Association of Individual and Neighborhood Characteristics to Problematic Internet Use among Youths and Adolescents: Evidence from Vietnam
Abstract
:1. Introduction
2. Methods
2.1. Study Design, Sampling Method, and Data Collection
2.2. Measurement and Instrument
- -
- People in this area are willing to help each other.
- -
- People around the living place are willing to help neighbors.
- -
- People live in harmony.
- -
- People around can be trusted and reliable.
- -
- People share the same value and life concept.
- -
- This area has a tremendous amount of trash.
- -
- This area has society’s vices.
- -
- This area has many fights and quarrels.
2.3. Statistical Analysis
3. Results
3.1. The Characteristics of Problematic Internet Use Questionnaire Short Form
3.2. Comparison of LPA Models with Different Latent Classes Based on Model Selection Statistics
3.3. Three Factors of the Problematic Internet Use Questionnaire Short Form Were Obtained from LPA Analysis
3.4. Characteristics of Participants According to Three Classes from the Problematic Internet Use Questionnaire Short Form
3.5. Selected Results of Multinomial Logistic Regression: Prediction of the Patterns of Problematic Internet Use
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rey, J. IACAPAP Textbook of Child and Adolescent Mental Health, 2015th ed.; International Association for Child and Adolescent Psychiatry and Allied: Geneva, Switzerland, 2015. [Google Scholar]
- Hassid, J. China’s Responsiveness to Internet Opinion: A Double-Edged Sword. J. Curr. Chin. Aff. 2015, 44, 39–68. [Google Scholar] [CrossRef] [Green Version]
- Samad, R.A. The Double Edged Sword: A Brief Comparison of Information Technology and Internet Development in Malaysia and some Neighbouring Countries. IFLA J. 2001, 27, 314–318. [Google Scholar] [CrossRef] [Green Version]
- Flisher, C. Getting plugged in: An overview of Internet addiction. J. Paediatr. Child Health 2010, 46, 557–559. [Google Scholar] [CrossRef] [PubMed]
- Mihara, S.; Higuchi, S. Cross-sectional and longitudinal epidemiological studies of I nternet gaming disorder: A systematic review of the literature. Psychiatry Clin. Neurosci. 2017, 71, 425–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, T. Digital Pornography Addiction: What You Need to Know and Where to Find Help; Focus on the Family: Colorado Springs, CO, USA, 2016. [Google Scholar]
- Sahin, C. The Predictive Level of Social Media Addiction for Life Satisfaction: A Study on University Students. Turk. Online J. Educ. Technol. 2017, 16, 120–125. [Google Scholar]
- Rahman, S.H.A. Can’t Live without my FB, LoL: The Influence of Social Networking Sites on the Communication Skills of TESL Students. Procedia-Soc. Behav. Sci. 2014, 134, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Greenfield, D.N. Virtual Addiction: Sometimes New Technology Can Create New Problems. 2003. Available online: https://www.semanticscholar.org/paper/Virtual-Addiction%3A-Sometimes-New-Technology-Can-New-Greenfield/f2682b40eadc2eed1ae1602795ac9c03278bb941 (accessed on 16 January 2021).
- Younes, F.; Halawi, G.; Jabbour, H.; El Osta, N.; Karam, L.; Hajj, A.; Khabbaz, L.R. Internet Addiction and Relationships with Insomnia, Anxiety, Depression, Stress and Self-Esteem in University Students: A Cross-Sectional Designed Study. PLoS ONE 2016, 11, e0161126. [Google Scholar] [CrossRef] [Green Version]
- Chou, W.-P.; Lee, K.-H.; Ko, C.-H.; Liu, T.-L.; Hsiao, R.C.; Lin, H.-F.; Yen, C.-F. Relationship between psychological inflexibility and experiential avoidance and internet addiction: Mediating effects of mental health problems. Psychiatry Res. 2017, 257, 40–44. [Google Scholar] [CrossRef]
- Kim, K.; Ryu, E.; Chon, M.-Y.; Yeun, E.-J.; Choi, S.-Y.; Seo, J.-S.; Nam, B.-W. Internet addiction in Korean adolescents and its relation to depression and suicidal ideation: A questionnaire survey. Int. J. Nurs. Stud. 2006, 43, 185–192. [Google Scholar] [CrossRef]
- Adelantado-Renau, M.; Moliner-Urdiales, D.; Cavero-Redondo, I.; Beltran-Valls, M.R.; Martínez-Vizcaíno, V.; Álvarez-Bueno, C. Association between screen media use and academic performance among children and adolescents: A systematic review and meta-analysis. JAMA Pediatr. 2019, 173, 1058–1067. [Google Scholar] [CrossRef]
- Ho, R.C.; Zhang, M.W.; Tsang, T.Y.; Toh, A.H.; Pan, F.; Lu, Y.; Cheng, C.; Yip, P.S.; Lam, L.T.; Lai, C.-M.; et al. The association between internet addiction and psychiatric co-morbidity: A meta-analysis. BMC Psychiatry 2014, 14, 183. [Google Scholar] [CrossRef]
- Kuss, D.J.; Griffiths, M.D.; Karila, L.; Billieux, J. Internet addiction: A systematic review of epidemiological research for the last decade. Curr. Pharm. Des. 2014, 20, 4026–4052. [Google Scholar] [CrossRef] [Green Version]
- Cheng, C.; Li, A.Y.-L. Internet Addiction Prevalence and Quality of (Real) Life: A Meta-Analysis of 31 Nations Across Seven World Regions. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 755–760. [Google Scholar] [CrossRef] [Green Version]
- Ling, C.S.; Ramadass, S.; Altaher, A.; Arjuman, N.C. Malaysian Internet Surfing Addiction (MISA): Factors affecting the Internet use and its consequences. In Proceedings of the 2011 IEEE International Conference on Computer Applications and Industrial Electronics (ICCAIE), Penang, Malaysia, 4–7 December 2011; pp. 585–590. [Google Scholar]
- Tran, B.X.; Ha, G.H.; Vu, G.T.; Hoang, C.L.; Nguyen, S.H.; Nguyen, C.T.; Latkin, C.A.; Tam, W.W.; Ho, C.S.H.; Ho, R.C.M. How have excessive electronics devices and Internet uses been concerned? Implications for global research agenda from a bibliometric analysis. J. Behav. Addict. 2020, 9, 469–482. [Google Scholar] [CrossRef]
- Müller, K.W.; Glaesmer, H.; Brähler, E.; Woelfling, K.; Beutel, M.E. Prevalence of internet addiction in the general population: Results from a German population-based survey. Behav. Inf. Technol. 2014, 33, 757–766. [Google Scholar] [CrossRef]
- Tereshchenko, S.; Kasparov, E.; Semenova, N.; Shubina, M.; Gorbacheva, N.; Novitckii, I.; Moskalenko, O.; Lapteva, L. Generalized and Specific Problematic Internet Use in Central Siberia Adolescents: A School-Based Study of Prevalence, Age–Sex Depending Content Structure, and Comorbidity with Psychosocial Problems. Int. J. Environ. Res. Public Health 2022, 19, 7593. [Google Scholar] [CrossRef]
- Aboujaoude, E.; Koran, L.M.; Gamel, N.; Large, M.D.; Serpe, R.T. Potential markers for problematic internet use: A telephone survey of 2513 adults. CNS Spectr. 2006, 11, 750–755. [Google Scholar] [CrossRef]
- Rumpf, H.-J.; Vermulst, A.A.; Bischof, A.; Kastirke, N.; Gürtler, D.; Bischof, G.; Meerkerk, G.-J.; John, U.; Meyer, C. Occurence of Internet Addiction in a General Population Sample: A Latent Class Analysis. Eur. Addict. Res. 2013, 20, 159–166. [Google Scholar] [CrossRef]
- Bakken, I.J.; Wenzel, H.G.; Götestam, K.G.; Johansson, A.; Øren, A. Internet addiction among Norwegian adults: A stratified probability sample study. Scand. J. Psychol. 2009, 50, 121–127. [Google Scholar] [CrossRef]
- Lan NT, M.; Kyesun, L.; Dung, V.; Huyen NT, T.; Van Chan, H.; Quy, N.T.; Huong, T.T.; Mai NT, H.; Trang, V.T.; Van Hieu, N. Internet addiction among university students and its associated factors: A cross-sectional study among college students in Hanoi, Vietnam. Syst. Rev. Pharm. 2020, 11, 590–596. [Google Scholar]
- Tran, B.X.; Huong, L.T.; Hinh, N.D.; Nguyen, L.H.; Le, B.N.; Nong, V.M.; Thuc, V.T.M.; Tho, T.D.; Latkin, C.; Zhang, M.W.; et al. A study on the influence of internet addiction and online interpersonal influences on health-related quality of life in young Vietnamese. BMC Public Health 2017, 17, 138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tran, B.X.; Mai, H.T.; Nguyen, L.H.; Nguyen, C.T.; Latkin, C.A.; Zhang, M.W.; Ho, R.C. Vietnamese validation of the short version of Internet Addiction Test. Addict. Behav. Rep. 2017, 6, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.W.; Tran, B.X.; Huong, L.T.; Hinh, N.D.; Nguyen, H.L.T.; Tho, T.D.; Latkin, C.; Ho, R.C. Internet addiction and sleep quality among Vietnamese youths. Asian J. Psychiatry 2017, 28, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Dang, A.K.; Nathan, N.; Le, Q.N.H.; Nguyen, L.H.; Nguyen, H.L.T.; Nguyen, C.T.; Do, H.P.; Nguyen, T.H.T.; Tran, T.T.; Nguyen, T.A.; et al. Associations between internet addiction and physical activity among Vietnamese youths and adolescents. Child. Youth Serv. Rev. 2018, 93, 36–40. [Google Scholar] [CrossRef]
- Van Rooij, A.; Prause, N. A critical review of “Internet addiction” criteria with suggestions for the future. J. Behav. Addict. 2014, 3, 203–213. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, D.-H.; Ryu, S.-H.; Yu, J.; Ha, J.H. Usefulness of Young’s Internet Addiction Test for clinical populations. Nord. J. Psychiatry 2013, 67, 393–399. [Google Scholar] [CrossRef]
- Galesic, M.; Bosnjak, M. Effects of Questionnaire Length on Participation and Indicators of Response Quality in a Web Survey. Public Opin. Q. 2009, 73, 349–360. [Google Scholar] [CrossRef]
- Demetrovics, Z.; Király, O.; Koronczai, B.; Griffiths, M.D.; Nagygyörgy, K.; Elekes, Z.; Tamás, D.; Kun, B.; Kökönyei, G.; Urbán, R. Psychometric Properties of the Problematic Internet Use Questionnaire Short-Form (PIUQ-SF-6) in a Nationally Representative Sample of Adolescents. PLoS ONE 2016, 11, e0159409. [Google Scholar] [CrossRef] [Green Version]
- Balkan, E.; Adalier, A. The Relationship between Social Cohesion and Computer-Internet Usage. Turk. Online J. Educ. Technol. 2011, 10, 304–310. [Google Scholar]
- Mujahid, M.S.; Roux, A.V.D.; Morenoff, J.; Raghunathan, T. Assessing the Measurement Properties of Neighborhood Scales: From Psychometrics to Ecometrics. Am. J. Epidemiol. 2007, 165, 858–867. [Google Scholar] [CrossRef] [Green Version]
- Marco, M.; Gracia, E.; Tomás, J.M.; López-Quílez, A. Assessing neighborhood disorder: Validation of a three-factor observational scale. Eur. J. Psychol. Appl. Leg. Context 2015, 7, 81–89. [Google Scholar] [CrossRef] [Green Version]
- Kessler, R.C.; Andrews, G.; Colpe, L.J.; Hiripi, E.; Mroczek, D.K.; Normand, S.L.; Walters, E.E.; Zaslavsky, A.M. K-6 Distress Scale—Self Administered. Available online: https://www.midss.org/sites/default/files/k6_self_admin_updated_08-08-11.pdf (accessed on 25 February 2021).
- Hawker, G.A.; Mian, S.; Kendzerska, T.; French, M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthritis Care Res. 2011, 63 (Suppl. S11), S240–S252. [Google Scholar]
- Collins, L.M.; Lanza, S.T. Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 718. [Google Scholar]
- Howard, M.C.; Hoffman, M.E. Variable-centered, person-centered, and person-specific approaches: Where theory meets the method. Organ. Res. Methods 2018, 21, 846–876. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Hanges, P.J. Latent Class Procedures: Applications to Organizational Research. Organ. Res. Methods 2010, 14, 24–31. [Google Scholar] [CrossRef]
- Gillet, N.; Morin, A.J.; Sandrin, E.; Houle, S.A. Investigating the combined effects of workaholism and work engagement: A substantive-methodological synergy of variable-centered and person-centered methodologies. J. Vocat. Behav. 2018, 109, 54–77. [Google Scholar] [CrossRef]
- Hirschi, A.; Valero, D. Career adaptability profiles and their relationship to adaptivity and adapting. J. Vocat. Behav. 2015, 88, 220–229. [Google Scholar] [CrossRef] [Green Version]
- Woo, S.E.; Jebb, A.T.; Tay, L.; Parrigon, S. Putting the “person” in the center: Review and synthesis of person-centered approaches and methods in organizational science. Organ. Res. Methods 2018, 21, 814–845. [Google Scholar] [CrossRef]
- Muthén & Muthén MPLUS. Available online: https://www.statmodel.com/demo.shtml (accessed on 26 February 2021).
- Akaike, H. Factor analysis and AIC. In Selected Papers of Hirotugu Akaike; Springer: Berlin/Heidelberg, Germany, 1987; pp. 371–386. [Google Scholar]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Sclove, S.L. Application of model-selection criteria to some problems in multivariate analysis. Psychometrika 1987, 52, 333–343. [Google Scholar] [CrossRef]
- Lo, Y.; Mendell, N.R.; Rubin, D.B. Testing the number of components in a normal mixture. Biometrika 2001, 88, 767–778. [Google Scholar] [CrossRef]
- Toker, T.; Green, K. A Comparison of Latent Class Analysis and the Mixture Rasch Model Using 8th Grade Mathematics Data in the Fourth International Mathematics and Science Study (TIMSS-2011). Int. J. Assess. Tool. Educ 2021, 8, 959–974. [Google Scholar] [CrossRef]
- Mak, K.-K.; Lai, C.-M.; Watanabe, H.; Kim, D.-I.; Bahar, N.; Ramos, M.; Young, K.S.; Ho, R.; Aum, N.-R.; Cheng, C. Epidemiology of Internet Behaviors and Addiction Among Adolescents in Six Asian Countries. Cyberpsychol. Behav. Soc. Netw. 2014, 17, 720–728. [Google Scholar] [CrossRef] [PubMed]
- Shek, D.T.; Yu, L. Internet addiction in Hong Kong adolescents: Profiles and psychosocial correlates. Int. J. Disabil. Hum. Dev. 2012, 11, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Shek, D.T.L.; Yu, L. Internet Addiction Phenomenon in Early Adolescents in Hong Kong. Sci. World J. 2012, 2012, 104304. [Google Scholar] [CrossRef]
- Morahan-Martin, J.; Schumacher, P. Loneliness and social uses of the Internet. Comput. Hum. Behav. 2003, 19, 659–671. [Google Scholar] [CrossRef]
- Doan, L.P.; Le, L.K.; Nguyen, T.T.; Nguyen, T.T.P.; Le, M.N.V.; Vu, G.T.; Latkin, C.A.; Ho, C.S.H.; Ho, R.C.M.; Zhang, M.W.B. Social Media Addiction among Vietnam Youths: Patterns and Correlated Factors. Int. J. Environ. Res. Public Health 2022, 19, 14416. [Google Scholar] [CrossRef]
- Karapetsas, A.V.; Karapetsas, V.A.; Zygouris, N.C.; Fotis, A.I.J.E. Internet addiction and loneliness. Enceph. J. 2015, 52, 4–9. [Google Scholar]
- Guo, W.; Tao, Y.; Li, X.; Lin, X.; Meng, Y.; Yang, X.; Wang, H.; Zhang, Y.; Tang, W.; Wang, Q.; et al. Associations of Internet Addiction Severity With Psychopathology, Serious Mental Illness, and Suicidality: Large-Sample Cross-Sectional Study. J. Med. Internet Res. 2020, 22, e17560. [Google Scholar] [CrossRef]
- Fu, S.C.; Pang, N.T.P.; Wider, W. Relationship between Internet Addiction, Personality Factors, and Emotional Distress among Adolescents in Malaysia. Children 2022, 9, 1883. [Google Scholar] [CrossRef]
- Young, K.S.; De Abreu, C.N. Internet Addiction: A Handbook and Guide to Evaluation and Treatment; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Vigna-Taglianti, F.; Brambilla, R.; Priotto, B.; Angelino, R.; Cuomo, G.; Diecidue, R. Problematic internet use among high school students: Prevalence, associated factors and gender differences. Psychiatry Res. 2017, 257, 163–171. [Google Scholar] [CrossRef]
- Niu, G.-F.; Sun, X.-J.; Subrahmanyam, K.; Kong, F.-C.; Tian, Y.; Zhou, Z.-K. Cue-induced craving for Internet among Internet addicts. Addict. Behav. 2016, 62, 1–5. [Google Scholar] [CrossRef]
- Chak, K.; Leung, L. Shyness and locus of control as predictors of internet addiction and internet use. CyberPsychology Behav. 2004, 7, 559–570. [Google Scholar] [CrossRef]
- Block, J.J. Issues for DSM-V: Internet Addiction. Am. J. Psychiatry. 2008, 165, 306–307. [Google Scholar] [CrossRef] [Green Version]
- Gergely, F. Internet Addiction. Life 2022, 12, 861. [Google Scholar] [CrossRef]
- Pikora, T.; Giles-Corti, B.; Bull, F.; Jamrozik, K.; Donovan, R. Developing a framework for assessment of the environmental determinants of walking and cycling. Soc. Sci. Med. 2003, 56, 1693–1703. [Google Scholar] [CrossRef]
- McCormack, G.R.; Rock, M.; Toohey, A.M.; Hignell, D. Characteristics of urban parks associated with park use and physical activity: A review of qualitative research. Health Place 2010, 16, 712–726. [Google Scholar] [CrossRef]
- World Health Organization. Health and Development through Physical Activity and Sport; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Aggio, D.; Smith, L.; Fisher, A.; Hamer, M. Mothers’ perceived proximity to green space is associated with TV viewing time in children: The Growing Up in Scotland study. Prev. Med. 2015, 70, 46–49. [Google Scholar] [CrossRef] [Green Version]
- Sanders, T.; Feng, X.; Fahey, P.P.; Lonsdale, C.; Astell-Burt, T. The influence of neighbourhood green space on children’s physical activity and screen time: Findings from the longitudinal study of Australian children. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 126. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, D.A.; Cho, G.-H.; Evenson, K.R.; Conway, T.L.; Cohen, D.; Ghosh-Dastidar, B.; Pickrel, J.L.; Veblen-Mortenson, S.; Lytle, L.A. Out and about: Association of the built environment with physical activity behaviors of adolescent females. Health Place 2012, 18, 55–62. [Google Scholar] [CrossRef] [Green Version]
- McGrath, L.J.; Hinckson, E.A.; Hopkins, W.G.; Mavoa, S.; Witten, K.; Schofield, G. Associations Between the Neighborhood Environment and Moderate-to-Vigorous Walking in New Zealand Children: Findings from the URBAN Study. Sports Med. 2016, 46, 1003–1017. [Google Scholar] [CrossRef]
- Stockdale, S.E.; Wells, K.B.; Tang, L.; Belin, T.R.; Zhang, L.; Sherbourne, C.D. The importance of social context: Neighborhood stressors, stress-buffering mechanisms, and alcohol, drug, and mental health disorders. Soc. Sci. Med. 2007, 65, 1867–1881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Deursen, A.J.; Bolle, C.L.; Hegner, S.M.; Kommers, P.A. Modeling habitual and addictive smartphone behavior: The role of smartphone usage types, emotional intelligence, social stress, self-regulation, age, and gender. Comput. Hum. Behav. 2015, 45, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Gui, M.; Büchi, M. From Use to Overuse: Digital Inequality in the Age of Communication Abundance. Soc. Sci. Comput. Rev. 2019, 39, 3–19. [Google Scholar] [CrossRef] [Green Version]
- Yadav, P.; Banwari, G.; Parmar, C.; Maniar, R. Internet addiction and its correlates among high school students: A preliminary study from Ahmedabad, India. Asian J. Psychiatry 2013, 6, 500–505. [Google Scholar] [CrossRef]
- Liu, J.; Nie, J.; Wang, Y. Effects of Group Counseling Programs, Cognitive Behavioral Therapy, and Sports Intervention on Internet Addiction in East Asia: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2017, 14, 1470. [Google Scholar] [CrossRef]
- Adkins, S.; Sherwood, N.E.; Story, M.; Davis, M. Physical Activity among African-American Girls: The Role of Parents and the Home Environment. Obes. Res. 2004, 12, 38S–45S. [Google Scholar] [CrossRef]
- Fein, A.J.; Plotnikoff, R.C.; Wild, T.C.; Spence, J.C. Perceived environment and physical activity in youth. Int. J. Behav. Med. 2004, 11, 135–142. [Google Scholar] [CrossRef]
- Wiljan, W.; Monique, S.; Martin, D. PREHealth: Designing Health into Urban Green and Blue Infrastructures—The Need for Action in Planning, Policies, and Research; National Report the Netherlands; University and State Library Darmstadt: Darmstadt, Germany, 2017. [Google Scholar]
Factors | Items | Respond (%) | Mean | SD | ||||
---|---|---|---|---|---|---|---|---|
Never | Rarely | Sometime | Often | Always | ||||
Obsession | How often do you feel tense, irritated, or stressed if you cannot use the Internet for as long as you want to? | 36.3 | 32.1 | 23.0 | 5.9 | 2.8 | 2.1 | 1.0 |
How often does it happen to you that you feel depressed, moody, or nervous when you are not on the Internet and these feelings stop once you are back online? | 27.8 | 20.0 | 23.2 | 12.2 | 16.8 | 2.7 | 1.4 | |
Neglect | How often do you spend time online when you’d rather sleep? | 26.1 | 36.2 | 28.9 | 8.5 | 0.3 | 2.2 | 0.9 |
How often do people in your life complain about spending excessive time on internet use? | 32.4 | 24.0 | 22.8 | 12.3 | 8.6 | 2.4 | 1.3 | |
Control disorder | How often does it happen to you that you wish to decrease the amount of time spent online but you do not succeed? | 36.5 | 27.3 | 15.6 | 13.4 | 7.2 | 2.3 | 1.3 |
How often do you try to conceal the amount of time spent online? | 45.3 | 21.1 | 13.1 | 10.4 | 10.2 | 2.2 | 1.4 |
Number Latent Class | AIC | BIC | aBIC | LMR-LRT (p-Value) | LMRa-LRT (p-Value) | BLRT (p-Value) |
---|---|---|---|---|---|---|
Class 1 | 12,831.71 | 12,863.49 | 12,844.43 | - | - | - |
Class 2 | 11,198.81 | 11,251.79 | 11,220.02 | <0.01 | <0.01 | <0.01 |
Class 3 *** | 10,854.80 | 10,928.97 | 10,884.49 | <0.01 | <0.01 | <0.01 |
Class 4 | 10,731.65 | 10,827.01 | 10,769.83 | 0.23 | 0.24 | <0.01 |
Questionnaire Short Form | |||||||||
---|---|---|---|---|---|---|---|---|---|
Characteristics | Risk of Problematic Internet Use | Total | p-Value | ||||||
Class 1 (Low Risk) | Class 2 (Moderate Risk) | Class 3 (High Risk) | |||||||
n | % | n | % | n | % | n | % | ||
Total | 542 | 36.7 | 594 | 40.2 | 341 | 23.1 | 1477 | 100.0 | |
Gender | |||||||||
Male | 231 | 42.6 | 206 | 34.7 | 116 | 34.0 | 553 | 37.4 | 0.007 |
Female | 311 | 57.4 | 388 | 65.3 | 225 | 66.0 | 924 | 62.6 | |
Marital status | |||||||||
Single | 432 | 79.7 | 512 | 86.2 | 264 | 77.4 | 1208 | 81.8 | <0.01 |
Having partner/being married | 110 | 20.3 | 82 | 13.8 | 77 | 22.6 | 269 | 18.2 | |
Living arrangement | |||||||||
Family | 453 | 83.6 | 469 | 79.0 | 274 | 80.4 | 1196 | 81.0 | <0.01 |
Friends | 68 | 12.5 | 71 | 12.0 | 24 | 7.0 | 163 | 11.0 | |
Alone | 21 | 3.9 | 54 | 9.1 | 43 | 12.6 | 118 | 8.0 | |
Location | |||||||||
Urban | 332 | 61.3 | 335 | 56.4 | 255 | 74.8 | 922 | 62.4 | <0.01 |
Rural/mountain areas | 210 | 38.7 | 259 | 43.6 | 86 | 25.2 | 555 | 37.6 | |
Province | |||||||||
Tuyen Quang | 96 | 17.7 | 117 | 19.7 | 79 | 23.2 | 292 | 19.8 | <0.01 |
Ha Noi | 68 | 12.5 | 98 | 16.5 | 106 | 31.1 | 272 | 18.5 | |
Quang Tri | 128 | 23.6 | 137 | 23.1 | 55 | 16.1 | 320 | 21.7 | |
Dak Lak | 132 | 24.4 | 148 | 24.9 | 40 | 11.7 | 320 | 21.7 | |
Ho Chi Minh City | 118 | 21.8 | 94 | 15.8 | 61 | 17.9 | 273 | 18.5 | |
Mean | SD | Mean | SD | Mean | SD | Mean | SD | p-Value | |
Age, years | 18.5 | 2.0 | 19.0 | 2.1 | 19.0 | 2.3 | 18.8 | 2.1 | <0.01 |
Kessler score (0–24) | 3.9 | 3.9 | 7.3 | 4.7 | 6.3 | 4.5 | 5.8 | 4.6 | <0.01 |
Time using social network sites per day (hours) | 3.8 | 2.6 | 4.6 | 3.3 | 3.9 | 3.0 | 4.1 | 3.0 | <0.01 |
Visual analogue scale (VAS) (0–100) | 89.0 | 12.8 | 82.5 | 15.1 | 81.3 | 17.5 | 84.6 | 15.3 | <0.01 |
Community cohesion | |||||||||
Neighborhood cohesion (0–5) | 2.3 | 1.5 | 2.3 | 1.5 | 2.5 | 1.4 | 2.4 | 1.5 | 0.060 |
Neighborhood disorder (0–3) | 0.1 | 0.4 | 0.3 | 0.5 | 0.5 | 0.8 | 0.3 | 0.6 | <0.01 |
Risk of Problematic Internet Use | ||||||
---|---|---|---|---|---|---|
High vs. Moderate Risk | Moderate vs. Low Risk | High vs. Low Risk | ||||
OR | 95% CI | OR | 95% CI | OR | 95% CI | |
Individual Characteristics | ||||||
Age (per year) | 1.06 | 0.98; 1.14 | 1.12 *** | 1.04; 1.21 | 1.18 *** | 1.09; 1.29 |
Gender (female vs. male ref) | 1.16 | 0.86; 1.57 | 1.15 | 0.88; 1.51 | 1.34 * | 0.97; 1.84 |
Marital status (single ref) | ||||||
Having partner/being married | 1.75 *** | 1.20; 2.55 | 0.65 ** | 0.46; 0.93 | 1.14 | 0.78; 1.67 |
Living arrangement (family ref) | ||||||
Friends | 0.48 *** | 0.28; 0.81 | 0.86 | 0.57; 1.29 | 0.41 *** | 0.24; 0.71 |
Alone | 1.31 | 0.82; 2.09 | 2.66 *** | 1.51; 4.68 | 3.47 *** | 1.91; 6.31 |
Time using social network sites (per hours) | 0.95 ** | 0.90; 1.00 | 1.10 *** | 1.05; 1.15 | 1.04 | 0.98; 1.10 |
Kessler score (per score) | 0.96 ** | 0.93; 1.00 | 1.17 *** | 1.14; 1.21 | 1.13 *** | 1.09; 1.18 |
Self-reported health status (per score) | 1.00 | 0.99; 1.00 | 0.98 *** | 0.97; 0.99 | 0.98 *** | 0.97; 0.99 |
Community Characteristics | ||||||
Province (Tuyen Quang ref) | ||||||
Ha Noi | 2.09 *** | 1.28; 3.41 | 2.30 *** | 1.40; 3.79 | 4.82 *** | 2.80; 8.28 |
Quang Tri | 0.85 | 0.53; 1.37 | 1.18 | 0.77; 1.81 | 1.00 | 0.60; 1.67 |
Dak Lak | 0.61 * | 0.36; 1.03 | 0.99 | 0.64; 1.55 | 0.61 * | 0.35; 1.06 |
Ho Chi Minh City | 1.11 | 0.68; 1.80 | 1.15 | 0.74; 1.79 | 1.27 | 0.77; 2.10 |
Location (rural/mountainous vs. urban ref) | 0.62 *** | 0.44; 0.87 | 1.10 | 0.82; 1.48 | 0.68 ** | 0.47; 0.98 |
Community cohesion | ||||||
Neighborhood cohesion (per score) | 1.08 | 0.98; 1.19 | 1.06 | 0.97; 1.16 | 1.14 ** | 1.03; 1.27 |
Neighborhood disorder (per score) | 1.70 *** | 1.37; 2.11 | 1.46 *** | 1.12; 1.92 | 2.49 *** | 1.89; 3.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.T.P.; Do, H.N.; Vu, T.B.T.; Vu, K.L.; Nguyen, H.D.; Nguyen, D.T.; Do, H.M.; Nguyen, N.T.T.; La, L.T.B.; Doan, L.P.; et al. Association of Individual and Neighborhood Characteristics to Problematic Internet Use among Youths and Adolescents: Evidence from Vietnam. Int. J. Environ. Res. Public Health 2023, 20, 2090. https://doi.org/10.3390/ijerph20032090
Nguyen TTP, Do HN, Vu TBT, Vu KL, Nguyen HD, Nguyen DT, Do HM, Nguyen NTT, La LTB, Doan LP, et al. Association of Individual and Neighborhood Characteristics to Problematic Internet Use among Youths and Adolescents: Evidence from Vietnam. International Journal of Environmental Research and Public Health. 2023; 20(3):2090. https://doi.org/10.3390/ijerph20032090
Chicago/Turabian StyleNguyen, Thao Thi Phuong, Ha Ngoc Do, Thao Bich Thi Vu, Khanh Long Vu, Hiep Duy Nguyen, Dung Tuan Nguyen, Hoang Minh Do, Nga Thi Thu Nguyen, Ly Thi Bac La, Linh Phuong Doan, and et al. 2023. "Association of Individual and Neighborhood Characteristics to Problematic Internet Use among Youths and Adolescents: Evidence from Vietnam" International Journal of Environmental Research and Public Health 20, no. 3: 2090. https://doi.org/10.3390/ijerph20032090
APA StyleNguyen, T. T. P., Do, H. N., Vu, T. B. T., Vu, K. L., Nguyen, H. D., Nguyen, D. T., Do, H. M., Nguyen, N. T. T., La, L. T. B., Doan, L. P., Nguyen, T. T., Nguyen, H. L. T., Do, H. T., Latkin, C. A., Ho, C. S. H., & Ho, R. C. M. (2023). Association of Individual and Neighborhood Characteristics to Problematic Internet Use among Youths and Adolescents: Evidence from Vietnam. International Journal of Environmental Research and Public Health, 20(3), 2090. https://doi.org/10.3390/ijerph20032090