Young Age, Liver Dysfunction, and Neurostimulant Use as Independent Risk Factors for Post-Traumatic Seizures: A Multiracial Single-Center Experience
Abstract
:1. Introduction
2. Methods
2.1. Patient Selection and Biological Parameters
2.2. Inclusion and Exclusion Criteria
2.3. Ethics Approval
2.4. Data Collection
2.5. Statistical Analysis
3. Results
Descriptive Analysis
4. Discussion
4.1. Summary and Contributions
4.2. Strength and Limitations
4.3. Future Work
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GCS | Glasgow Coma Scale |
TBI | Traumatic Brain Injury |
CSF | Cerebrospinal Fluid |
EEG | Electroencephalogram |
PTA | Post-Traumatic Amnesia |
ALT | Alanine Aminotransferase |
AST | Aspartate Aminotransferase |
CT | Computed Tomography |
ICH | Intracerebral Hemorrhage |
SAH | Subarachnoid Hemorrhage |
SDH | Subdural Hemorrhage |
IVH | Intraventricular Hemorrhage |
CI | Confidence Interval |
SD | Standard Deviation |
ICP | Intracranial Pressure |
EVD | Extraventricular Drainage |
Hb | Hemoglobin |
WBC | White Blood Cell |
MCV | Mean Corpuscular Volume |
MCH | Mean Corpuscular Hemoglobin |
eGFR | Estimated Glomerular Filtration Rate |
References
- Beghi, E. Overview of studies to prevent posttraumatic epilepsy. Epilepsia 2003, 44, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, S.; Arisi, G.M.; Mims, K.; Hollingsworth, G.; O’Neil, K.; Shapiro, L.A. Neuroinflammatory mechanisms of post-traumatic epilepsy. J. Neuroinflammation 2020, 17, 193. [Google Scholar] [CrossRef] [PubMed]
- Temkin, N.R.; Dikmen, S.S.; Wilensky, A.J.; Keihm, J.; Chabal, S.; Winn, H.R. A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N. Engl. J. Med. 1990, 323, 497–502. [Google Scholar] [CrossRef]
- Vespa, P.M.; Nuwer, M.R.; Nenov, V.; Ronne-Engstrom, E.; Hovda, D.A.; Bergsneider, M.; Kelly, D.F.; Martin, N.A.; Becker, D.P. Increased incidence and impact of nonconvulsive and convulsive seizures after traumatic brain injury as detected by continuous electroencephalographic monitoring. J. Neurosurg. 1999, 91, 750–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diaz-Arrastia, R.; Agostini, M.A.; Frol, A.B.; Mickey, B.; Fleckenstein, J.; Bigio, E.; Van Ness, P.C. Neurophysiologic and neuroradiologic features of intractable epilepsy after traumatic brain injury in adults. Arch. Neurol. 2000, 57, 1611–1616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vespa, P.M.; Miller, C.; McArthur, D.; Eliseo, M.; Etchepare, M.; Hirt, D.; Glenn, T.C.; Martin, N.; Hovda, D. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit. Care Med. 2007, 35, 2830–2836. [Google Scholar] [CrossRef] [Green Version]
- Karve, I.P.; Taylor, J.M.; Crack, P.J. The contribution of astrocytes and microglia to traumatic brain injury. Br. J. Pharmacol. 2016, 173, 692–702. [Google Scholar] [CrossRef] [Green Version]
- Helmy, A.; Carpenter, K.L.; Menon, D.K.; Pickard, J.D.; Hutchinson, P.J. The cytokine response to human traumatic brain injury: Temporal profiles and evidence for cerebral parenchymal production. J. Cereb. Blood Flow. Metab. 2011, 31, 658–670. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.G.; Diamond, M.L.; Boles, J.A.; Berger, R.P.; Tisherman, S.A.; Kochanek, P.M.; Wagner, A.K. Acute CSF interleukin-6 trajectories after TBI: Associations with neuroinflammation, polytrauma, and outcome. Brain. Behav. Immun. 2015, 45, 253–262. [Google Scholar] [CrossRef]
- Witcher, K.G.; Bray, C.E.; Dziabis, J.E.; McKim, D.B.; Benner, B.N.; Rowe, R.K.; Kokiko-Cochran, O.N.; Popovich, P.G.; Lifshitz, J.; Eiferman, D.S.; et al. Traumatic brain injury-induced neuronal damage in the somatosensory cortex causes formation of rod-shaped microglia that promote astrogliosis and persistent neuroinflammation. Glia 2018, 66, 2719–2736. [Google Scholar] [CrossRef]
- Wofford, K.L.; Harris, J.P.; Browne, K.D.; Brown, D.P.; Grovola, M.R.; Mietus, C.J.; Wolf, J.A.; Duda, J.E.; Putt, M.E.; Spiller, K.L.; et al. Rapid neuroinflammatory response localized to injured neurons after diffuse traumatic brain injury in swine. Exp. Neurol. 2017, 290, 85–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liesemer, K.; Bratton, S.L.; Zebrack, C.M.; Brockmeyer, D.; Statler, K.D. Early post-traumatic seizures in moderate to severe pediatric traumatic brain injury: Rates, risk factors, and clinical features. J. Neurotrauma 2011, 28, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Tubi, M.A.; Lutkenhoff, E.; Blanco, M.B.; McArthur, D.; Villablanca, P.; Ellingson, B.; Diaz-Arrastia, R.; Van Ness, P.; Real, C.; Shrestha, V.; et al. Early seizures and temporal lobe trauma predict post-traumatic epilepsy: A longitudinal study. Neurobiol. Dis. 2019, 123, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Asikainen, I.; Kaste, M.; Sarna, S. Early and late posttraumatic seizures in traumatic brain injury rehabilitation patients: Brain injury factors causing late seizures and influence of seizures on long-term outcome. Epilepsia 1999, 40, 584–589. [Google Scholar] [CrossRef]
- Annegers, J.F.; Grabow, J.D.; Groover, R.V.; Laws, E.R., Jr.; Elveback, L.R.; Kurland, L.T. Seizures after head trauma: A population study. Neurology 1980, 30, 683–689. [Google Scholar] [CrossRef]
- Vespa, P. Continuous EEG monitoring for the detection of seizures in traumatic brain injury, infarction, and intracerebral hemorrhage: “To detect and protect”. J. Clin. Neurophysiol. 2005, 22, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Munakomi, S.; Bhattarai, B.; Mohan Kumar, B. Role of bromocriptine in multi-spectral manifestations of traumatic brain injury. Chin. J. Traumatol. 2017, 20, 84–86. [Google Scholar] [CrossRef]
- Annegers, J.F.; Coan, S.P. The risks of epilepsy after traumatic brain injury. Seizure 2000, 9, 453–457. [Google Scholar] [CrossRef] [Green Version]
- Vespa, P.M.; McArthur, D.L.; Xu, Y.; Eliseo, M.; Etchepare, M.; Dinov, I.; Alger, J.; Glenn, T.P.; Hovda, D. Nonconvulsive seizures after traumatic brain injury are associated with hippocampal atrophy. Neurology 2010, 75, 792–798. [Google Scholar] [CrossRef] [Green Version]
- Annegers, J.F.; Hauser, W.A.; Coan, S.P.; Rocca, W.A. A population-based study of seizures after traumatic brain injuries. N. Engl. J. Med. 1998, 338, 20–24. [Google Scholar] [CrossRef]
- Yeh, C.C.; Chen, T.L.; Hu, C.J.; Chiu, W.T.; Liao, C.C. Risk of epilepsy after traumatic brain injury: A retrospective population-based cohort study. J. Neurol. Neurosurg. Psychiatry 2013, 84, 441–445. [Google Scholar] [CrossRef] [PubMed]
- Kirmani, B.F.; Robinson, D.M.; Fonkem, E.; Graf, K.; Huang, J.H. Role of Anticonvulsants in the Management of Posttraumatic Epilepsy. Front. Neurol. 2016, 7, 32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torbic, H.; Forni, A.A.; Anger, K.E.; Degrado, J.R.; Greenwood, B.C. Antiepileptics for seizure prophylaxis after traumatic brain injury. Am. J. Health Syst. Pharm. 2013, 70, 2064–2067. [Google Scholar] [CrossRef]
- Jones, K.E.; Puccio, A.M.; Harshman, K.J.; Falcione, B.; Benedict, N.; Jankowitz, B.T.; Stippler, M.; Fischer, M.; Sauber-Schatz, E.K.; Fabio, A.; et al. Levetiracetam versus phenytoin for seizure prophylaxis in severe traumatic brain injury. Neurosurg. Focus. 2008, 25, E3. [Google Scholar] [CrossRef] [Green Version]
- Kakehi, S.; Tompkins, D.M. A Review of Pharmacologic Neurostimulant Use During Rehabilitation and Recovery After Brain Injury. Ann. Pharm. 2021, 55, 1254–1266. [Google Scholar] [CrossRef] [PubMed]
- Orient-Lopez, F.; Terre-Boliart, R.; Bernabeu-Guitart, M.; Ramon-Rona, S.; Perez-Miras, A. The usefulness of dopaminergic drugs in traumatic brain injury. Rev. Neurol. 2002, 35, 362–366. [Google Scholar]
- Pande, S.D.; Lwin, M.T.; Kyaw, K.M.; Khine, A.A.; Thant, A.A.; Win, M.M.; Morris, J. Post-stroke seizure-Do the locations, types and managements of stroke matter? Epilepsia Open 2018, 3, 392–398. [Google Scholar] [CrossRef]
- Gill, J.; Motamedi, V.; Osier, N.; Dell, K.; Arcurio, L.; Carr, W.; Walker, P.; Ahlers, S.; Lopresti, M.; Yarnell, A. Moderate blast exposure results in increased IL-6 and TNFalpha in peripheral blood. Brain Behav. Immun. 2017, 65, 90–94. [Google Scholar] [CrossRef]
- Liimatainen, S.; Fallah, M.; Kharazmi, E.; Peltola, M.; Peltola, J. Interleukin-6 levels are increased in temporal lobe epilepsy but not in extra-temporal lobe epilepsy. J. Neurol. 2009, 256, 796–802. [Google Scholar] [CrossRef]
- Semple, B.D.; O’Brien, T.J.; Gimlin, K.; Wright, D.K.; Kim, S.E.; Casillas-Espinosa, P.M.; Webster, K.M.; Petrou, S.; Noble-Haeusslein, L.J. Interleukin-1 Receptor in Seizure Susceptibility after Traumatic Injury to the Pediatric Brain. J. Neurosci. 2017, 37, 7864–7877. [Google Scholar] [CrossRef]
- Webster, K.M.; Sun, M.; Crack, P.; O’Brien, T.J.; Shultz, S.R.; Semple, B.D. Inflammation in epileptogenesis after traumatic brain injury. J. Neuroinflammation 2017, 14, 10. [Google Scholar] [CrossRef] [PubMed]
- Eslami, M.; Sayyah, M.; Soleimani, M.; Alizadeh, L.; Hadjighassem, M. Lipopolysaccharide preconditioning prevents acceleration of kindling epileptogenesis induced by traumatic brain injury. J. Neuroimmunol. 2015, 289, 143–151. [Google Scholar] [CrossRef] [PubMed]
- Klein, P.; Dingledine, R.; Aronica, E.; Bernard, C.; Blumcke, I.; Boison, D.; Brodie, M.J.; Brooks-Kayal, A.R.; Engel, J., Jr.; Forcelli, P.A.; et al. Commonalities in epileptogenic processes from different acute brain insults: Do they translate? Epilepsia 2018, 59, 37–66. [Google Scholar] [CrossRef] [PubMed]
- Chhor, V.; Moretti, R.; Le Charpentier, T.; Sigaut, S.; Lebon, S.; Schwendimann, L.; Ore, M.V.; Zuiani, C.; Milan, V.; Josserand, J.; et al. Role of microglia in a mouse model of paediatric traumatic brain injury. Brain Behav. Immun. 2017, 63, 197–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Loane, D.J.; Kumar, A. Microglia in the TBI brain: The good, the bad, and the dysregulated. Exp. Neurol. 2016, 275 Pt 3, 316–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, E.; Somera-Molina, K.; Van Eldik, L.J.; Watterson, D.M.; Wainwright, M.S. Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury. J. Neuroinflammation 2008, 5, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somera-Molina, K.C.; Robin, B.; Somera, C.A.; Anderson, C.; Stine, C.; Koh, S.; Behanna, H.A.; Van Eldik, L.J.; Watterson, D.M.; Wainwright, M.S. Glial activation links early-life seizures and long-term neurologic dysfunction: Evidence using a small molecule inhibitor of proinflammatory cytokine upregulation. Epilepsia 2007, 48, 1785–1800. [Google Scholar] [CrossRef]
Parameter | Seizure (n = 33) | No Seizure (n = 108) | p-Value |
---|---|---|---|
Age, mean (SD) | 53.0 (19.5) | 63.6 (19.1) | 0.008 |
Sex, n (%) | 0.363 | ||
Female | 6 (18.2) | 28 (25.1) | |
Male | 27 (81.8) | 80 (74.9) | |
Race, n (%) | 0.035 | ||
Chinese | 18 (54.5) | 74 (68.5) | |
Malay | 9 (27.3) | 30 (27.8) | |
Indian | 4 (12.1) | 2 (1.9) | |
Other | 2 (6.1) | 2 (1.9) | |
Occupation, n (%) | 0.097 | ||
Working | 21 (63.6) | 46 (42.6) | |
Retired | 11 (33.3) | 59 (54.6) | |
Mode of injury, n (%) | 0.132 | ||
Fall | 22 (68.8) | 65 (63.1) | |
Road traffic accident | 8 (25.0) | 37 (35.9) | |
Industrial accident | 2 (6.3) | 1 (1.0) | |
History of diabetes, n (%) | 0.816 | ||
Yes | 7 (21.2) | 25 (23.1) | |
No | 26 (78.8) | 83 (76.9) | |
History of hypertension, n (%) | 0.675 | ||
Yes | 13 (39.4) | 47 (43.5) | |
No | 20 (60.6) | 61 (56.5) | |
History of hyperlipidemia, n (%) | 0.673 | ||
Yes | 12 (36.4) | 35 (32.4) | |
No | 21 (63.6) | 73 (67.6) | |
History of chronic kidney disease, n (%) | 0.557 | ||
Yes | 2 (6.1) | 4 (3.7) | |
No | 31 (93.9) | 104 (96.3) | |
Atrial fibrillation, n (%) | 0.564 | ||
Yes | 2 (6.1) | 10 (9.3) | |
No | 31 (93.9) | 98 (90.7) | |
Ischemic heart disease, n (%) | 0.384 | ||
Yes | 7 (21.2) | 16 (14.8) | |
No | 26 (78.8 | 92 (85.2) | |
Anemia, n (%) | 0.891 | ||
Yes | 3 (9.1) | 9 (8.3) | |
No | 30 (91.7) | 99 (91.7) | |
Past history of stroke, n (%) | 0.795 | ||
Yes | 4 (12.1) | 15 (13.9) | |
No | 29 (87.9) | 93 (86.1) | |
Presence of liver dysfunction, n (%) | 0.01 | ||
Yes | 2 (6.1) | 0 (0) | |
No | 31 (93.9) | 108 (100) | |
Subdural hemorrhage, n (%) | 0.386 | ||
Yes | 18 (54.5) | 68 (63.0) | |
No | 15 (45.5) | 40 (37.0) | |
Subarachnoid hemorrhage, n (%) | 0.882 | ||
Yes | 13 (39.4) | 41 (38.0) | |
No | 20 (60.6) | 67 (62.0) | |
Cerebral contusion, n (%) | 0.05 | ||
Yes | 22 (66.7) | 51 (47.2) | |
No | 11 (33.3) | 57 (52.8) | |
Intraventricular hemorrhage, n (%) | 0.263 | ||
Yes | 8 (24.2) | 17 (15.7) | |
No | 25 (75.8) | 91 (84.3) | |
Extradural hemorrhage, n (%) | 0.31 | ||
Yes | 7 (21.2) | 15 (13.9) | |
No | 26 (78.8) | 93 (86.1) | |
Neurosurgical intervention, n (%) | <0.001 | ||
No intervention | 12 (37.5) | 56 (51.9) | |
EVD-ICP | 6 (18.8) | 13 (12.0) | |
Burr-hole | 1 (3.1) | 24 (22.2) | |
Craniotomy | 1 (3.1) | 7 (6.5) | |
Craniectomy | 9 (28.1) | 8 (7.4) | |
V-P shunt | 3 (9.4) | 0 (0) | |
GCS at admission, mean (SD) | 9.5 (4.1) | 11.9 (3.0) | 0.003 |
Hospital length of stay at index admission, day, mean (SD) | 53.1 (36.7) | 36.3 (30.1) | 0.021 |
Use of neurostimulants, n (%) | <0.001 | ||
Yes | 13 (39.4) | 13 (12.0) | |
No | 20 (60.6) | 95 (88.0) | |
Use of Statins, n (%) | 0.207 | ||
Yes | 10 (30.3) | 46 (42.6) | |
No | 23 (69.7) | 62 (57.4) | |
Mortality, n (%) | 0.873 | ||
Death | 9 (27.3) | 31 (28.7) | |
Alive | 24 (72.7) | 77 (71.3) | |
Follow-up period, days, median (25–75%) | 2242 (951–2894) | 1435 (845–2543) | 0.082 |
Hb, mean (SD) | 13.3 (2.1) | 13.2 (2.2) | 0.919 |
WBC, mean (SD) | 13.4 (67) | 11.5 (4.3) | 0.141 |
Platelet, mean (SD) | 276.6 (104.5) | 272.3 (90.2) | 0.833 |
MCV, mean (SD) | 86.2 (8.2) | 88.4 (6.8) | 0.179 |
MCH, mean (SD) | 28.6 (3.3) | 29.4 (3.9) | 0.289 |
Urea, mean (SD) | 4.7 (2.6) | 5.6 (2.8) | 0.101 |
Na, mean (SD) | 137 (4.7) | 137.4 (4.3) | 0.687 |
K, mean (SD) | 3.9 (0.5) | 4.0 (0.5) | 0.299 |
Bicarb, mean (SD) | 21.9 (3.6) | 22.8 (3.1) | 0.207 |
Creatinine, mean (SD) | 122.8 (186.4) | 98.9 (50.3) | 0.472 |
eGFR, mean (SD) | 57.5 (12.4) | 55.8 (10.3) | 0.484 |
Parameter | B | S.E. | Wald | df | p-Value | OR | 95% CI for OR | |
---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||
Age | −0.046 | 0.013 | 11.422 | 1 | 0.001 | 0.956 | 0.931 | 0.981 |
Neurostimulants | 2.389 | 0.584 | 16.745 | 1 | 0.0001 | 10.899 | 3.472 | 34.220 |
Liver dysfunction | 24.165 | 28073.795 | 0.000 | 1 | 0.999 | 0.000 | ||
Constant | 0.359 | 0.699 | 0.263 | 1 | 0.608 | 1.431 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oey, N.E.; Tan, P.T.; Pande, S.D. Young Age, Liver Dysfunction, and Neurostimulant Use as Independent Risk Factors for Post-Traumatic Seizures: A Multiracial Single-Center Experience. Int. J. Environ. Res. Public Health 2023, 20, 2301. https://doi.org/10.3390/ijerph20032301
Oey NE, Tan PT, Pande SD. Young Age, Liver Dysfunction, and Neurostimulant Use as Independent Risk Factors for Post-Traumatic Seizures: A Multiracial Single-Center Experience. International Journal of Environmental Research and Public Health. 2023; 20(3):2301. https://doi.org/10.3390/ijerph20032301
Chicago/Turabian StyleOey, Nicodemus Edrick, Pei Ting Tan, and Shrikant Digambarrao Pande. 2023. "Young Age, Liver Dysfunction, and Neurostimulant Use as Independent Risk Factors for Post-Traumatic Seizures: A Multiracial Single-Center Experience" International Journal of Environmental Research and Public Health 20, no. 3: 2301. https://doi.org/10.3390/ijerph20032301
APA StyleOey, N. E., Tan, P. T., & Pande, S. D. (2023). Young Age, Liver Dysfunction, and Neurostimulant Use as Independent Risk Factors for Post-Traumatic Seizures: A Multiracial Single-Center Experience. International Journal of Environmental Research and Public Health, 20(3), 2301. https://doi.org/10.3390/ijerph20032301