Health Consequences of Intensive E-Gaming: A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Engagement with eSports in Selected Countries Worldwide in 2020, by Country. Available online: https://www.statista.com/statistics/1250078/eSportss-engagement-by-country/ (accessed on 22 May 2022).
- Geoghegan, L.; Wormald, J.C.R. Sport-related hand injury: A new perspective of Esports. J. Hand Surg. Eur. 2019, 44, 219–220. [Google Scholar] [CrossRef] [PubMed]
- Franks, R.R.; King, D.; Bodine, W.; Chisari, E.; Heller, A.; Jamal, F., IV; Luksch, J.; Quinn, K.; Singh, R.; Solomon, M. AOASM Position Statement on ESports, Active Video Gaming, and the Role of the Sports Medicine Physician. Clin. J. Sport Med. 2022, 1, e221–e229. [Google Scholar] [CrossRef] [PubMed]
- Elsam, S. Esports Medal Inclusion for 2022 Asian Games Put on Hold. The Esports Observer. 2018. Available online: https://esportsobserver.com/esports-asian-games-medals-on-hold/ (accessed on 20 December 2022).
- Maldonado-Murciano, L.; Guilera, G.; Montag, C.; Pontes, H.M. Disordered gaming in eSports: Comparing professional and non-professional gamers. Addict. Behav. 2022, 26, 107342. [Google Scholar] [CrossRef] [PubMed]
- Emara, A.K.; Ng, M.K.; Cruickshank, J.A.; Kampert, M.W.; Piuzzi, N.S.; Schaffer, J.L.; King, D. Gamer’s Health Guide: Optimizing Performance, Recognizing Hazards, and Promoting Wellness in ESports. Curr. Sports Med. Rep. 2020, 19, 537–545. [Google Scholar] [CrossRef]
- Lee, K.C.H.; Lim, C.H.; Hsu, A.A.L. Killed by Internet Addiction? A Real Possibility. Ann. Acad. Med. 2015, 44, 565–566. [Google Scholar] [CrossRef]
- Yamagata, K.; Yamagata, L.M.; Abela, M. A review article of the cardiovascular sequalae in esports athletes: A cause for concern? Hellenic. J. Cardiol. 2022, 1, S1109–S9666. [Google Scholar] [CrossRef]
- Mangeloja, E. Economics of Esports. Electron. J. Bus. Ethics Organ. Stud. 2019, 24, 34–42. [Google Scholar]
- Yeo, M.; Lim, S.; Yoon, G. Analysis of Biosignals During Immersion in Computer Games. J. Med. Syst. 2018, 42, 3. [Google Scholar] [CrossRef]
- Reed, G.M.; First, M.B.; Billieux, J.; Cloitre, M.; Briken, P.; Achab, S.; Brewin, C.R.; King, D.L.; Kraus, S.W.; Bryant, R.A. Emerging experience with selected new categories in the ICD-11: Complex PTSD, prolonged grief disorder, gaming disorder, and compulsive sexual behaviour disorder. World Psychiatry 2022, 21, 189–213. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef]
- Lee, H. A new case of fatal pulmonary thromboembolism associated with prolonged sitting at computer in Korea. Yonsei Med. J. 2004, 45, 349–351. [Google Scholar] [CrossRef]
- Chuang, Y.C. Massively multiplayer online role-playing game-induced seizures: A neglected health problem in internet addiction. Cyberpsychol. Behav. 2006, 9, 451–456. [Google Scholar] [CrossRef]
- Sainz, I.; Collado-Mateo, D.; Coso, J.D. Effect of acute caffeine intake on hit accuracy and reaction time in professional Esports players. Physiol. Behav. 2020, 224, 113031. [Google Scholar] [CrossRef]
- Valladao, S.P.; Middleton, J.; Andre, T.L. ESports: Fortnite Acutely Increases Heart Rate of Young Men. Int. J. Exerc. Sci. 2020, 13, 1217–1227. [Google Scholar]
- Watanabe, K.; Saijo, N.; Minami, S.; Kashino, M. The effects of competitive and interactive play on physiological state in professional eSports players. Heliyon 2021, 7, e06844. [Google Scholar] [CrossRef]
- Lee, S.; Bonnar, D.; Roane, B.; Gradisar, M.; Dunican, I.C.; Lastella, M.; Maisey, G.; Suh, S. Sleep Characteristics and Mood of Professional ESports Athletes: A Multi-National Study. Int. J. Environ. Res. Public Health 2021, 18, 664. [Google Scholar] [CrossRef]
- Kang, J.O.; Kang, K.D.; Lee, J.W.; Nam, J.J.; Han, D.H. Comparison of Psychological and Cognitive Characteristics between Professional Internet Game Players and Professional Baseball Players. Int. J. Environ. Res. Public Health 2020, 17, 4797. [Google Scholar] [CrossRef]
- Song, S.H.; Lee, D.W.; Lee, S.B.; Kwak, I.S. Rhabdomyolysis caused by strenuous computer gaming. Nephrol. Dial. Transplant. 2007, 22, 1263–1264. [Google Scholar] [CrossRef] [Green Version]
- Distribution of Video Gamers Worldwide in 2017, by Age Group and Gender. Available online: https://www.statista.com/statistics/722259/world-gamers-by-age-and-gender/ (accessed on 10 October 2022).
- Stuller, K.A.; Jarrett, B.; DeVries, A.C. Stress and social isolation increase vulnerability to stroke. Exp. Neurol. 2012, 233, 33–39. [Google Scholar] [CrossRef]
- Ströhle, A. Sports psychiatry: Mental health and mental disorders in athletes and exercise treatment of mental disorders. Eur. Arch. Psychiatry Clin. Neurosci. 2019, 269, 485–498. [Google Scholar] [CrossRef]
- Chang, H.C.L.; Burbridge, H.; Wong, C. Extensive deep vein thrombosis following prolonged gaming (‘gamer’s thrombosis’): A case report. J. Med. Case Rep. 2013, 7, 235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Alebeek, M.E.; Arntz, R.M.; Ekker, M.S.; Synhaeve, N.E.; Maaijwee, N.A.; Schoonderwaldt, H.; van der Vlugt, M.J.; van Dijk, E.J.; Rutten-Jacobs, L.C.; de Leeuw, F.E. Risk factors and mechanisms of stroke in young adults: The FUTURE study. J. Cereb. Blood Flow Metab. 2018, 38, 1631–1641. [Google Scholar] [CrossRef] [PubMed]
- Grander, W.; Schwaiger, J.; Seeber, J.; Dünser, M.W. Cyber war—When virtual fear of death turns into a real threat of life. Int. J. Cardiol. 2011, 149, e16–e17. [Google Scholar] [CrossRef] [PubMed]
- Rambaran, K.A.; Alzghari, S.K. Gamer’s Thrombosis: A review of published reports. Ochsner J. 2020, 20, 182–186. [Google Scholar] [CrossRef]
- Vibo, R.; Schneider, S.; Kõrv, L.; Mallene, S.; Torop, L.A.; Kõrv, J. Estonian young stroke registry: High burden of risk factors and high prevalence of cardiometabolic and large-artery stroke. Eur. Stroke J. 2021, 6, 262–267. [Google Scholar] [CrossRef]
- Kasteleijn-Nolst Trenité, D.G.; Martins da Silva, A.; Ricci, S.; Rubboli, G.; Tassinari, C.A.; Lopes, J.; Bettencourt, M.; Oosting, J.; Segers, J.P. Video games are exciting: A European study of video game-induced seizures and epilepsy. Epileptic. Disord. 2002, 4, 121–128. [Google Scholar]
- Fisher, R.S.; Acharya, J.N.; Baumer, F.M.; French, J.A.; Parisi, P.; Solodar, J.H.; Szaflarski, J.P.; Thio, L.L.; Tolchin, B.; Wilkins, A.J.; et al. Visually sensitive seizures: An updated review by the Epilepsy Foundation. Epilepsia 2022, 63, 739–768. [Google Scholar] [CrossRef]
- Darke, S.; Duflou, J.; Kaye, S.; Farrell, M.; Lappin, J. Body mass index and fatal stroke in young adults: A national study. J. Forensic Leg. Med. 2019, 63, 1–6. [Google Scholar] [CrossRef]
- Si Larbi, M.T.; Al Mangour, W.; Saba, I.; Al Naqeb, D.; Faisal, Z.S.; Omar, S.; Ibrahim, F. Ischemic and Non-ischemic Stroke in Young Adults—A Look at Risk Factors and Outcome in a Developing Country. Cureus 2021, 13, e17079. [Google Scholar] [CrossRef]
- Wu, X.; Zou, Y.; You, S.; Zhang, Y. Distribution of risk factors of ischemic stroke in Chinese young adults and its correlation with prognosis. BMC Neurol. 2022, 22, 26. [Google Scholar] [CrossRef]
- Tartar, J.L.; Banks, J.B.; Marang, M.; Pizzo, F.; Antonio, J. A Combination of Caffeine, TeaCrine® (Theacrine), and Dynamine® (Methylliberine) Increases Cognitive Performance and Reaction Time Without Interfering with Mood in Adult Male EGamers. Cureus 2021, 13, e20534. [Google Scholar] [CrossRef]
- Lam, W.K.; Liu, R.T.; Chen, B.; Huang, X.Z.; Yi, J.; Wong, D.W. Health Risks and Musculoskeletal Problems of Elite Mobile ESports Players: A Cross-Sectional Descriptive Study. Sports Med. Open 2022, 8, 65. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D. Fourth Universal Definition of Myocardial Infarction (2018). J. Am. Coll. Cardiol. 2018, 72, 2231–2264. [Google Scholar] [CrossRef]
- Hasan, Y.; Bègue, L.; Bushman, B.J. Violent video games stress people out and make them more aggressive. Aggress. Behav. 2013, 39, 64–70. [Google Scholar] [CrossRef] [Green Version]
- Goldfield, G.S.; Kenny, G.P.; Hadjiyannakis, S.; Phillips, P.; Alberga, A.S.; Saunders, T.J.; Tremblay, M.S.; Malcolm, J.; Prud’homme, D.; Gougeon, R.; et al. Video game playing is independently associated with blood pressure and lipids in overweight and obese adolescents. PLoS ONE 2011, 6, e26643. [Google Scholar] [CrossRef]
- Chaput, J.P.; Visby, T.; Nyby, S.; Klingenberg, L.; Gregersen, N.T.; Tremblay, A.; Astrup, A.; Sjödin, A. Video game playing increases food intake in adolescents: A randomized crossover study. Am. J. Clin. Nutr. 2011, 93, 1196–1203. [Google Scholar] [CrossRef] [Green Version]
- Lisón, J.F.; Cebolla, A.; Guixeres, J.; Alvarez-Pitti, J.; Escobar, P.; Bruñó, A.; Lubre, E.; Alcaniz, M.; Banos, R. A Competitive active video games: Physiological and psychological responses in children and adolescents. Paediatr. Child Health 2015, 20, 373–376. [Google Scholar] [CrossRef] [Green Version]
- Porter, A.M.; Goolkasian, P. Video Games and Stress: How Stress Appraisals and Game Content Affect Cardiovascular and Emotion Outcomes. Front. Psychol. 2019, 10, 967. [Google Scholar] [CrossRef] [Green Version]
- Andre, T.L.; Walsh, S.M.; ValladÃo, S.; Cox, D. Physiological and Perceptual Response to a Live Collegiate ESports Tournament. Int. J. Exerc. Sci. 2020, 13, 1418–1429. [Google Scholar]
- Lin, T.C. Effects of gender and game type on autonomic nervous system physiological parameters in long-hour online game players. Cyberpsychol. Behav. Soc. Netw. 2013, 16, 820–827. [Google Scholar] [CrossRef]
- Ivarsson, M.; Anderson, M.; Åkerstedt, T.; Lindblad, F. The effect of violent and nonviolent video games on heart rate variability, sleep, and emotions in adolescents with different violent gaming habits. Psychosom. Med. 2013, 75, 390–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Death by Video Game: A Power Like No Other. Available online: https://www.newscientist.com/article/mg22730350-700-death-by-video-game-a-power-like-no-other/ (accessed on 31 May 2022).
- Szot, M.; Karpęcka-Gałka, E.; Dróżdż, R.; Frączek, B. Can Nutrients and Dietary Supplements Potentially Improve Cognitive Performance Also in Esports? Healthcare 2022, 10, 186. [Google Scholar] [CrossRef] [PubMed]
- Vaccaro, A.; Kaplan Dor, Y.; Nambara, K.; Pollina, E.A.; Lin, C.; Greenberg, M.E.; Rogulja, D. Sleep Loss Can Cause Death through Accumulation of Reactive Oxygen Species in the Gut. Cell 2020, 181, 1307–1328.e15. [Google Scholar] [CrossRef] [PubMed]
- Bonnar, D.; Castine, B.; Kakoschke, N.; Sharp, G. Sleep and performance in Eathletes: For the win! Sleep Health 2019, 5, 647–650. [Google Scholar] [CrossRef] [PubMed]
- Rudolf, K.; Soffner, M.; Bickmann, P.; Froböse, I.; Tholl, C.; Wechsler, K.; Grieben, C. Media Consumption, Stress and Wellbeing of Video Game and eSports Players in Germany: The eSports Study 2020. Front. Sports Act. Living 2022, 4, 665604. [Google Scholar] [CrossRef]
- Kósa, G.; Feher, G.; Horvath, L.; Zadori, I.; Nemeskeri, Z.; Kovacs, M.; Fejes, É.; Meszaros, J.; Banko, Z.; Tibold, A. Prevalence and Risk Factors of Problematic Internet Use among Hungarian Adult Recreational ESports Players. Int. J. Environ. Res. Public Health 2022, 19, 3204. [Google Scholar] [CrossRef]
- Argilés, M.; Quevedo-Junyent, L.; Erickson, G. Topical Review: Optometric Considerations in Sports Versus ESports. Percept. Mot. Skills 2022, 1, 315125211073401. [Google Scholar] [CrossRef]
- Gong, D.; Ma, W.; Liu, T.; Yan, Y.; Yao, D. Electronic-Sports Experience Related to Functional Enhancement in Central Executive and Default Mode Areas. Neural Plast. 2019, 19, 1940123. [Google Scholar] [CrossRef]
- Du Boisgueheneuc, F.; Levy, R.; Volle, E.; Seassau, M.; Duffau, H.; Kinkingnehun, S.; Samson, Y.; Zhang, S.; Dubois, B. Functions of the left superior frontal gyrus in humans: A lesion study. Brain 2006, 12, 3315–3328. [Google Scholar] [CrossRef] [Green Version]
- Buxbaum, L.J.; Randerath, J. Limb apraxia and the left parietal lobe. Handb. Clin. Neurol. 2018, 151, 349–363. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Y.; Han, X.; Jiang, W.; Ding, W.; Cao, M.; Du, Y.; Lin, F.; Xu, J.; Zhou, Y. Sex differences in resting-state cerebral activity alterations in internet gaming disorder. Brain Imaging Behav. 2019, 13, 1406–1417. [Google Scholar] [CrossRef]
- Kenzie, J.M.; Semrau, J.A.; Findlater, S.E.; Yu, A.Y.; Desai, J.A.; Herter, T.M.; Hill, M.D.; Scott, S.H.; Dukelow, S.P. Localization of Impaired Kinesthetic Processing Post-stroke. Front. Hum. Neurosci. 2016, 10, 505. [Google Scholar] [CrossRef] [Green Version]
- Reader, A.T.; Holmes, N.P. Repetitive Transcranial Magnetic Stimulation Over the Left Posterior Middle Temporal Gyrus Reduces Wrist Velocity During Emblematic Hand Gesture Imitation. Brain Topogr. 2019, 32, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Moll, J.; de Oliveira-Souza, R. Hemispheric Dominance for Stereognosis in a Patient With an Infarct of the Left Postcentral Sensory Hand Area. Cogn. Behav. Neurol. 2017, 30, 102–115. [Google Scholar] [CrossRef]
- Shah-Basak, P.P.; Chen, P.; Caulfield, K.; Medina, J.; Hamilton, R.H. The role of the right superior temporal gyrus in stimulus-centered spatial processing. Neuropsychologia 2018, 113, 6–13. [Google Scholar] [CrossRef]
- Ramos Nuñez, A.I.; Yue, Q.; Pasalar, S.; Martin, R.C. The role of left vs. right superior temporal gyrus in speech perception: An fMRI guided TMS study. Brain Lang. 2020, 209, 104838. [Google Scholar] [CrossRef]
- Lausberg, H.; Kazzer, P.; Heekeren, H.R.; Wartenburger, I. Pantomiming tool use with an imaginary tool in hand as compared to demonstration with tool in hand specifically modulates the left middle and superior temporal gyri. Cortex 2015, 71, 1–14. [Google Scholar] [CrossRef]
- Kumar, A.; Avishay, D.M.; Jones, C.R.; Shaikh, J.D.; Kaur, R.; Aljadah, M.; Kichloo, A.; Shiwalkar, N.; Keshavamurthy, S. Sudden cardiac death: Epidemiology, pathogenesis and management. Rev. Cardiovasc. Med. 2021, 22, 147–158. [Google Scholar] [CrossRef]
- Tsuda, T.; Fitzgerald, K.K.; Temple, J. Sudden cardiac death in children and young adults without structural heart disease: A comprehensive review. Rev. Cardiovasc. Med. 2020, 21, 205–216. [Google Scholar] [CrossRef]
- Nash, D.; Lee, H.R.; Janson, C.; Richardson-Olivier, C.; Shah, M.J. Video game ventricular tachycardia: The “Fortnite” phenomenon. Heart Rhythm Case Rep. 2020, 6, 313–317. [Google Scholar] [CrossRef]
- Lawley, C.M.; Skinner, J.R.; Turner, C. Syncope Due to Ventricular Arrhythmia Triggered by Electronic Gaming. N. Engl. J. Med. 2019, 381, 1180–1181. [Google Scholar] [CrossRef] [PubMed]
- Andrássy, G. The effect of various stressors on the QT-interval and the T-wave. Orv. Hetil. 2009, 150, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, P.J.; Zaza, A.; Locati, E.; Moss, A.J. Stress and sudden death. The case of the long QT syndrome. Circulation 1991, 83, II71–II80. [Google Scholar] [PubMed]
- Andrássy, G.; Szabo, A.; Ferencz, G.; Trummer, Z.; Simon, E.; Tahy, A. Mental stress may induce QT-interval prolongation and T-wave notching. Ann. Noninvasive Electrocardiol. 2007, 12, 251–259. [Google Scholar] [CrossRef]
- Martinez-Gómez, D.; Gomez-Martinez, S.; Ruiz, J.R.; Ortega, F.B.; Marcos, A.; Veiga, O.L. Video game playing time and cardiometabolic risk in adolescents: The AFINOS study. Med. Clin. 2012, 139, 290–292. [Google Scholar] [CrossRef]
- Krarup, K.B.; Krarup, H.B. The physiological and biochemical effects of gaming: A review. Environ. Res. 2020, 184, 109344. [Google Scholar] [CrossRef]
Reference | Study Type | Participants | Exposure | Key Findings |
---|---|---|---|---|
Lee, 2004 [13] | Case study | 1 male, semiprofessional, 24 years old | 4 days of playing with minimal sleep | Death |
Pulmonary arteries | ||||
Complete thromboemboli | ||||
Chuang, 2006 [14] | Experimental | 9 males, 1 female, professional, 14–30 years old | 1–12 h/day | Seizures |
7 Subjects showed irregular EEG patterns at rest | ||||
Sainz et al., 2020 [15] | Experimental | 15 males, professional, 22 years old | 10.2 h/day | Increased reaction times after caffeine ingestion |
Valladao et al., 2020 [16] | Experimental | 23 males, semiprofessional, 21 years old | 3 h match | Seated heart rate 120 ± 16 bpm vs. 81 ± 11 bpm at rest |
Watanabe et al., 2021 [17] | Experimental | 9 males, professional, 30.7 years old | Up to 3 h of gaming | Bpm 79 rest to 97 in gaming |
RMS of EMG of forearm increased | ||||
Adaptation of HR to the opponent and to gaming conditions | ||||
Lee et al., 2021 [18] | Questionnaire | 17 males, professional, 20 years old | 6.8 h/night sleep | |
86.4% sleep efficiency | ||||
Kang et al., 2020 [19] | Experimental | 55 males, professional, 21.3 years old | Reaction times | Increased reaction times 1.0 vs. 8.3 ± 2.1 in controls |
Song et al., 2007 [20] | Case study | 1 male, professional, 40 years old | 3 days continuous gaming | Rhabdomiolysis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, Y.; Cicchella, A. Health Consequences of Intensive E-Gaming: A Systematic Review. Int. J. Environ. Res. Public Health 2023, 20, 1968. https://doi.org/10.3390/ijerph20031968
Shen Y, Cicchella A. Health Consequences of Intensive E-Gaming: A Systematic Review. International Journal of Environmental Research and Public Health. 2023; 20(3):1968. https://doi.org/10.3390/ijerph20031968
Chicago/Turabian StyleShen, Yinhao, and Antonio Cicchella. 2023. "Health Consequences of Intensive E-Gaming: A Systematic Review" International Journal of Environmental Research and Public Health 20, no. 3: 1968. https://doi.org/10.3390/ijerph20031968
APA StyleShen, Y., & Cicchella, A. (2023). Health Consequences of Intensive E-Gaming: A Systematic Review. International Journal of Environmental Research and Public Health, 20(3), 1968. https://doi.org/10.3390/ijerph20031968