Temporal Trends (from 2008 to 2017) in Functional Limitations and Limitations in Activities of Daily Living: Findings from a Nationally Representative Sample of 5.4 Million Older Americans
Abstract
:1. Introduction
- To identify the temporal trends in the prevalence and the odds of activities of daily living (ADL) limitations and functional limitations (FLs) among Americans aged 65 and older;
- To explore if these trends vary by gender and age cohort;
- To determine if generational differences in educational attainment play a role in the observed temporal trends.
2. Methods
2.1. Sample
2.2. Measures
2.3. Statistical Analysis
3. Results
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Covinsky, K.E.; Palmer, R.M.; Fortinsky, R.H.; Counsell, S.R.; Stewart, A.L.; Kresevic, D.; Burant, C.J.; Landefeld, C.S. Loss of Independence in Activities of Daily Living in Older Adults Hospitalized with Medical Illnesses: Increased Vulnerability with Age. J. Am. Geriatr. Soc. 2003, 51, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.E.; Rejeski, W.J.; Reboussin, B.A.; Have, T.R.; Ettinger, W.H. Physical Activity, Functional Limitations, and Disability in Older Adults. J. Am. Geriatr. Soc. 2000, 48, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Mor, V.; Wilcox, V.; Rakowski, W.; Hiris, J. Functional transitions among the elderly: Patterns, predictors, and related hospital use. Am. J. Public Health 1994, 84, 1274–1280. [Google Scholar] [CrossRef] [PubMed]
- Kraus, L. 2016 Disability Statistics Annual Report; Durham, NH: University of New Hampshire. 2017. Available online: https://disabilitycompendium.org/sites/default/files/user-uploads/2016_AnnualReport.pdf (accessed on 20 January 2023).
- Wan, H.; Larsen, L. Older Americans with a Disability: 2008–2012; ACS-29; US Census Bureau: Washington, DC, USA, 2014.
- Goldman, S.; Stone, K.; Ancoli-Israel, S.; Blackwell, T.; Ewing, S.; Boudreau, R.; Newman, A. Poor sleep is associated with poorer physical performance and greater functional limitations in older women. Sleep 2007, 30, 1317–1324. [Google Scholar] [CrossRef]
- Baernholdt, M.; Yan, G.; Hinton, I.; Rose, K.; Mattos, M. Quality of Life in Rural and Urban Adults 65 Years and Older: Findings From the National Health and Nutrition Examination Survey. J. Rural. Health 2012, 28, 339–347. [Google Scholar] [CrossRef]
- Paul, C.; Ayis, S.; Ebrahim, S. Psychological distress, loneliness and disability in old age. Psychol. Health Med. 2006, 11, 221–232. [Google Scholar] [CrossRef]
- Cress, E.; Schechtman, K.; Mulrow, C.; Fiatarone, M.; Gerety, M.; Buchner, D. Relationship Between Physical Performance and Self-Perceived Physical Function. J. Am. Geriatr. Soc. 1995, 43, 93. [Google Scholar] [CrossRef]
- Gayman, M.; Turner, J.; Cui, M. Physical Limitations and Depressive Symptoms: Exploring the Nature of the Association. J. Gerontol. Ser. B 2008, 63, 219. [Google Scholar] [CrossRef]
- Segal, A.D.; Shofer, J.; Hahn, M.; Orendurff, M.; Ledoux, W.; Sangeorzan, B.J. Functional Limitations Associated with End-Stage Ankle Arthritis. J. Bone Jt. Surg. 2012, 94, 777–783. [Google Scholar] [CrossRef]
- Barrientos, A.; Gorman, M.; Heslop, A. Old Age Poverty in Developing Countries: Contributions and Dependence in Later Life. World Dev. 2003, 31, 555–570. [Google Scholar] [CrossRef]
- Vespa, J.; Medina, L.; Armstrong, D.M. Demographic Turning Points for the United States: Population Projections for 2020 to 2060; US Census Bureau: 2020. Available online: https://www.census.gov/content/dam/Census/library/publications/2020/demo/p25-1144.pdf (accessed on 20 January 2023).
- Greysen, S.R.; Stijacic Cenzer, I.; Boscardin, W.J.; Covinsky, K.E. Functional Impairment: An Unmeasured Marker of Medicare Costs for Postacute Care of Older Adults. J. Am. Geriatr. Soc. 2017, 65, 1996–2002. [Google Scholar] [CrossRef]
- Ostchega, Y.; Harris, T.B.; Hirsch, R.; Parsons, V.L.; Kington, R. The prevalence of functional limitations and disability in older persons in the US: Data from the National Health and Nutrition Examination Survey III. J. Am. Geriatr. Soc. 2000, 48, 1132–1135. [Google Scholar] [CrossRef]
- Manton, K.; Gu, X. Changes in the prevalence of chronic disability in the United States black and nonblack population above age 65 from 1982 to1999. Proc. Natl. Acad. Sci. USA 2001, 98, 6354–6359. [Google Scholar] [CrossRef]
- Freedman, V.A.; Crimmins, E.; Schoeni, R.F.; Spillman, B.C.; Aykan, H.; Kramarow, E.; Land, K.; Lubitz, J.; Manton, K.; Martin, L.G.; et al. Resolving inconsistencies in trends in old-age disability: Report from a technical working group. Demography 2004, 41, 417–441. [Google Scholar] [CrossRef]
- Freedman, V.A.; Martin, L.G.; Schoeni, R.F. Recent Trends in Disability and Functioning Among Older Adults in the United StatesA Systematic Review. JAMA 2002, 288, 3137–3146. [Google Scholar] [CrossRef]
- Crimmins, E.M.; Yuan, Z.; Saito, Y. Trends Over 4 Decades in Disability-Free Life Expectancy in the United States. Am. J. Public Health 2016, 106, 1287–1293. [Google Scholar] [CrossRef]
- Deng, Z.; Fuller-Thomson, E. Temporal trends (2008–2017) in serious hearing loss: Findings from a nationally representative sample of older Americans. Aging Health Res. 2022, 2, 100048. [Google Scholar] [CrossRef]
- Deng, Z.; Fuller-Thomson, E. Temporal Trends over a Decade in Serious Vision Impairment in a Large, Nationally Representative Population-based Sample of Older Americans: Gender, Cohort and Racial/Ethnic Differences. Ophthalmic Epidemiol. 2022, 29, 39–48. [Google Scholar] [CrossRef]
- Fuller-Thomson, E.; Ahlin, K.M. A Decade of Decline in Serious Cognitive Problems Among Older Americans: A Population-Based Study of 5.4 Million Respondents. J. Alzheimer’s Dis. 2022, 85, 141–151. [Google Scholar] [CrossRef]
- United States Census Bureau. Chapter 4: Sample Design and Selection. In American Community Survey Design and Methodology (January 2014); U.S. Census Bureau: Washington, DC, USA, 2014. [Google Scholar]
- United States Census Bureau. American Community Survey Accuracy of the Data (2018); U.S. Census Bureau: Washington, DC, USA, 2018.
- United States Census Bureau. Response Rates | American Community Survey | U.S. Census Bureau. Available online: https://www.census.gov/acs/www/methodology/sample-size-and-data-quality/response-rates/ (accessed on 20 September 2019).
- United States Census Bureau. Chapter 11 Weighting and Estimation. In American Community Survey Design and Methodology; U.S. Census Bureau: Washington, DC, USA, 2010. [Google Scholar]
- Schoeni, R.F.; Freedman, V.A.; Martin, L.G. Why Is Late-Life Disability Declining? Milbank Q. 2008, 86, 47–89. [Google Scholar] [CrossRef] [Green Version]
- Freedman, V.A.; Martin, L.G. The Role of Education in Explanining and Forecasting Trends in Functional Limitations among Older Americans. Demography 1999, 36, 461–473. [Google Scholar] [CrossRef] [PubMed]
- Fuller-Thomson, E.; Yu, B.; Nuru-Jeter, A.; Guralnik, J.M.; Minkler, M. Basic ADL Disability and Functional Limitation Rates Among Older Americans From 2000-2005: The End of the Decline? J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2009, 64A, 1333–1336. [Google Scholar] [CrossRef] [PubMed]
- Guralnik, J.; LaCroix, A.; Abbott, R.; Berkman, L.; Satterfield, S.; Evans, D.; Wallace, R. Maintaining Mobility in Late Life. I. Demographic Characteristics and Chronic Conditions. Am. J. Epidemiol. 1993, 137, 845–857. [Google Scholar] [CrossRef] [PubMed]
- Federal Interagency Forum on Aging-Related Statistics. Older Americans 2016: Key Indicators of Well-Being; United States Environmental Protection Agency: Washington, DC, USA, 2016.
- Bennett, J.; Boyle, P.; James, B.; Bennett, D. Correlates of health and financial literacy in older adults without dementia. BMC Geriatr. 2012, 12, 30. [Google Scholar] [CrossRef]
- Assari, S.; Mistry, R. Educational Attainment and Smoking Status in a National Sample of American Adults; Evidence for the Blacks’ Diminished Return. Int. J. Environ. Res. Public Health 2018, 15, 763. [Google Scholar] [CrossRef]
- Borrell, L.N.; Dallo, F.J.; White, K. Education and diabetes in a racially and ethnically diverse population. Am. J. Public Health 2006, 96, 1637–1642. [Google Scholar] [CrossRef]
- Kubota, Y.; Heiss, G.; MacLehose, R.F.; Roetker, N.S.; Folsom, A.R. Association of Educational Attainment With Lifetime Risk of Cardiovascular Disease: The Atherosclerosis Risk in Communities Study. JAMA Intern. Med. 2017, 177, 1165–1172. [Google Scholar] [CrossRef]
- Stuck, A.; Walthert, J.; Nikolaus, T.; BÃla, C.; Hohmann, C.; Beck, J. Risk factors for functional status decline in community-living elderly people: A systematic literature review. Soc. Sci. Med. 1999, 48, 445–469. [Google Scholar] [CrossRef]
- Van der Vorst, A.; Zijlstra, R.; De Witte, N.; Duppen, D.; Stuck, A.; Gertrudis, K.; Jos, S. Limitations in Activities of Daily Living in Community-Dwelling People Aged 75 and Over: A Systematic Literature Review of Risk and Protective Factors. PLoS ONE 2016, 11, e0194158. [Google Scholar] [CrossRef]
- Bruusgaard, D.; Smeby, L.; Claussen, B. Education and disability pension: A stronger association than previously found. Scand. J. Public Health 2010, 38, 686–690. [Google Scholar] [CrossRef]
- Dionne, C.E.; Von Korff, M.; Koepsell, T.D.; Deyo, R.A.; Barlow, W.E.; Checkoway, H. Formal education and back pain: A review. J. Epidemiol. Community Health 2001, 55, 455–468. [Google Scholar] [CrossRef] [PubMed]
- Garrett, B.E.; Dube, S.R.; Trosclair, A.; Caraballo, R.S.; Pechacek, T.F. Centers for Disease Control and Prevention (CDC) Cigarette smoking—United states, 1965–2008. MMWR Surveill. Summ. 2011, 60, 109–113. [Google Scholar]
- Agahi, N.; Fors, S.; Fritzell, J.; Shaw, B.A. Smoking and Physical Inactivity as Predictors of Mobility Impairment During Late Life: Exploring Differential Vulnerability Across Education Level in Sweden. J. Gerontol. B Psychol. Sci. Soc. Sci. 2018, 73, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Nelson, H.D.; Nevitt, M.C.; Scott, J.C.; Stone, K.L.; Cummings, S.R.; Cummings, S.R.; Nevitt, M.C.; Black, D.; Genant, H.K.; Arnaud, C.; et al. Smoking, Alcohol, and Neuromuscular and Physical Function of Older Women. JAMA 1994, 272, 1825–1831. [Google Scholar] [CrossRef] [PubMed]
- Nusselder, W.J.; Looman, C.W.N.; de Mheen, P.J.M.; van de Mheen, H.; Mackenbach, J.P. Smoking and the compression of morbidity. J. Epidemiol. Community Health 2000, 54, 566–574. [Google Scholar] [CrossRef]
- Feigin, V.L.; Lawes, C.M.M.; Bennett, D.A.; Barker-Collo, S.; Parag, V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: A systematic review. Lancet Neurol. 2009, 8, 355–369. [Google Scholar] [CrossRef]
- Murray, C.J.L.; Foreman, K.J.; Abd-Allah, F.; Abu-Rmeileh, N.; Achoki, T.; Alla, F.; Almazroa, M.A.; Alsharif, U.; Ameh, E.A.; Ammar, W.; et al. Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: Quantifying the epidemiological transition. Lancet 2015, 386, 2145–2191. [Google Scholar] [CrossRef]
- Crichton, S.L.; Bray, B.D.; McKevitt, C.; Rudd, A.G.; Wolfe, C.D.A. Patient outcomes up to 15 years after stroke: Survival, disability, quality of life, cognition and mental health. J. Neurol. Neurosurg. Psychiatr. 2016, 87, 1091–1098. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Air Quality-National Summary; United States Environmental Protection Agency: Washington, DC, USA, 2020.
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate Matter Air Pollution and Cardiovascular Disease: An Update to the Scientific Statement From the American Heart Association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef]
- Shih, R.A.; Hu, H.; Weisskopf, M.G.; Schwartz, B.S. Cumulative Lead Dose and Cognitive Function in Adults: A Review of Studies That Measured Both Blood Lead and Bone Lead. Environ. Health Persp. 2007, 115, 483–492. [Google Scholar] [CrossRef]
- Pirkle, J.L. The decline in blood lead levels in the United States. The National Health and Nutrition Examination Surveys (NHANES). JAMA J. Am. Med. Assoc. 1994, 272, 284–291. [Google Scholar] [CrossRef]
- Buchman, A.S.; Boyle, P.A.; Leurgans, S.E.; Barnes, L.L.; Bennett, D.A. Cognitive Function Is Associated with the Development of Mobility Impairments in Community-Dwelling Elders. Am. J. Geriat. Psychiat. 2011, 19, 571–580. [Google Scholar] [CrossRef]
- Dyer, S.; Crotty, M.; Fairhall, N.; Magaziner, J.; Beaupre, L.; Cameron, I.; Sherrington, C. A critical review of the long-term disability outcomes following hip fracture. BMC Geriatr. BMC Ser. 2016, 16, 158. [Google Scholar] [CrossRef]
- Brauer, C.; Coca-Perraillon, M.; Cutler, D.; Rosen, A. Incidence and Mortality of Hip Fractures in the United States. JAMA 2009, 302, 1573–1579. [Google Scholar] [CrossRef]
- Melton, L.J.; Kearns, A.E.; Atkinson, E.J.; Bolander, M.E.; Achenbach, S.J.; Huddleston, J.M.; Therneau, T.M.; Leibson, C.L. Secular trends in hip fracture incidence and recurrence. Osteoporosis Int. 2009, 20, 687–694. [Google Scholar] [CrossRef]
- Lewiecki, M.; Wright, J.; Curtis, E.; Siris, R.; Gagel, K.; Saag, A.; Singer, P.; RSteven, R.; Adler, A. Hip fracture trends in the United States, 2002 to 2015. Osteoporos. Int. 2018, 29, 717–722. [Google Scholar] [CrossRef]
- Vincent, H.K.; Vincent, K.R.; Lamb, K.M. Obesity and mobility disability in the older adult. Obes Rev 2010, 11, 568–579. [Google Scholar] [CrossRef]
- Samper-Ternent, R.; Al Snih, S. Obesity in older adults: Epidemiology and implications for disability and disease. Rev. Clin. Gerontol. 2012, 22, 10–34. [Google Scholar] [CrossRef]
- King, D.E.; Matheson, E.; Chirina, S.; Shankar, A.; Broman-Fulks, J. The Status of Baby Boomers’ Health in the United States: The Healthiest Generation? JAMA Intern. Med. 2013, 173, 385–386. [Google Scholar] [CrossRef]
- Leveille, S.G.; Wee, C.C.; Iezzoni, L.I. Trends in Obesity and Arthritis Among Baby Boomers and Their Predecessors, 1971–2002. Am. J. Public Health 2005, 95, 1607–1613. [Google Scholar]
- Lee, M.; Mishra, R.K.; Momin, A.; El-Refaei, N.; Bagheri, A.B.; York, M.K.; Kunik, M.E.; Derhammer, M.; Fatehi, B.; Lim, J.; et al. Smart-Home Concept for Remote Monitoring of Instrumental Activities of Daily Living (IADL) in Older Adults with Cognitive Impairment: A Proof of Concept and Feasibility Study. Sensors 2022, 22, 6745. [Google Scholar] [CrossRef] [PubMed]
- Rubenstein, L.Z. Falls in older people: Epidemiology, risk factors and strategies for prevention. Age Ageing 2006, 35, ii37–ii41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Motamed-Jahromi, M.; Kaveh, M.H. Effective Interventions on Improving Elderly’s Independence in Activity of Daily Living: A Systematic Review and Logic Model. Front. Public Health 2020, 8, 516151. [Google Scholar] [CrossRef] [PubMed]
Year | Age 65–74 | Age 75–84 | Age 85+ | Age 65+ (Total) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unweighted Sample (in Thousands) | Total | Males | Females | Total | Males | Females | Total | Males | Females | Total | Males | Females | |
2008 | 468 | 5.8 | 5.3 | 6.2 | 13.1 | 10.8 | 14.7 | 33.3 | 25.9 | 36.7 | 12.1 | 9.3 | 14.2 |
2009 | 480 | 5.5 | 5.1 | 5.8 | 12.6 | 10.7 | 13.9 | 32.1 | 24.6 | 35.5 | 11.5 | 8.9 | 13.5 |
2010 | 491 | 5.3 | 4.8 | 5.6 | 12.0 | 10.2 | 13.4 | 30.7 | 24.2 | 33.8 | 10.9 | 8.5 | 12.8 |
2011 | 524 | 5.4 | 4.9 | 5.8 | 12.2 | 10.2 | 13.6 | 30.9 | 23.7 | 34.4 | 11.0 | 8.5 | 13.0 |
2012 | 538 | 5.3 | 4.9 | 5.6 | 11.9 | 10.0 | 13.3 | 30.1 | 24.1 | 33.2 | 10.7 | 8.4 | 12.4 |
2013 | 544 | 5.2 | 4.8 | 5.5 | 11.6 | 9.5 | 13.1 | 30.4 | 23.7 | 33.7 | 10.5 | 8.1 | 12.3 |
2014 | 566 | 5.2 | 4.9 | 5.4 | 11.6 | 9.9 | 12.8 | 30.3 | 24.3 | 33.4 | 10.4 | 8.3 | 12.0 |
2015 | 583 | 5.1 | 4.8 | 5.3 | 11.2 | 9.7 | 12.4 | 30.0 | 23.9 | 33.2 | 10.1 | 8.1 | 11.7 |
2016 | 601 | 5.1 | 5.0 | 5.2 | 11.1 | 9.5 | 12.4 | 29.8 | 24.1 | 32.9 | 10.0 | 8.2 | 11.4 |
2017 | 610 | 4.9 | 4.7 | 5.0 | 10.6 | 9.0 | 11.8 | 29.7 | 23.9 | 32.8 | 9.6 | 7.8 | 11.0 |
Unweighted Totals (×1000) | 5405 | 3004 | 1404 | 1600 | 1681 | 723 | 958 | 718 | 242 | 476 | 5405 | 2371 | 3034 |
Linear by linear association | 278 | 32 | 293 | 757 | 197 | 514 | 278 | 16 | 221 | 2703 | 398 | 2266 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 |
Age Cohort (Sample Size) | Unadjusted Odds of Activities of Daily Living Limitations per Decade (2008–2017) (95% CI) | Odds of Activities of Daily Living Limitations per Decade (2008–2017), Adjusted for Age, Race (Includes Adjustment for Sex in Non-Gender-Specific Analyses) (95% CI) | Odds of Activities of Daily Living Limitations per Decade (2008–2017) (95% CI), Adjustment for Age, Race, (Includes Adjustment for Sex in Non-Gender-Specific Analyses) and Education. (95% CI) |
---|---|---|---|
Age 65–74 | |||
Both Genders 65–74 (n = 3,004,467) | 0.86 (0.85, 0.88) | 0.85 (0.84, 0.87) | 0.99 (0.98, 1.01), p = 0.50 |
Men 65–74 (n = 1,404,814) | 0.93 (0.90, 0.95) | 0.92 (0.89, 0.94) | 1.06 (1.03, 1.09) |
Female 65–74 (n = 1,599,653) | 0.81 (0.80, 0.83) | 0.81 (0.79, 0.83) | 0.94 (0.92, 0.97) |
Age 75–84 | |||
Both Genders 75–84 (n = 1,681,964) | 0.80 (0.78, 0.81) | 0.80 (0.79,0.82) | 0.88 (0.86, 0.89) |
Men 75–84 (n = 723,892) | 0.82 (0.80, 0.85) | 0.82 (0.80, 0.85) | 0.90 (0.87, 0.92) |
Female 75–84 (n = 958,072) | 0.79 (0.77, 0.81) | 0.79 (0.77, 0.81) | 0.86 (0.84, 0.88) |
Age 85 + | |||
Both Genders 85+ (n = 718,704) | 0.86 (0.85, 0.88) | 0.81 (0.80, 0.83) | 0.86 (0.84, 0.87) |
Men 85+ (n = 242,303) | 0.94 (0.91, 0.97) | 0.88 (0.85, 0.91) | 0.92 (0.89, 0.96) |
Female 85+ (n = 476,401) | 0.85 (0.84, 0.87) | 0.79 (0.77, 0.81) | 0.83 (0.82, 0.85) |
Total (age 65+) | |||
Both Genders 65+ (n = 5,405,135) | 0.78 (0.77, 0.78) | 0.82 (0.81, 0.83) | 0.90 (0.89, 0.91) |
Men 65+ (n = 2,371,009) | 0.85 (0.84, 0.86) | 0.87 (0.86, 0.89) | 0.96 (0.94, 0.97) |
Female 65+ (n = 3,034,126) | 0.75 (0.74, 0.76) | 0.80 (0.79, 0.81) | 0.87 (0.86, 0.88) |
Year | Age 65–74 | Age 75–84 | Age 85+ | Age 65+ (Total) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Unweighted Sample (in Thousands) | Total | Males | Females | Total | Males | Females | Total | Males | Females | Total | Males | Females | |
2008 | 468 | 17.6 | 15.2 | 19.7 | 30.6 | 25.9 | 34.0 | 55.1 | 46.3 | 59.1 | 27.3 | 21.9 | 31.2 |
2009 | 480 | 17.3 | 15.0 | 19.3 | 30.0 | 25.6 | 33.2 | 54.0 | 45.7 | 57.9 | 26.6 | 21.6 | 30.4 |
2010 | 491 | 16.8 | 14.6 | 18.7 | 29.2 | 24.8 | 32.4 | 52.9 | 45.4 | 56.5 | 25.7 | 21.0 | 29.4 |
2011 | 524 | 16.6 | 14.3 | 18.6 | 29.4 | 24.9 | 32.6 | 52.6 | 44.8 | 56.4 | 25.6 | 20.8 | 29.3 |
2012 | 538 | 16.3 | 14.3 | 18.0 | 28.7 | 24.3 | 31.9 | 52.1 | 45.1 | 55.6 | 25.0 | 20.5 | 28.4 |
2013 | 544 | 16.5 | 14.7 | 18.1 | 28.8 | 24.4 | 32.1 | 52.7 | 45.7 | 56.2 | 25.0 | 20.7 | 28.4 |
2014 | 566 | 16.4 | 14.9 | 17.8 | 28.4 | 24.1 | 31.7 | 52.7 | 45.4 | 56.5 | 24.7 | 20.6 | 28.0 |
2015 | 583 | 16.3 | 14.7 | 17.7 | 27.8 | 23.8 | 30.8 | 52.4 | 45.5 | 56.1 | 24.3 | 20.4 | 27.4 |
2016 | 601 | 16.1 | 14.4 | 17.5 | 27.8 | 23.9 | 30.8 | 52.3 | 45.6 | 55.9 | 24.1 | 20.2 | 27.2 |
2017 | 610 | 15.9 | 14.5 | 17.1 | 27.0 | 23.3 | 29.8 | 51.8 | 45.1 | 55.5 | 23.5 | 20.0 | 26.4 |
Unweighted Totals (×1000) | 5405 | 3004 | 1404 | 1600 | 1682 | 724 | 958 | 719 | 242 | 476 | 5405 | 2371 | 3034 |
Linear by linear association | 456 | 19 | 572 | 854 | 206 | 573 | 151 | 1.95 | 132 | 3193 | 389 | 2836 | |
p-value | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.16 | <0.001 | <0.001 | <0.001 | <0.001 |
Age Cohort (Sample Size) | Unadjusted Odds of Functional Limitations per Decade (2008–2017) (95% CI) | Odds of Functional Limitations per Decade (2008–2017), Adjusted for Year and Age, Race (Includes Adjustment for Sex in Non-Gender-Specific Analyses) (95% CI) | Odds of Functional Limitations per Decade (2008–2017) (95% CI), Adjustment for Year of Age, Race, (Includes Adjustment for Sex in Non-Gender-Specific Analyses), and Education. (95% CI) |
---|---|---|---|
Age 65–74 | |||
Both Genders 65–74 (n = 3,004,467) | 0.89 (0.88, 0.90) | 0.89 (0.88, 0.90) | 1.02 (1.01, 1.03) |
Men 65–74 (n = 1,404,814) | 0.96 (0.95, 0.98) | 0.96 (0.94, 0.97) | 1.10 (1.08, 1.12) |
Female 65–74 (n = 1,599,653) | 0.84 (0.83, 0.86) | 0.84 (0.83, 0.85) | 0.97 (0.95, 0.98) |
Age 75–84 | |||
Both Genders 75–84 (n = 1,681,964) | 0.84 (0.83, 0.85) | 0.85 (0.84, 0.86) | 0.93 (0.92, 0.94) |
Men 75–84 (n = 723,892) | 0.87 (0.86, 0.89) | 0.88 (0.86, 0.89) | 0.95 (0.93, 0.97) |
Female 75–84 (n = 958,072) | 0.83 (0.82, 0.85) | 0.84 (0.82, 0.85) | 0.91 (0.90, 0.92) |
Age 85+ | |||
Both Genders 85+ (n = 718,704) | 0.90 (0.89, 0.92) | 0.88 (0.86, 0.89) | 0.92 (0.91, 0.94) |
Men 85+ (n = 242,303) | 0.98 (0.95, 1.01), p = 0.16 | 0.94 (0.91, 0.97) | 0.99 (0.96, 1.02), p = 0.38 |
Female 85+ (n = 476,401) | 0.89 (0.87, 0.91) | 0.85 (0.83, 0.86) | 0.90 (0.88, 0.91) |
Total (age 65) | |||
Both Genders 65+ (n = 5,405,135) | 0.82 (0.82, 0.83) | 0.87 (0.86, 0.88) | 0.96 (0.95, 0.97) |
Men 65+ (n = 2,371,009) | 0.90 (0.89, 0.91) | 0.92 (0.91, 0.94) | 1.02 (1.01, 1.03) |
Female 65+ (n = 3,034,126) | 0.79 (0.78, 0.80) | 0.84 (0.83, 0.85) | 0.93 (0.92, 0.93) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fuller-Thomson, E.; Ferreirinha, J.; Ahlin, K.M. Temporal Trends (from 2008 to 2017) in Functional Limitations and Limitations in Activities of Daily Living: Findings from a Nationally Representative Sample of 5.4 Million Older Americans. Int. J. Environ. Res. Public Health 2023, 20, 2665. https://doi.org/10.3390/ijerph20032665
Fuller-Thomson E, Ferreirinha J, Ahlin KM. Temporal Trends (from 2008 to 2017) in Functional Limitations and Limitations in Activities of Daily Living: Findings from a Nationally Representative Sample of 5.4 Million Older Americans. International Journal of Environmental Research and Public Health. 2023; 20(3):2665. https://doi.org/10.3390/ijerph20032665
Chicago/Turabian StyleFuller-Thomson, Esme, Jason Ferreirinha, and Katherine Marie Ahlin. 2023. "Temporal Trends (from 2008 to 2017) in Functional Limitations and Limitations in Activities of Daily Living: Findings from a Nationally Representative Sample of 5.4 Million Older Americans" International Journal of Environmental Research and Public Health 20, no. 3: 2665. https://doi.org/10.3390/ijerph20032665
APA StyleFuller-Thomson, E., Ferreirinha, J., & Ahlin, K. M. (2023). Temporal Trends (from 2008 to 2017) in Functional Limitations and Limitations in Activities of Daily Living: Findings from a Nationally Representative Sample of 5.4 Million Older Americans. International Journal of Environmental Research and Public Health, 20(3), 2665. https://doi.org/10.3390/ijerph20032665