---|---|---|---|---|---|
3-1 | 1.54 | 17.96 | 28.65 | 22.91 | 0.54 | 0.21 | 0.05 | 0.28 |
3-2 | 1.31 | 8.45 | 32.44 | 32.21 | 0.49 | 0.22 | 0.04 | 0.23 |
3-3 | 1.69 | 8.42 | 34.34 | 26.92 | 0.62 | 0.27 | 0.07 | 0.28 |
3-4 | 1.24 | 11.44 | 31.89 | 30.95 | 0.51 | 0.22 | 0.02 | 0.27 |
3-5 | 1.25 | 13.42 | 38.44 | 26.08 | 0.32 | 0.16 | 0.03 | 0.13 |
3-6 | 1.20 | 3.45 | 35.76 | 34.44 | 0.47 | 0.19 | 0.03 | 0.25 |
3-7 | 1.43 | 6.80 | 31.93 | 27.78 | 0.59 | 0.24 | 0.05 | 0.30 |
3-8 | 1.25 | 4.00 | 33.95 | 34.18 | 0.49 | 0.23 | 0.04 | 0.22 |
3-9 | 1.24 | 6.13 | 36.19 | 33.25 | 0.45 | 0.20 | 0.03 | 0.22 |
3-10 | 1.57 | 7.77 | 33.95 | 26.99 | 0.43 | 0.17 | 0.01 | 0.25 |
1-1 | 2.05 | 29.04 | 31.36 | 19.10 | 0.40 | 0.19 | 0.01 | 0.20 |
1-2 | 1.96 | 8.06 | 29.51 | 27.10 | 0.42 | 0.16 | 0.02 | 0.24 |
1-3 | 2.00 | 13.23 | 30.59 | 26.80 | 0.36 | 0.15 | 0.05 | 0.16 |
1-4 | 2.37 | 12.93 | 31.35 | 27.07 | 0.52 | 0.25 | 0.04 | 0.23 |
1-5 | 1.80 | 10.60 | 32.34 | 26.12 | 0.46 | 0.21 | 0.03 | 0.22 |
1-6 | 2.06 | 5.08 | 30.44 | 28.43 | 0.52 | 0.22 | 0.02 | 0.28 |
1-7 | 2.01 | 8.84 | 31.83 | 27.05 | 0.56 | 0.24 | 0.06 | 0.26 |
1-8 | 2.04 | 5.68 | 33.17 | 27.15 | 0.64 | 0.26 | 0.04 | 0.34 |
1-9 | 2.74 | 14.72 | 33.54 | 25.21 | 0.54 | 0.27 | 0.04 | 0.23 |
1-10 | 2.93 | 21.75 | 33.43 | 22.13 | 0.71 | 0.41 | 0.03 | 0.27 |
Average | 1.78 | 10.89 | 32.76 | 27.59 | 0.50 | 0.22 | 0.04 | 0.24 |
Max | 2.93 | 29.04 | 38.44 | 19.10 | 0.71 | 0.41 | 0.07 | 0.34 |
Min | 1.20 | 3.45 | 28.65 | 34.44 | 0.32 | 0.15 | 0.01 | 0.13 |
Sample | Project | Na2O | MgO | Al2O3 | SiO2 | K2O | CaO | Fe2O3 | P2O5 | TiO2 | C |
---|---|---|---|---|---|---|---|---|---|---|---|
Min | 0.02 | 0.09 | 2.28 | 4.01 | 0.01 | 0.30 | 0.31 | 0.01 | 0.05 | 0.14 | |
Shanxi Formation | Max | 0.28 | 0.86 | 7.77 | 7.86 | 1.92 | 1.60 | 1.99 | 0.03 | 0.77 | 0.35 |
Ave | 0.07 | 0.46 | 4.93 | 5.43 | 0.25 | 0.83 | 1.24 | 0.02 | 0.27 | 0.25 | |
China | Ave | 0.16 | 0.22 | 5.98 | 8.47 | 0.19 | 1.23 | 4.85 | 0.10 | 0.33 |
Elements | This Study | Northern China | Chinese Coal | World Hard Coal | ||||
---|---|---|---|---|---|---|---|---|
Min | Max | AM | AM | GM | AM | Sample No. | AM | |
Li | 11.58 | 119 | 67.56 | 43.91 | 33.5 | 31.8 | 1274 | 12 |
Be | 0.13 | 23.42 | 1.97 | 2.05 | 1.69 | 2.13 | 1198 | 1.6 |
Rb | 0.52 | 57.41 | 6.61 | 1.59 | 0.98 | 9.24 | 1114 | 14 |
Sr | 29.83 | 899.6 | 193.4 | 192.99 | 116.51 | 140.2 | 2075 | 110 |
Zr | 10.5 | 150.9 | 41.14 | 188.28 | 150.9 | 89.3 | 1238 | 36 |
Nb | 0.34 | 16.54 | 4.27 | 6.87 | 5.48 | 9.47 | 974 | 3.7 |
Cs | 0.1 | 1.83 | 0.26 | 0.39 | 0.11 | 1.13 | 1208 | 1 |
Hf | 0.23 | 4.95 | 1.27 | 5.07 | 4.11 | 3.82 | 1320 | 1.2 |
Ta | 0.62 | 0.99 | 0.79 | 0.6 | 0.4 | 0.66 | 1336 | 0.28 |
Ga | 4.64 | 35.76 | 13.67 | 12.57 | 11.17 | 6.52 | 1986 | 5.8 |
Ge | 1.17 | 7.26 | 2.71 | nd | nd | 2.96 | 3189 | 2.2 |
Se | 2.06 | 12.58 | 6.92 | 2.01 | 0.97 | 2.47 | 1537 | 1.3 |
Cd | 0.06 | 1.18 | 0.32 | 0.11 | 0.08 | 0.24 | 1303 | 0.22 |
Tl | 0.02 | 0.67 | 0.13 | 0.22 | 0.13 | 0.48 | 1018 | 0.63 |
B | 54.4 | 282 | 134.46 | nd | nd | 53 | 1048 | 52 |
Ba | 33.82 | 301.1 | 90.48 | 121.59 | 57.92 | 159 | 1205 | 150 |
REY | 31.06 | 80.57 | 51.34 | nd | nd | 136 | nd | 68.27 |
Correlation Coefficients with Ash Yield | ||||
---|---|---|---|---|
rAd–Be = 0.746 ** | rAd–Rb = 0.711 ** | rAd–Zr = 0.726 ** | rAd–Nb = 0.623 ** | rAd–Cd = 0.760 ** |
rAd–Cs = 0.746 ** | rAd–Hf = 0.710 ** | rAd–Ga = 0.683 ** | rAd–Tl = 0.841 ** | rAd–Ge = 0.707 ** |
Correlation coefficient with Al2O3 | ||||
rAl2O3–Be = 0.451 * | rAl203–Zr= 0.613 ** | rAl2O3–Nb = 0.596 ** | rAl2O3–Hf = 0.562 ** | rAl2O3–Tl = 0.455 * |
rAl2O3–Ga = 0.472 * | rAl2O3–Cd = 0.614 ** | |||
Correlation coefficient with K2O | ||||
rK2O–Be = 0.873 ** | rK2O–Cs= 0.940 ** | rK2O–Ge = 0.627 ** | rK2O–Tl = 0.864 ** | rK2O–Rb = 0.870 ** |
Correlation coefficient with Na2O | ||||
rNa2O–Be = 0.887 ** | rNa2O–Cs= 0.865 ** | rNa2O–Ge = 0.611 ** | rNa2O–Tl = 0.734 ** | rNa2O–Rb = 0.771 ** |
Correlation coefficients with selected element combinations | ||||
rTa–Zr = 0.643 ** | rTa–Nb = 0.674 ** | rTa–Hf = 0.655 ** | rSe–CaO = 0.528 * | rSe–s= 0.471 * |
rREY–P2O5 = 0.556 ** | rREY–CaO = 0.553 * | rREY–S = 0.471 * | rREY–Al = 0.495 * | rTl–Fe2O3 = 0.453 * |
Sample No. | LREY | MREY | HREY | ∑REY | L/M | M/H | L/H | δCe | δEu | (La/Lu)N | (La/Sm)N | (Gd/Lu)N | (Y/Ho)N |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3-T | 88.72 | 12.51 | 2.17 | 103.41 | 7.09 | 5.75 | 40.80 | 0.87 | 0.98 | 1.89 | 1.65 | 2.21 | 0.74 |
3-1 | 63.43 | 11.22 | 3.09 | 77.74 | 5.65 | 3.63 | 20.52 | 0.68 | 0.61 | 1.32 | 1.51 | 0.46 | 1.06 |
3-2 | 38.16 | 4.38 | 0.54 | 43.08 | 8.71 | 8.11 | 70.60 | 0.89 | 0.63 | 3.40 | 2.17 | 2.73 | 1.31 |
3-3 | 46.72 | 7.82 | 1.44 | 55.97 | 5.98 | 5.44 | 32.51 | 0.84 | 0.79 | 1.95 | 2.13 | 1.67 | 1.13 |
3-4 | 69.73 | 7.73 | 1.09 | 78.54 | 9.03 | 7.10 | 64.07 | 0.84 | 0.82 | 3.90 | 2.60 | 2.57 | 1.16 |
3-5 | 46.35 | 6.24 | 1.02 | 53.62 | 7.42 | 6.10 | 45.26 | 0.68 | 0.75 | 3.45 | 2.84 | 2.02 | 0.89 |
3-6 | 34.11 | 5.78 | 0.99 | 40.87 | 5.90 | 5.87 | 34.63 | 1.26 | 0.84 | 1.92 | 2.18 | 2.01 | 0.85 |
3-7 | 46.02 | 6.51 | 1.20 | 53.73 | 7.07 | 5.45 | 38.49 | 0.72 | 0.59 | 2.47 | 2.21 | 1.53 | 1.22 |
3-8 | 52.03 | 5.19 | 1.05 | 58.27 | 10.02 | 4.94 | 49.54 | 1.03 | 0.62 | 2.62 | 2.62 | 1.30 | 1.13 |
3-9 | 33.30 | 6.70 | 0.67 | 40.67 | 4.97 | 9.99 | 49.63 | 1.03 | 1.16 | 1.69 | 2.26 | 3.28 | 1.45 |
3-10 | 35.19 | 11.36 | 1.51 | 48.06 | 3.10 | 7.51 | 23.28 | 1.07 | 0.74 | 0.95 | 1.32 | 2.84 | 1.29 |
3-B | 71.65 | 15.53 | 2.89 | 90.07 | 4.61 | 5.37 | 24.78 | 0.88 | 1.09 | 1.00 | 0.81 | 1.85 | 0.92 |
1-T | 87.26 | 7.32 | 1.15 | 95.73 | 11.91 | 6.35 | 75.71 | 1.73 | 0.97 | 3.99 | 2.67 | 1.53 | 1.45 |
1-1 | 27.94 | 2.83 | 0.81 | 31.57 | 9.89 | 3.51 | 34.67 | 1.29 | 0.89 | 0.72 | 0.89 | 0.69 | 0.53 |
1-2 | 29.36 | 5.12 | 1.02 | 35.50 | 5.74 | 5.00 | 28.71 | 0.86 | 0.67 | 0.95 | 1.28 | 1.28 | 0.94 |
1-P | 19.43 | 8.65 | 2.50 | 30.58 | 2.25 | 3.46 | 7.78 | 0.76 | 2.10 | 0.16 | 0.73 | 0.28 | 0.59 |
1-3 | 37.19 | 9.07 | 1.77 | 48.02 | 4.10 | 5.13 | 21.06 | 0.81 | 0.73 | 0.90 | 1.08 | 1.33 | 1.06 |
1-4 | 46.67 | 10.62 | 1.93 | 59.22 | 4.39 | 5.50 | 24.15 | 0.72 | 0.87 | 1.47 | 1.72 | 1.41 | 1.19 |
1-5 | 32.32 | 6.84 | 1.29 | 40.45 | 4.73 | 5.31 | 25.10 | 0.93 | 0.78 | 0.97 | 1.09 | 1.51 | 1.11 |
1-6 | 39.72 | 6.95 | 1.28 | 47.95 | 5.71 | 5.43 | 31.00 | 0.86 | 0.74 | 1.51 | 1.77 | 1.52 | 1.16 |
1-7 | 37.90 | 5.91 | 1.10 | 44.91 | 6.42 | 5.36 | 34.37 | 1.43 | 0.61 | 1.33 | 1.52 | 1.67 | 1.14 |
1-8 | 25.19 | 5.02 | 0.83 | 31.04 | 5.02 | 6.03 | 30.27 | 1.22 | 0.66 | 1.19 | 1.28 | 1.57 | 1.31 |
1-9 | 48.16 | 12.77 | 2.37 | 63.30 | 3.77 | 5.40 | 20.35 | 1.03 | 0.61 | 0.85 | 0.87 | 1.58 | 1.06 |
1-10 | 53.33 | 16.08 | 2.86 | 72.27 | 3.32 | 5.63 | 18.66 | 1.05 | 0.52 | 0.73 | 0.93 | 1.52 | 1.18 |
1-B | 85.74 | 7.63 | 1.22 | 94.59 | 11.24 | 6.28 | 70.51 | 1.74 | 0.71 | 3.35 | 1.42 | 2.00 | 1.18 |
Average | 42.14 | 7.71 | 1.39 | 51.24 | 6.05 | 5.82 | 34.84 | 0.96 | 0.73 | 1.71 | 1.72 | 1.72 | 1.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Zheng, L.; Wu, Z.; Zhang, Q.; Chen, X.; Chen, Y.; Zhang, L. Geochemical Characteristics of Rare-Metal, Rare-Dispersed, and Rare-Earth Elements and Depositional Environments in the Shanxi Formation Coal, Huainan Coalfield, Anhui, China. Int. J. Environ. Res. Public Health 2023, 20, 1887. https://doi.org/10.3390/ijerph20031887
Wang W, Zheng L, Wu Z, Zhang Q, Chen X, Chen Y, Zhang L. Geochemical Characteristics of Rare-Metal, Rare-Dispersed, and Rare-Earth Elements and Depositional Environments in the Shanxi Formation Coal, Huainan Coalfield, Anhui, China. International Journal of Environmental Research and Public Health. 2023; 20(3):1887. https://doi.org/10.3390/ijerph20031887
Chicago/Turabian StyleWang, Weicheng, Liugen Zheng, Zhiwei Wu, Qian Zhang, Xing Chen, Yongchun Chen, and Liqun Zhang. 2023. "Geochemical Characteristics of Rare-Metal, Rare-Dispersed, and Rare-Earth Elements and Depositional Environments in the Shanxi Formation Coal, Huainan Coalfield, Anhui, China" International Journal of Environmental Research and Public Health 20, no. 3: 1887. https://doi.org/10.3390/ijerph20031887
APA StyleWang, W., Zheng, L., Wu, Z., Zhang, Q., Chen, X., Chen, Y., & Zhang, L. (2023). Geochemical Characteristics of Rare-Metal, Rare-Dispersed, and Rare-Earth Elements and Depositional Environments in the Shanxi Formation Coal, Huainan Coalfield, Anhui, China. International Journal of Environmental Research and Public Health, 20(3), 1887. https://doi.org/10.3390/ijerph20031887