Heavy Metal Contamination in Leafy Vegetables Grown in Jazan Region of Saudi Arabia: Assessment of Possible Human Health Hazards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Instruments
2.2. Study Area
2.3. Sample Collection
2.4. Method Validation
2.5. Preparation of Samples and Determination of Heavy Metal Contents
2.6. Statistical Analyses
2.7. Metal Pollution Index (MPI)
2.8. Potential Health Risk Assessment
3. Results and Discussion
3.1. Method Validation
3.2. Heavy Metal Concentrations
3.3. Geographical Distribution of Metal Contents
3.4. Health Risk Assessment
3.5. Metal Pollution Index (MPI)
3.6. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tripathi, R.M.; Raghunath, R.; Krishnamoorthy, T.M. Dietary intake of heavy metals in Bombay City, India. Sci. Total Environ. 1997, 208, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Arora, M.; Kiran, B.; Rani, S.; Rani, A.; Kaur, B.; Mittal, N. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem. 2008, 111, 811–815. [Google Scholar] [CrossRef]
- Zhuang, P.; Zou, B.; Li, N.Y.; Li, Z.A. Heavy metal contamination in soils and food crops around Dabaoshan mine in Guangdong, China: Implication for human health. Environ. Geochem. Health 2009, 31, 707–715. [Google Scholar] [PubMed]
- Dorne, J.L.C.M.; Kass, G.E.N.; Bordajandi, L.R.; Amzal, B.; Bertelsen, U.; Castoldi, A.F.; Heppner, C.; Eskola, M.; Fabiansson, S.; Ferrari, P.; et al. Human risk assessment of heavy metals: Principles and applications. Met. Ions Life Sci. 2011, 8, 27–60. [Google Scholar] [PubMed]
- Jarup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar]
- Oliver, M.A. Soil and human health: A review. Eur. J. Soil Sci. 1997, 48, 573–592. [Google Scholar] [CrossRef]
- European Union. Heavy Metals in Wastes, European Commission on Environment. 2002. Available online: http://ec.europa.eu/environment/waste/studies/pdf/heavymetalsreport.pdf (accessed on 3 September 2022).
- Wang, Y.; Qiao, M.; Liu, Y.; Zhu, Y. Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China. J. Environ. Sci. 2012, 24, 690–698. [Google Scholar] [CrossRef]
- Klaassen, C.D.; Liu, J.; Choudhuri, S. Metallothionein: An intracellular protein to protect against cadmium toxicity. Annu. Rev. Pharmacol. 1999, 39, 267–294. [Google Scholar]
- Patrick, L. Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern. Med. Rev. 2003, 8, 106–128. [Google Scholar]
- Ekong, E.B.; Jaar, B.G.; Weaver, V.M. Lead-related nephrotoxicity: A review of the epidemiologic evidence. Kidney Int. 2006, 70, 2074–2084. [Google Scholar]
- Goyer, R.A. Lead Toxicity: Current Concerns. Environ. Health Perspect. 1993, 100, 177–187. [Google Scholar] [CrossRef] [PubMed]
- Navas-Acien, A.; Guallar, E.; Silbergeld, E.K.; Rothenberg, S.J. Lead exposure and cardiovascular disease: A systematic review. Environ. Health Perspect. 2007, 115, 472–482. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.K. Excessive intake of zinc impairs immune responses. JAMA 1984, 252, 1443–1446. [Google Scholar] [PubMed]
- Gaetke, L.M.; Chow, C.K. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147–163. [Google Scholar] [PubMed]
- Liu, W.H.; Zhao, J.Z.; Ouyang, Z.Y.; S¨oderlund, L.; Liu, G.H. Impacts of sewage irrigation on heavy metal distribution and contamination in Beijing, China. Environ. Int. 2005, 31, 805–812. [Google Scholar] [PubMed]
- Scott, D.; Keoghan, J.M.; Allen, B.E. Native and low input grasses—A New Zealand high country perspective. New Zealand J. Agric. Res. 1996, 39, 499–512. [Google Scholar]
- Voutsa, D.; Grimanis, A.; Samara, C. Trace elements in vegetables grown in industrial areas in relation to soil and air particulate matter. Environ. Pollut. 1996, 94, 325–335. [Google Scholar] [CrossRef]
- Hardaway, C.J.; Sneddon, J.; Sneddon, E.J.; Kiran, B.; Lambert, B.J.; McCray, T.C.; Bowser, D.Q.; Douvris, C. Study of selected metal concentrations in sediments by inductively coupled plasma-optical emission spectrometry from a metropolitan and more pristine bayou in Southwest Louisiana, United States. Microchem. J. 2016, 127, 213–219. [Google Scholar] [CrossRef]
- Whatmuff, M.S. Applying biosolids to acid soil in New South Wales: Are guideline soil metal limits from other countries appropriate? Aust. J. Soil Res. 2002, 40, 1041–1056. [Google Scholar]
- McBride, M.B. Toxic metals in sewage sludge-amended soils: Has proportion of beneficial use discounted the risks? Adv. Environ. Res. 2003, 8, 5–19. [Google Scholar]
- Marshall, F. Enhancing Food Chain Integrity: Quality Assurance Mechanisms for Air Pollution Impacts on Fruit and Vegetable Systems; Final Technical Report; Imperial College: London, UK, 2003; p. 165. Available online: https://assets.publishing.service.gov.uk/media/57a08cfce5274a27b2001567/R7530_FTR.pdf. (accessed on 5 September 2022).
- Jassir, M.S.; Shaker, A.; Khaliq, M.A. Deposition of heavy metals on green leafy vegetables sold on roadsides of Riyadh city, Saudi Arabia. Bull. Environ. Contam. Toxicol. 2005, 75, 1020–1027. [Google Scholar] [PubMed]
- Larsen, E.H.; Moseholm, L.; Nilsen, M.M. Atmospheric deposition of trace elements around point sources and human health risk assessment. II: Uptake of arsenic and chromium by vegetables grown near a wood presentation factory. Sci. Total Environ. 1992, 126, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Camazano, M.; Sanchez-Martin, M.J.; Lorenzo, L.F. Lead and cadmium in soils and vegetables from urban gardens of Salamanca (Spain). Sci. Total Environ. 1994, 146/147, 163–168. [Google Scholar]
- Jinadasa, K.B.P.N.; Milham, P.J.; Hawkins, C.A.; Cornish, P.S.D.; Williams, P.A.; Kaldor, C.J.; Conroy, J.P. Survey of Cd levels in vegetables and soils of greater Sydney, Australia. J. Environ. Qual. 1997, 26, 924–933. [Google Scholar]
- Lehoczky, E.; Szabo, L.; Horvath, S. Cadmium uptake by lettuce in different soils. Commun. Soil Sci. Plant Anal. 1998, 28, 1903–1912. [Google Scholar]
- Sharma, R.K.; Agrawal, M.; Marshall, F.M. Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: A case study in Varanasi. Environ. Pollut. 2008, 154, 254–263. [Google Scholar]
- Sharma, A.; Katnoria, J.K.; Nagpal, A.K. Heavy metals in vegetables: Screening health risks involved in cultivation along wastewater drain and irrigating with wastewater. SpringerPlus 2016, 5, 488. [Google Scholar]
- Chen, Y.; Wu, P.; Shao, Y.; Ying, Y. Health risk assessment of heavy metals in vegetables grown around battery production area. Sci. Agric. 2014, 71, 126–132. [Google Scholar] [CrossRef]
- Said, T.O.; Omran, A.A.; Khaled, F.; Fawy, K.F.; Idris, A.M. Heavy Metals in Twelve Edible Marine Fish Species From Jizan Fisheries, Saudi Arabia: Monitoring And Assessment. Fresenius Environ. Bull. 2014, 23, 801–809. [Google Scholar]
- El Gendy, A.; Al Farraj, S.; El Hedeny, M. Heavy Metal Concentrations in Tissues of the Shrimp Penaeus semisulcatus (De Haan, 1844) From Jazan, Southern Red Sea Coast of Saudi Arabia. Pakistan J. Zool. 2015, 47, 671–677. [Google Scholar]
- International Conference on Harmonization (ICH), Validation of Analytical Procedures: Text and Methodology, Q2 (R1), November, 2005. Available online: http://www.ipqpubs.com/wp-content/uploads/2011/09/Q2_R1__Guideline.pdf (accessed on 14 June 2022).
- Bahemuka, T.E.; Mubofu, E.B. Heavy metals in edible green vegetables grown along the sites of the Sinza and Msimbazi rivers in Dar es Salaam, Tanzania. Food Chem. 1999, 66, 63–66. [Google Scholar] [CrossRef]
- USEPA. Waste and Cleanup Risk Assessment. 2012. Available online: http://www2.epa.gov/risk/waste-and-cleanup-risk-assessment (accessed on 5 September 2022).
- USEPA (US Environmental Protection Agency). Risk Assessment Guidance for Superfund. Human Health Evaluation Manual. EPA/ 540/1-89/002, vol. I. 1989. Available online: http://www.epa.gov/superfund/programs/risk/ragsa/index.htm (accessed on 5 September 2022).
- Rattan, R.K.; Datta, S.P.; Chhonkar, P.K.; Suribabu, K.; Singh, A.K. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater—A case study. Agric. Ecosyst. Environ. 2005, 9, 310–322. [Google Scholar] [CrossRef]
- Zhou, H.; Yang, W.T.; Zhou, X.; Liu, L.; Gu, J.F.; Wang, W.L.; Zou, J.L.; Tian, T.; Peng, P.Q.; Liao, B.H. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment. Int. J. Environ. Res. Public Health. 2016, 13, 289–301. [Google Scholar] [CrossRef] [PubMed]
- De Miguel, E.; Iribarren, I.; Chacon, E.; Ordonez, A.; Charlesworth, S. Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere 2007, 66, 505–513. [Google Scholar] [CrossRef]
- Pandey, J.; Pandey, U. Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India. Environ. Monit. Assess. 2009, 148, 61–74. [Google Scholar] [CrossRef]
- Moseholm, L.; Larsen, E.H.; Andersen, B.; Nielsen, M.M. Atmospheric deposition of trace elements around point sources and human health risk assessment. I: Impact zones near a source of lead emissions. Sci. Total Environ. 1992, 126, 243–262. [Google Scholar]
- Zakaria, Z.; Zulkafflee, N.S.; Mohd Redzuan, N.A.; Selamat, J.; Ismail, M.R.; Praveena, S.M.; Tóth, G.; Abdull Razis, A.F. Understanding Potential Heavy Metal Contamination, Absorption, Translocation and Accumulation in Rice and Human Health Risks. Plants 2021, 10, 1070. [Google Scholar] [CrossRef]
- Usman, K.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H. Phytoremediation: Halophytes as Promising Heavy Metal Hyperaccumulators. In Heavy Metals; BoD: Norderstedt, Germany, 2018. [Google Scholar]
- Yaghoubian, Y.; Siadat, S.A.; Telavat, M.R.M.; Pirdashti, H.; Yaghoubian, I. Bio-removal of cadmium from aqueous solutions by filamentous fungi: Trichoderma spp. and Piriformospora indica. Environ. Sci. Pollut. Res. Int. 2019, 26, 7863–7872. [Google Scholar] [CrossRef]
- Hassan, F.I.; Niaz, K.; Khan, F.; Maqbool, F.; Abdollahi, M. The relation between rice consumption, arsenic contamination, and prevalence of diabetes in South Asia. EXCLI J. 2017, 16, 1132. [Google Scholar]
- Muthusaravanan, S.; Sivarajasekar, N.; Vivek, J.S.; Paramasivan, T.; Naushad, M.; Prakashmaran, J.; Gayathri, V.; Al-Duaij, O.K. Phytoremediation of heavy metals: Mechanisms, methods and enhancements. Environ. Chem. Lett. 2018, 16, 1339–1359. [Google Scholar]
- Huang, S.S.; Liao, Q.L.; Hua, M.; Wu, X.M.; Bi, K.S.; Yan, C.Y.; Chen, B.; Zhang, X.Y. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiang Su Province, China. Chemosphere 2007, 67, 2148–2155. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Wu, J.J.; Xu, J.M. Characterizing the risk assessment of heavy metals and sampling uncertainty analysis in paddy field by geostatistics and GIS. Environ. Pollut. 2006, 141, 257–264. [Google Scholar] [PubMed]
- Plumlee, K.H. Toxicosis from agricultural chemicals. Clin. Tech. Equine. Pract. 2002, 1, 94–97. [Google Scholar]
- Payus, C.; Abu-Talip, A.F.; Tan, W.H. Heavy Metals Accumulation in Paddy Cultivation Area of Kompipinan, Papar District, Sabah. J. Sustain. Sci. Manag. 2015, 10, 76–86. [Google Scholar]
- Yap, D.W.; Adezrian, J.; Khairiah, J.; Ismail, B.S.; Ahmad-Mahir, R. The uptake of heavy metals by paddy plants (Oryza sativa) in Kota Marudu, Sabah, Malaysia. Am.-Eurasian J. Agric. Environ. Sci. 2009, 6, 16–19. [Google Scholar]
- Jiang, W.; Struik, P.C.; Lingna, J.; Van-Keulen, H.; Ming, Z.; Stomph, T.J. Uptake and Distribution of Root-applied or Foliar-applied Zinc after Flowering in Aerobic Rice. Ann. Appl. Biol. 2007, 150, 383–391. [Google Scholar] [CrossRef]
- Ahmed, S.; Zohra, F.T.; Mahdi, M.M.; Nurnabi, M.; Alam, M.Z.; Choudhury, T.R. Health risk assessment for heavy metal accumulation in leafy vegetables grown on tannery effluent contaminated soil. Toxicol. Rep. 2022, 9, 346–355. [Google Scholar] [CrossRef]
- Muchuweti, M.; Birkett, J.W.; Chinyanga, E.; Zvauya, R.; Scrimshaw, M.D.; Lester, J.N. Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zimbabwe: Implications for human health. Agric. Ecosyst. Environ. 2006, 112, 41–48. [Google Scholar]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy metal toxicity and the environment. Exp. Suppl. 2012, 101, 133–164. [Google Scholar] [CrossRef]
- Rubio-Armendáriz, C.; Paz, S.; Gutiérrez, Á.J.; González-Weller, D.; Revert, C.; Hardisson, A. Human exposure to toxic metals (Al, Cd, Cr, Ni, Pb, Sr) from the Consumption of Cereals in Canary Islands. Foods 2021, 10, 1158. [Google Scholar] [CrossRef]
- Commission Regulation (EC) No. 466/2001. Setting maximum levels for certain contaminants in foodstuffs. Off. J. Eur. Communities 2001, 77, 7–11. [Google Scholar]
- FAO/WHO. Report on the 32nd Session of the Codex Committee on Food Additives and Contaminants. In Proceedings of the Joint FAO/WHO Food Standard Programme Codex Alimentarius Commission, 24th Session, Geneva, Switzerland, 2–7 July 2001. [Google Scholar]
- Ali, M.H.H.; Al-Qahtani, K.M. Assessment of some heavy metals in vegetables, cereals and fruits in Saudi Arabian markets. Egypt. J. Aquat. Res. 2012, 38, 31–37. [Google Scholar]
- Mapanda, F.; Mangwayana, E.N.; Nyamangara, J.; Giller, K.E. Uptake of heavy metals by vegetables irrigated using wastewater and the subsequent risks in Harare, Zimbabwe. Phys. Chem. Earth 2007, 32, 1399–1405. [Google Scholar] [CrossRef]
- Guerra, F.; Trevizam, A.R.; Muraoka, T.; Marcante, N.C.; Canniatti-Brazaca, S.G. Heavy metals in vegetables and potential risk for human health. Sci. Agric. 2012, 69, 54–60. [Google Scholar]
Elements | Wavelength (nm) |
---|---|
Cd | 214.438 |
Cr | 205.560 |
Co | 228.616 |
Cu | 324.754 |
Mg | 279.553 |
Fe | 259.940 |
Mn | 257.610 |
Pb | 220.353 |
Zn | 213.858 |
Vegetables | Cd | Co | Cr | Cu | Fe | Mg | Mn | Pb | Zn |
---|---|---|---|---|---|---|---|---|---|
Jazan (n = 4) | |||||||||
Lettuce | 0.24–0.30 | 0.29–0.46 | 1.04–2.24 | 7.95–8.38 | 239.0–684.5 | BDL | 36.16–48.02 | 0.53–0.94 | 28.78–38.53 |
Radish | 0.22–0.38 | 0.49–0.74 | 1.16–1.31 | 8.11–9.08 | 222.0–430.7 | BDL | 32.56–43.00 | 0.78–1.00 | 28.03–34.99 |
Mint | 0.18–0.48 | 0.84–1.12 | 2.42–4.20 | 8.05–9.71 | 995.5–1650.5 | BDL | 118.70–130.50 | 1.01–2.09 | 22.63–35.47 |
Parsley | 0.49–0.70 | 0.56–0.70 | 2.78–3.03 | 6.87–7.54 | 861.5–1129.0 | BDL | 76.10–87.60 | 0.84–2.27 | 21.93–26.06 |
Jarjir | 1.22–1.49 | 1.45–1.78 | 4.46–6.87 | 5.80–6.29 | 1996.5–2628.0 | BDL | 194.80–325.20 | 0.86–1.16 | 19.71–20.41 |
Sabya (n = 5) | |||||||||
Lettuce | 0.12–0.40 | 0.22–0.54 | 1.57–2.61 | 5.65–10.11 | 236.1–760.5 | BDL | 38.78–54.05 | 0.55–1.32 | 26.49–42.11 |
Radish | 0.20–0.40 | 0.32–0.52 | 0.48–1.43 | 2.67–7.54 | 130.8–188.0 | BDL | 21.34–30.51 | 0.49–1.53 | 16.73–25.19 |
Mint | 0.04–0.20 | 0.40–0.92 | 1.69–3.40 | 5.55–7.34 | 467.4–1319.0 | BDL | 69.90–130.75 | 0.74–1.25 | 18.80–23.09 |
Parsley | 0.35–0.65 | 0.34–0.81 | 1.27–3.65 | 5.52–12.42 | 555.5–1366.5 | BDL | 47.06–98.60 | 0.68–1.09 | 22.99–36.01 |
Jarjir | 0.28–1.45 | 0.48–0.91 | 1.21–3.81 | 5.23–7.54 | 518.0–3400.0 | BDL | 87.50–158.30 | 0.89–1.53 | 12.84–27.82 |
Abuarish (n = 6) | |||||||||
Lettuce | 0.30–0.45 | 0.35–0.41 | 0.89–1.07 | 9.03–10.49 | 255.4–385.7 | BDL | 46.19–61.45 | 0.56–0.85 | 36.25–45.58 |
Radish | 0.20–0.23 | 0.37–0.91 | 0.22–2.33 | 2.41–7.10 | 142.9–995.5 | BDL | 25.96–46.58 | 0.65–0.80 | 23.89–26.83 |
Mint | 0.20–0.49 | 0.85–1.23 | 2.57–4.69 | 8.34–12.80 | 743.5–1091.0 | BDL | 78.15–118.45 | 1.01–1.69 | 25.79–29.78 |
Parsley | 0.18–0.24 | 0.47–0.63 | 1.97–2.64 | 7.00–7.47 | 1003.0–1250.0 | BDL | 82.40–103.70 | 0.71–1.32 | 27.42–33.13 |
Jarjir | 1.01–2.25 | 0.40–0.95 | 1.23–2.37 | 4.25–13.62 | 479.3–1106.0 | BDL | 92.80–153.95 | 0.73–1.47 | 11.43–21.54 |
Damad (n = 5) | |||||||||
Lettuce | 0.24–0.43 | 0.29–1.13 | 1.29–5.75 | 9.05–13.20 | 270.3–987.5 | BDL | 58.65–60.65 | 0.82–2.13 | 31.57–50.20 |
Radish | 0.26–0.36 | 0.45–0.71 | 0.45–1.93 | 1.68–3.38 | 127.3–810.5 | BDL | 23.85–39.40 | 0.89–1.01 | 25.16–26.20 |
Mint | 0.11–0.33 | 0.48–0.56 | 1.09–1.27 | 7.10–9.00 | 491.5–610.5 | BDL | 75.80–106.40 | 0.75–1.31 | 24.12–31.27 |
Parsley | 0.22–0.30 | 0.35–0.83 | 1.47–4.15 | 4.81–8.29 | 551.5–1475.0 | BDL | 54.30–195.30 | 0.86–2.03 | 17.03–36.68 |
Jarjir | 0.66–1.14 | 0.25–0.66 | 0.96–1.27 | 2.95–3.73 | 294.6–814.0 | BDL | 42.11–102.30 | 0.56–0.67 | 17.74–30.92 |
Darb (n = 6) | |||||||||
Lettuce | 0.22–0.29 | 0.29–0.50 | 0.76–0.96 | 6.98–11.40 | 253.6–347.6 | BDL | 54.25–71.45 | 0.95–1.57 | 29.31–31.10 |
Radish | 0.16–0.27 | 0.46–0.47 | 0.56–1.28 | 4.14–7.21 | 33.0–157.5 | BDL | 21.07–23.98 | 0.50–0.75 | 16.29–35.15 |
Mint | 0.17–0.37 | 0.38–0.84 | 1.63–6.52 | 6.87–10.93 | 496.5–1003.5 | BDL | 79.00–147.10 | 0.58–0.90 | 21.42–30.90 |
Parsley | 0.10–0.45 | 0.37–0.63 | 1.26–2.26 | 4.18–5.65 | 593.5–977.5 | BDL | 79.30–96.30 | 0.78–1.46 | 19.93–26.71 |
Jarjir | 1.30–1.76 | 0.35–0.52 | 1.41–11.91 | 3.00–3.61 | 378.8–771.0 | BDL | 59.65–100.35 | 0.54–0.70 | 11.56–17.51 |
Unit | Cd | Co | Cr | Cu | Fe | Mg | Mn | Pb | Zn | Location [Ref] |
---|---|---|---|---|---|---|---|---|---|---|
mg/kg, dw | 0.10–11.20 | N/D | N/D | 10.00–111.20 | N/D | N/D | N/D | 0.50–3.10 | 29.20–189.10 | Varanasi, India [28] |
mg/kg, fw | 0.003–0.230 | N/D | 0.078–14.878 | N/D | N/D | N/D | N/D | 0.003–0.178 | N/D | China [30] |
mg/kg, dw | 0.1–0.6 | N/D | N/D | 2.5–16.0 | N/D | N/D | N/D | 1.9–6.6 | 14.8–49.3 | Tanzania [34] |
mg/kg, dw | N/D | N/D | N/D | 5.42–20.6 | 166–932 | N/D | 16.7–42.6 | N/D | 46.7–91.9 | Delhi, India [37] |
mg/kg, fw | 0.03–0.18 | 0.07-0.51 | BDL-0.48 | N/D | N/D | N/D | N/D | 0.16–1.66 | N/D | Sao Paulo State, Brazil [61] |
mg/kg, dw | 0.93–4.13 | N/D | N/D | 2.06–33.22 | 31.96–543.5 | N/D | 4.16–94.16 | 0.54–6.98 | 8.27–71.77 | Saudi Arabia [59] |
mg/kg, dw | 0.7–2.4 | N/D | 1.5–6.6 | 1.0–3.4 | N/D | N/D | N/D | 0.7–5.4 | 18–201 | Harare, Zimbabwe [60] |
mg/kg, fw | 0.002–2.918 | N/D | N/D | 0.155–3.125 | N/D | N/D | N/D | 0.004–2.361 | 1.151–54.65 | Shizhuyuan, China [38] |
mg/kg, dw | 0.09–1.55 | 0.36–1.60 | 0.86–6.97 | 2.78–11.58 | 94.2–2306.2 | BDL | 22.06–237.72 | 0.58–1.51 | 14.79–42.64 | Jazan, Saudi Arabia (This study) |
mg/kg, fw | 0.01–0.13 | 0.03–0.14 | 0.07–0.59 | 0.24–0.99 | 8.0–196.0 | BDL | 1.88–20.21 | 0.05–0.13 | 1.26–3.63 | Jazan, Saudi Arabia (This study) |
City | Cd | Co | Cr | Cu | Fe | Mn | Pb | Zn | |
---|---|---|---|---|---|---|---|---|---|
Jazan | EDI (Children) | 1.93 × 10−4 | 2.91 × 10−4 | 1.02 × 10−3 | 2.68 × 10−3 | 3.73 × 10−1 | 3.64 × 10−2 | 3.95 × 10−4 | 9.73 × 10−3 |
HQ (Children) | 1.93 × 10−1 | 6.76 × 10−3 | 3.40 × 10−1 | 6.70 × 10−2 | 5.33 × 10−1 | 7.91 × 10−1 | 1.13 × 10−1 | 3.24 × 10−2 | |
EDI (Adult) | 1.35 × 10−4 | 2.04 × 10−4 | 7.15 × 10−4 | 1.88 × 10−3 | 2.61 × 10−1 | 2.55 × 10−2 | 2.77 × 10−4 | 6.82 × 10−3 | |
HQ (Adult) | 1.35 × 10−1 | 4.74 × 10−3 | 2.38 × 10−1 | 4.69 × 10−2 | 3.73 × 10−1 | 5.54 × 10−1 | 7.91 × 10−2 | 2.27 × 10−2 | |
Sabya | EDI (Children) | 1.46 × 10−4 | 1.90 × 10−4 | 6.78 × 10−4 | 2.40 × 10−3 | 2.85 × 10−1 | 2.60 × 10−2 | 3.61 × 10−4 | 8.57 × 10−3 |
HQ (Children) | 1.46 × 10−1 | 4.43 × 10−3 | 2.26 × 10−1 | 5.99 × 10−2 | 4.06 × 10−1 | 5.64 × 10−1 | 1.03 × 10−1 | 2.86 × 10−2 | |
EDI (Adult) | 1.02 × 10−4 | 1.33 × 10−4 | 4.75 × 10−4 | 1.68 × 10−3 | 1.99 × 10−1 | 1.82 × 10−2 | 2.53 × 10−4 | 6.01 × 10−3 | |
HQ (Adult) | 1.02 × 10−1 | 3.10 × 10−3 | 1.58 × 10−1 | 4.20 × 10−2 | 2.85 × 10−1 | 3.95 × 10−1 | 7.22 × 10−2 | 2.00 × 10−2 | |
Abuarish | EDI (Children) | 1.84 × 10−4 | 2.25 × 10−4 | 6.65 × 10−4 | 2.82 × 10−3 | 2.68 × 10−1 | 2.85 × 10−2 | 3.32 × 10−4 | 9.77 × 10−3 |
HQ (Children) | 1.84 × 10−1 | 5.24 × 10−3 | 2.22 × 10−1 | 7.04 × 10−2 | 3.83 × 10−1 | 6.20 × 10−1 | 9.48 × 10−2 | 3.26 × 10−2 | |
EDI (Adult) | 1.29 × 10−4 | 1.58 × 10−4 | 4.66 × 10−4 | 1.97 × 10−3 | 1.88 × 10−1 | 2.00 × 10−2 | 2.32 × 10−4 | 6.84 × 10−3 | |
HQ (Adult) | 1.29 × 10−1 | 3.67 × 10−3 | 1.55 × 10−1 | 4.93 × 10−2 | 2.68 × 10−1 | 4.34 × 10−1 | 6.64 × 10−2 | 2.28 × 10−2 | |
Damad | EDI (Children) | 1.39 × 10−4 | 2.04 × 10−4 | 6.68 × 10−4 | 2.25 × 10−3 | 2.39 × 10−1 | 2.70 × 10−2 | 3.68 × 10−4 | 1.01 × 10−2 |
HQ (Children) | 1.39 × 10−1 | 4.74 × 10−3 | 2.23 × 10−1 | 5.61 × 10−2 | 3.41 × 10−1 | 5.88 ×10−1 | 1.05 × 10−1 | 3.36 × 10−2 | |
EDI (Adult) | 9.71 × 10−5 | 1.43 × 10−4 | 4.68 × 10−4 | 1.57 × 10−3 | 1.67 × 10−1 | 1.89 × 10−2 | 2.58 × 10−4 | 7.07 × 10−3 | |
HQ (Adult) | 9.71 × 10−2 | 3.32 × 10−3 | 1.56 × 10−1 | 3.93 × 10−2 | 2.39 × 10−1 | 4.12 × 10−1 | 7.37 × 10−2 | 2.36 × 10−2 | |
Darb | EDI (Children) | 1.81 × 10−4 | 1.61 × 10−4 | 9.79 × 10−4 | 2.11 × 10−3 | 1.68 × 10−1 | 2.53 × 10−2 | 3.00 × 10−4 | 8.14 × 10−3 |
HQ (Children) | 1.81 × 10−1 | 3.74 × 10−3 | 3.26 × 10−1 | 5.29 × 10−2 | 2.40 × 10−1 | 5.50 × 10−1 | 8.59 × 10−2 | 2.71 × 10−2 | |
EDI (Adult) | 1.27 × 10−4 | 1.13 × 10−4 | 6.86 × 10−4 | 1.48 × 10−3 | 1.18 × 10−1 | 1.77 × 10−2 | 2.11 × 10−4 | 5.71 × 10−3 | |
HQ (Adult) | 1.27 × 10−1 | 2.62 × 10−3 | 2.29 × 10−1 | 3.70 × 10−2 | 1.68 × 10−1 | 3.86 × 10−1 | 6.02 × 10−2 | 1.90 × 10−2 | |
RfD | 1.00 × 10−3 | 4.30 × 10−2 | 3.00 × 10−3 | 4.00 × 10−2 | 7.00 × 10−1 | 4.60 × 10−2 | 3.50 × 10−3 | 3.00 × 10−1 |
Cd | Co | Cr | Cu | Fe | Mn | Pb | Zn | |
---|---|---|---|---|---|---|---|---|
Cd | 1.000 | |||||||
Co | 0.568 | 1.000 | ||||||
Cr | 0.746 | 0.801 | 1.000 | |||||
Cu | −0.538 | −0.326 | −0.063 | 1.000 | ||||
Fe | 0.715 | 0.774 | 0.949 | −0.215 | 1.000 | |||
Mn | 0.708 | 0.830 | 0.990 | −0.111 | 0.978 | 1.000 | ||
Pb | −0.285 | 0.128 | 0.321 | 0.514 | 0.430 | 0.392 | 1.000 | |
Zn | −0.716 | −0.819 | −0.601 | 0.792 | −0.700 | −0.654 | 0.131 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najmi, A.; Albratty, M.; Al-Rajab, A.J.; Alhazmi, H.A.; Javed, S.A.; Ahsan, W.; Rehman, Z.u.; Hassani, R.; Alqahtani, S.S. Heavy Metal Contamination in Leafy Vegetables Grown in Jazan Region of Saudi Arabia: Assessment of Possible Human Health Hazards. Int. J. Environ. Res. Public Health 2023, 20, 2984. https://doi.org/10.3390/ijerph20042984
Najmi A, Albratty M, Al-Rajab AJ, Alhazmi HA, Javed SA, Ahsan W, Rehman Zu, Hassani R, Alqahtani SS. Heavy Metal Contamination in Leafy Vegetables Grown in Jazan Region of Saudi Arabia: Assessment of Possible Human Health Hazards. International Journal of Environmental Research and Public Health. 2023; 20(4):2984. https://doi.org/10.3390/ijerph20042984
Chicago/Turabian StyleNajmi, Asim, Mohammed Albratty, Abdul Jabbar Al-Rajab, Hassan A. Alhazmi, Sadique A. Javed, Waquar Ahsan, Zia ur Rehman, Rym Hassani, and Saad S. Alqahtani. 2023. "Heavy Metal Contamination in Leafy Vegetables Grown in Jazan Region of Saudi Arabia: Assessment of Possible Human Health Hazards" International Journal of Environmental Research and Public Health 20, no. 4: 2984. https://doi.org/10.3390/ijerph20042984
APA StyleNajmi, A., Albratty, M., Al-Rajab, A. J., Alhazmi, H. A., Javed, S. A., Ahsan, W., Rehman, Z. u., Hassani, R., & Alqahtani, S. S. (2023). Heavy Metal Contamination in Leafy Vegetables Grown in Jazan Region of Saudi Arabia: Assessment of Possible Human Health Hazards. International Journal of Environmental Research and Public Health, 20(4), 2984. https://doi.org/10.3390/ijerph20042984